Hierarchical List

Total Page:16

File Type:pdf, Size:1020Kb

Hierarchical List LIST E - GEOLOGIC AGE (STRATIGRAPHIC) TERMS - HIERARCHICAL LIST Hauterivian Phanerozoic Valanginian Cenozoic Berriasian Quaternary Jurassic Holocene Upper Jurassic Pleistocene Tithonian upper Pleistocene Kimmeridgian middle Pleistocene Oxfordian lower Pleistocene Middle Jurassic Calabrian Callovian Gelasian Bathonian Tertiary Bajocian Neogene Aalenian Pliocene Lower Jurassic (use for Liassic) upper Pliocene Toarcian Piacenzian Pliensbachian lower Pliocene Sinemurian Zanclean Hettangian Miocene Triassic upper Miocene Upper Triassic Messinian Rhaetian Tortonian Norian middle Miocene Carnian Serravalian Middle Triassic Langhian Ladinian lower Miocene Anisian Burdigalian Lower Triassic Aquitanian Olenekian Paleogene Induan Oligocene - - - - - - - - - - - - - - upper Oligocene Keuper Chattian Muschelkalk lower Oligocene Bunter Rupelian Paleozoic Eocene Permian upper Eocene Lopingian Priabonian Changhsingian middle Eocene Wuchiapingian Bartonian Guadalupian Lutetian Capitanian lower Eocene Wordian Ypresian Roadian Paleocene Cisuralian upper Paleocene Kungurian Thanetian Artinskian middle Paleocene Sakmarian Selandian Asselian lower Paleocene - - - - - - - - - - - - - - Danian Upper Permian Mesozoic Lower Permian Cretaceous Carboniferous Upper Cretaceous Pennsylvanian Maestrichtian Upper Pennsylvanian Campanian Gzhelian Santonian Kasimovian Coniacian Middle Pennsylvanian Turonian Moscovian Cenomanian Lower Pennsylvanian Lower Cretaceous Bashkirian Albian Mississippian Aptian Upper Mississippian Barremian Serpukhovian 2 LIST E - GEOLOGIC AGE (STRATIGRAPHIC) TERMS - HIERARCHICAL LIST Middle Mississippian Precambrian Visean Proterozoic Lower Mississippian Neoproterozoic Tournaisian Ediacaran - - - - - - - - - - - - - - Cryogenian Upper Carboniferous Tonian Lower Carboniferous Mesoproterozoic Devonian Stenian Upper Devonian Ectasian Famennian Calymmian Frasnian Paleoproterozoic Middle Devonian Statherian Givetian Orosirian Eifelian Rhyacian Lower Devonian Siderian Emsian Archean Pragian Neoarchean Lochkovian Mesoachean Silurian Paleoarchean Pridoli Eoarchean Ludlow Hadean Ludfordian Gorstian Wenlock Homerian Sheinwoodian Llandovery Telychian Aeronian Rhuddanian - - - - - - - - - - - - - - Upper Silurian Lower Silurian Ordovician Upper Ordovician Hirnantian Katian Sandbian Middle Ordovician Darriwilian Dapingian Lower Ordovician Floian Tremadocian Cambrian Upper Cambrian Middle Cambrian Lower Cambrian.
Recommended publications
  • Biochronology of the Triassic Tetrapod Footprints
    Geological Society, London, Special Publications Tetrapod footprints - their use in biostratigraphy and biochronology of the Triassic Hendrik Klein and Spencer G. Lucas Geological Society, London, Special Publications 2010; v. 334; p. 419-446 doi:10.1144/SP334.14 Email alerting click here to receive free email alerts when new articles cite this service article Permission click here to seek permission to re-use all or part of this article request Subscribe click here to subscribe to Geological Society, London, Special Publications or the Lyell Collection Notes Downloaded by on 15 June 2010 © 2010 Geological Society of London Tetrapod footprints – their use in biostratigraphy and biochronology of the Triassic HENDRIK KLEIN1,* & SPENCER G. LUCAS2 1Ru¨bezahlstraße 1, D-92318 Neumarkt, Germany 2New Mexico Museum of Natural History, 1801 Mountain Road NW, Albuquerque, NM 87104-1375 USA *Corresponding author (e-mail: [email protected]) Abstract: Triassic tetrapod footprints have a Pangaea-wide distribution; they are known from North America, South America, Europe, North Africa, China, Australia, Antarctica and South Africa. They often occur in sequences that lack well-preserved body fossils. Therefore, the question arises, how well can tetrapod footprints be used in age determination and correlation of stratigraphic units? The single largest problem with Triassic footprint biostratigraphy and biochronology is the non- uniform ichnotaxonomy and evaluation of footprints that show extreme variation in shape due to extramorphological (substrate-related) phenomena. Here, we exclude most of the countless ichnos- pecies of Triassic footprints, and instead we consider ichnogenera and form groups that show distinctive, anatomically-controlled features. Several characteristic footprint assemblages and ichnotaxa have a restricted stratigraphic range and obviously occur in distinct time intervals.
    [Show full text]
  • Palaeogene Marine Stratigraphy in China
    LETHAIA REVIEW Palaeogene marine stratigraphy in China XIAOQIAO WAN, TIAN JIANG, YIYI ZHANG, DANGPENG XI AND GUOBIAO LI Wan, X., Jiang, T., Zhang, Y., Xi, D. & Li G. 2014: Palaeogene marine stratigraphy in China. Lethaia, Vol. 47, pp. 297–308. Palaeogene deposits are widespread in China and are potential sequences for locating stage boundaries. Most strata are non-marine origin, but marine sediments are well exposed in Tibet, the Tarim Basin of Xinjiang, and the continental margin of East China Sea. Among them, the Tibetan Tethys can be recognized as a dominant marine area, including the Indian-margin strata of the northern Tethys Himalaya and Asian- margin strata of the Gangdese forearc basin. Continuous sequences are preserved in the Gamba–Tingri Basin of the north margin of the Indian Plate, where the Palaeogene sequence is divided into the Jidula, Zongpu, Zhepure and Zongpubei formations. Here, the marine sequence ranges from Danian to middle Priabonian (66–35 ma), and the stage boundaries are identified mostly by larger foraminiferal assemblages. The Paleocene/Eocene boundary is found between the Zongpu and Zhepure forma- tions. The uppermost marine beds are from the top of the Zongpubei Formation (~35 ma), marking the end of Indian and Asian collision. In addition, the marine beds crop out along both sides of the Yarlong Zangbo Suture, where they show a deeper marine facies, yielding rich radiolarian fossils of Paleocene and Eocene. The Tarim Basin of Xinjiang is another important area of marine deposition. Here, marine Palae- ogene strata are well exposed in the Southwest Tarim Depression and Kuqa Depres- sion.
    [Show full text]
  • Changing Paleo-Environments of the Lutetian to Priabonian Beds of Adelholzen (Helvetic Unit, Bavaria, Germany) 80 ©Geol
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Berichte der Geologischen Bundesanstalt Jahr/Year: 2011 Band/Volume: 85 Autor(en)/Author(s): Gebhardt Holger, Darga Robert, Coric Stjepan, diverse Artikel/Article: Changing paleo-environments of the Lutetian to Priabonian beds of Adelholzen (Helvetic Unit, Bavaria, Germany) 80 ©Geol. Bundesanstalt, Wien; download unter www.geologie.ac.at Berichte Geol. B.-A., 85 (ISSN 1017-8880) – CBEP 2011, Salzburg, June 5th – 8th Changing paleo-environments of the Lutetian to Priabonian beds of Adelholzen (Helvetic Unit, Bavaria, Germany) Holger Gebhardt1, Robert Darga2, Stjepan Ćorić1, Antonino Briguglio3, Elza Yordanova1, Bettina Schenk3, Erik Wolfgring3, Nils Andersen4, Winfried Werner5 1 Geologische Bundesanstalt, Neulinggasse 38, A-1030 Wien, Austria 2 Naturkundemuseum Siegsdorf, Auenstr. 2, D-83313 Siegsdorf, Germany 3 Universität Wien, Erdwiss. Zentrum, Althanstraße 14, A-1090 Wien, Austria 4 Leibniz Laboratory, Universität Kiel, Max-Eyth-Str. 11, D-24118 Kiel, Germany 5 Bayerische Staatssammlung für Paläontologie und Geologie, Richard-Wagner-Str. 10, D-80333 München, Germany The Adelholzen Section is located southwest of Siegsdorf in southern Bavaria, Germany. The section covers almost the entire Lutetian and ranges into the Priabonian. It is part of the Helvetic (tectonic) Unit and represents the sedimentary processes that took place on the southern shelf to upper bathyal of the European platform at that time. Six lithologic units occur in the Adelholzen-Section: 1) marly, glauconitic sands with predominantly Assilina, 2) marly bioclastic sands with predominantly Nummulites, 3) glauconitic sands, 4) marls with Discocyclina, 5) marly brown sand. These units were combined as “Adelholzener Schichten” and can be allocated to the Kressenberg Formation.
    [Show full text]
  • New Permian Fauna from Tropical Gondwana
    ARTICLE Received 18 Jun 2015 | Accepted 18 Sep 2015 | Published 5 Nov 2015 DOI: 10.1038/ncomms9676 OPEN New Permian fauna from tropical Gondwana Juan C. Cisneros1,2, Claudia Marsicano3, Kenneth D. Angielczyk4, Roger M. H. Smith5,6, Martha Richter7, Jo¨rg Fro¨bisch8,9, Christian F. Kammerer8 & Rudyard W. Sadleir4,10 Terrestrial vertebrates are first known to colonize high-latitude regions during the middle Permian (Guadalupian) about 270 million years ago, following the Pennsylvanian Gondwanan continental glaciation. However, despite over 150 years of study in these areas, the bio- geographic origins of these rich communities of land-dwelling vertebrates remain obscure. Here we report on a new early Permian continental tetrapod fauna from South America in tropical Western Gondwana that sheds new light on patterns of tetrapod distribution. Northeastern Brazil hosted an extensive lacustrine system inhabited by a unique community of temnospondyl amphibians and reptiles that considerably expand the known temporal and geographic ranges of key subgroups. Our findings demonstrate that tetrapod groups common in later Permian and Triassic temperate communities were already present in tropical Gondwana by the early Permian (Cisuralian). This new fauna constitutes a new biogeographic province with North American affinities and clearly demonstrates that tetrapod dispersal into Gondwana was already underway at the beginning of the Permian. 1 Centro de Cieˆncias da Natureza, Universidade Federal do Piauı´, 64049-550 Teresina, Brazil. 2 Programa de Po´s-Graduac¸a˜o em Geocieˆncias, Departamento de Geologia, Universidade Federal de Pernambuco, 50740-533 Recife, Brazil. 3 Departamento de Cs. Geologicas, FCEN, Universidad de Buenos Aires, IDEAN- CONICET, C1428EHA Ciudad Auto´noma de Buenos Aires, Argentina.
    [Show full text]
  • 32-38 Oldham Road, Ancoats, Manchester, Greater Manchester
    32-38 Oldham Road, Ancoats, Manchester, Greater Manchester Archaeological Building Investigation Final Report Oxford Archaeology North November 2007 CgMs Consulting Issue No: 2007-08/741 OA North Job No: L9887 NGR: SJ 8475 9876 32-38 Oldham Road, Ancoats, Manchester: Archaeological Building Investigation Final Report 1 CONTENTS SUMMARY .....................................................................................................................2 ACKNOWLEDGEMENTS.................................................................................................3 1. INTRODUCTION.........................................................................................................4 1.1 Circumstances of the Project.............................................................................4 1.2 Site Location and Geology................................................................................4 2. METHODOLOGY........................................................................................................5 2.1 Methodology .....................................................................................................5 2.2 Archive..............................................................................................................5 3. HISTORICAL BACKGROUND .....................................................................................6 3.1 Background .......................................................................................................6 3.2 Development of Ancoats...................................................................................7
    [Show full text]
  • 46.2 Comparison Between Formations Drilled
    Le Pichon, X., Pautot, G., Auzende, J. M, and Olivet, J. L., Ryan, W. F. B., Hsü, K. J., et al., 1973. Initial Reports of the 1971. La Méditerranée occidentale depuis 1'Oligocène. Deep Sea Drilling Project, Volume 13: Washington (U. S. Schema d'evolution: Earth Planet. Sci. Lett., v. 13, p. 145- Government Printing Office). 152. Stoeckinger, W. T., 1976. Valencia Gulf. Offer Deadline Mauffret, A., 1976. Etude géodyamique de la marge des iles nears: Oil Gas J., March, p. 197-204; April, p. 181-183. Baléares. 46.2. COMPARISON BETWEEN FORMATIONS DRILLED AT DSDP SITE 372 IN THE WESTERN MEDITERRANEAN AND EXPOSED SERIES OF LAND G. Bizon and J. J. Bizon, Bureau d'Etudes Industrielles et Cooperation de 1'Institute Français du Pétrole, 92500 Rueil Malmaison, France and B. Biju-Duval, Institut Français du Pétrole, 92500 Rueill-Malmaison ABSTRACT Formations penetrated at Site 372 are compared with series cropping out on land in the Balearic Islands, Southern Spain, and Sardinia. The comparison is extended to wells drilled in the Gulf of Lion. The margin at Menorca and the North Balearic Provencal Basin appear to be at least of Burdigalian age. The entire Miocene is undisturbed at Site 372 in contrast to Mallorca and continental Spain where important tectonic events occurred during middle and upper Miocene. INTRODUCTION By comparing these rocks with those of Mallorca, Bourrouilh considered the age of tectonism to be Because DSDP Site 372 is located only 40 km from middle Miocene. This conclusion is questionable con- the Balearic Islands, it is logical to compare the series sidering that at Site 372 the entire Miocene is undis- penetrated at the site with land equivalents, particu- turbed.
    [Show full text]
  • SILURIAN TIMES NEWSLETTER of the INTERNATIONAL SUBCOMMISSION on SILURIAN STRATIGRAPHY (ISSS) (INTERNATIONAL COMMISSION on STRATIGRAPHY, ICS) No
    SILURIAN TIMES NEWSLETTER OF THE INTERNATIONAL SUBCOMMISSION ON SILURIAN STRATIGRAPHY (ISSS) (INTERNATIONAL COMMISSION ON STRATIGRAPHY, ICS) No. 27 (for 2019) Edited by ZHAN Renbin INTERNATIONAL UNION OF GEOLOGICAL SCIENCES President: CHENG Qiuming (Canada) Vice-Presidents: Kristine ASCH (Germany) William CAVAZZA (Italy) Secretary General: Stanley C. FINNEY (USA) Treasurer: Hiroshi KITAZATO (Japan) INTERNATIONAL COMMISSION ON STRATIGRAPHY Chairman: David A.T. HARPER (UK) Vice-Chairman: Brian T. HUBER (USA) Secretary General: Philip GIBBARD (UK) SUBCOMMISSION ON SILURIAN STRATIGRAPHY Chairman: Petr ŠTORCH (Czech Republic) Vice-Chairman: Carlo CORRADINI (Italy) Secretary: ZHAN Renbin (China) Other titular members: Anna ANTOSHKINA (Russia) Carlton E. BRETT (USA) Bradley CRAMER (USA) David HOLLOWAY (Australia) Jisuo JIN (Canada) Anna KOZŁOWSKA (Poland) Jiří KŘÍŽ (Czech Republic) David K. LOYDELL (UK) Peep MÄNNIK (Estonia) Michael J. MELCHIN (Canada) Axel MUNNECKE (Germany) Silvio PERALTA (Argentina) Thijs VANDENBROUCKE (Belgium) WANG Yi (China) Živilė ŽIGAITĖ (Lithuania) Silurian Subcommission website: http://silurian.stratigraphy.org 1 CONTENTS CHAIRMAN’S CORNER 3 ANNUAL REPORT OF SILURIAN SUBCOMMISSION FOR 2019 7 INTERNATIONAL COMMISSION ON STRATGRAPHY STATUTES 15 REPORTS OF ACTIVITIES IN 2019 25 1. Report on the ISSS business meeting 2019 25 2. Report on the 15th International Symposium on Early/Lower Vertebrates 28 3. Report on the 13th International Symposium on the Ordovician System in conjunction with the 3rd Annual Meeting of IGCP 653 32 GUIDELINES FOR THE ISSS AWARD: KOREN' AWARD 33 ANNOUNCEMENTS OF MEETINGS and ACTIVITIES 34 1. Lithological Meeting: GEOLOGY OF REEFS 34 SILURIAN RESEARCH 2019: NEWS FROM THE MEMBERS 36 RECENT PUBLICATIONS ON THE SILURIAN RESEARCH 67 MEMBERSHIP NEWS 77 1. List of all Silurian workers and interested colleagues 77 2.
    [Show full text]
  • Climatic Shifts Drove Major Contractions in Avian Latitudinal Distributions Throughout the Cenozoic
    Climatic shifts drove major contractions in avian latitudinal distributions throughout the Cenozoic Erin E. Saupea,1,2, Alexander Farnsworthb, Daniel J. Luntb, Navjit Sagooc, Karen V. Phamd, and Daniel J. Fielde,1,2 aDepartment of Earth Sciences, University of Oxford, OX1 3AN Oxford, United Kingdom; bSchool of Geographical Sciences, University of Bristol, Clifton, BS8 1SS Bristol, United Kingdom; cDepartment of Meteorology, Stockholm University, 106 91 Stockholm, Sweden; dDivision of Geological and Planetary Sciences, Caltech, Pasadena, CA 91125; and eDepartment of Earth Sciences, University of Cambridge, CB2 3EQ Cambridge, United Kingdom Edited by Nils Chr. Stenseth, University of Oslo, Oslo, Norway, and approved May 7, 2019 (received for review March 8, 2019) Many higher level avian clades are restricted to Earth’s lower lati- order avian historical biogeography invariably recover strong evi- tudes, leading to historical biogeographic reconstructions favoring a dence for an origin of most modern diversity on southern land- Gondwanan origin of crown birds and numerous deep subclades. masses (2, 6, 11). However, several such “tropical-restricted” clades (TRCs) are repre- The crown bird fossil record has unique potential to reveal sented by stem-lineage fossils well outside the ranges of their clos- where different groups of birds were formerly distributed in deep est living relatives, often on northern continents. To assess the time. Fossil evidence, for example, has long indicated that total- drivers of these geographic disjunctions, we combined ecological group representatives of clades restricted to relatively narrow niche modeling, paleoclimate models, and the early Cenozoic fossil geographic regions today were formerly found in different parts of record to examine the influence of climatic change on avian geo- – graphic distributions over the last ∼56 million years.
    [Show full text]
  • Late Cretaceous–Eocene Geological Evolution of the Pontides Based on New Stratigraphic and Palaeontologic Data Between the Black Sea Coast and Bursa (NW Turkey)
    Turkish Journal of Earth Sciences (Turkish J. Earth Sci.), Vol.Z. ÖZCAN 21, 2012, ET pp. AL. 933–960. Copyright ©TÜBİTAK doi:10.3906/yer-1102-8 First published online 25 April 2011 Late Cretaceous–Eocene Geological Evolution of the Pontides Based on New Stratigraphic and Palaeontologic Data Between the Black Sea Coast and Bursa (NW Turkey) ZAHİDE ÖZCAN1, ARAL I. OKAY1,2, ERCAN ÖZCAN2, AYNUR HAKYEMEZ3 & SEVİNÇ ÖZKAN-ALTINER4 1 İstanbul Technical University (İTÜ), Eurasia Institute of Earth Sciences, Maslak, TR−34469 İstanbul, Turkey (E-mail: [email protected]) 2 İstanbul Technical University (İTÜ), Faculty of Mines, Department of Geology, Maslak, TR−34469 İstanbul, Turkey 3 General Directorate of Mineral Research and Exploration (MTA Genel Müdürlüğü), Geological Research Department, TR−06520 Ankara, Turkey 4 Middle East Technical University (METU), Department of Geological Engineering, Ünversiteler Mahallesi, Dumlupınar Bulvarı No. 1, TR−06800 Ankara, Turkey Received 17 February 2011; revised typescript receipt 04 April 2011; accepted 25 April 2011 Abstract: Th e Late Cretaceous–Eocene geological evolution of northwest Turkey between the Black Sea and Bursa was studied through detailed biostratigraphic characterization of eleven stratigraphic sections. Th e Upper Cretaceous sequence in the region starts with a major marine transgression and lies unconformably on a basement of Palaeozoic and Triassic rocks in the north (İstanbul-type basement) and on metamorphic rocks and Jurassic sedimentary rocks in the south (Sakarya-type basement). Four megasequences have been diff erentiated in the Late Cretaceous–Eocene interval. Th e fi rst one, of Turonian to Late Campanian age, is represented by volcanic and volcanoclastic rocks in the north along the Black Sea coast, and by siliciclastic turbidites and intercalated calcarenites in the south, corresponding to magmatic arc basin and fore-arc basin, respectively.
    [Show full text]
  • Neogene Stratigraphy of the Langenboom Locality (Noord-Brabant, the Netherlands)
    Netherlands Journal of Geosciences — Geologie en Mijnbouw | 87 - 2 | 165 - 180 | 2008 Neogene stratigraphy of the Langenboom locality (Noord-Brabant, the Netherlands) E. Wijnker1'*, T.J. Bor2, F.P. Wesselingh3, D.K. Munsterman4, H. Brinkhiris5, A.W. Burger6, H.B. Vonhof7, K. Post8, K. Hoedemakers9, A.C. Janse10 & N. Taverne11 1 Laboratory of Genetics, Wageningen University, Arboretumlaan 4, 6703 BD Wageningen, the Netherlands. 2 Prinsenweer 54, 3363 JK Sliedrecht, the Netherlands. 3 Naturalis, P.O. Box 9517, 2300 RA Leiden, the Netherlands. 4 TN0 B&0 - National Geological Survey, P.O. Box 80015, 3508 TA Utrecht, the Netherlands. 5 Palaeocecology, Inst. Environmental Biology, Laboratory of Palaeobotany and Palynology, Utrecht University, Budapestlaan 4, 3584 CD Utrecht, the Netherlands. 6 P. Soutmanlaan 18, 1701 MC Heerhugowaard, the Netherlands. 7 Faculty Earth and Life Sciences, Vrije Universiteit, de Boelelaan 1085, 1081 EH Amsterdam, the Netherlands. 8 Natuurmuseum Rotterdam, P.O. Box 23452, 3001 KL Rotterdam, the Netherlands. 9 Minervastraat 23, B 2640 Mortsel, Belgium. 10 Gerard van Voornestraat 165, 3232 BE Brielle, the Netherlands. 11 Snipweg 14, 5451 VP Mill, the Netherlands. * corresponding author. Email: [email protected] Manuscript received: February 2007; accepted: March 2008 Abstract The locality of Langenboom (eastern Noord-Brabant, the Netherlands), also known as Mill, is famous for its Neogene molluscs, shark teeth, teleost remains, birds and marine mammals. The stratigraphic context of the fossils, which have been collected from sand suppletions, was hitherto poorly understood. Here we report on a section which has been sampled by divers in the adjacent flooded sandpit 'De Kuilen' from which the Langenboom sands have been extracted.
    [Show full text]
  • Appendix 3.Pdf
    A Geoconservation perspective on the trace fossil record associated with the end – Ordovician mass extinction and glaciation in the Welsh Basin Item Type Thesis or dissertation Authors Nicholls, Keith H. Citation Nicholls, K. (2019). A Geoconservation perspective on the trace fossil record associated with the end – Ordovician mass extinction and glaciation in the Welsh Basin. (Doctoral dissertation). University of Chester, United Kingdom. Publisher University of Chester Rights Attribution-NonCommercial-NoDerivatives 4.0 International Download date 26/09/2021 02:37:15 Item License http://creativecommons.org/licenses/by-nc-nd/4.0/ Link to Item http://hdl.handle.net/10034/622234 International Chronostratigraphic Chart v2013/01 Erathem / Era System / Period Quaternary Neogene C e n o z o i c Paleogene Cretaceous M e s o z o i c Jurassic M e s o z o i c Jurassic Triassic Permian Carboniferous P a l Devonian e o z o i c P a l Devonian e o z o i c Silurian Ordovician s a n u a F y r Cambrian a n o i t u l o v E s ' i k s w o Ichnogeneric Diversity k p e 0 10 20 30 40 50 60 70 S 1 3 5 7 9 11 13 15 17 19 21 n 23 r e 25 d 27 o 29 M 31 33 35 37 39 T 41 43 i 45 47 m 49 e 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81 83 85 87 89 91 93 Number of Ichnogenera (Treatise Part W) Ichnogeneric Diversity 0 10 20 30 40 50 60 70 1 3 5 7 9 11 13 15 17 19 21 n 23 r e 25 d 27 o 29 M 31 33 35 37 39 T 41 43 i 45 47 m 49 e 51 53 55 57 59 61 c i o 63 z 65 o e 67 a l 69 a 71 P 73 75 77 79 81 83 n 85 a i r 87 b 89 m 91 a 93 C Number of Ichnogenera (Treatise Part W)
    [Show full text]
  • The Stratigraphic Architecture and Evolution of the Burdigalian Carbonate—Siliciclastic Sedimentary Systems of the Mut Basin, Turkey
    The stratigraphic architecture and evolution of the Burdigalian carbonate—siliciclastic sedimentary systems of the Mut Basin, Turkey P. Bassanta,*, F.S.P. Van Buchema, A. Strasserb,N.Gfru¨rc aInstitut Franc¸ais du Pe´trole, Rueil-Malmaison, France bUniversity of Fribourg, Switzerland cIstanbul Technical University, Istanbul, Turkey Received 17 February 2003; received in revised form 18 November 2003; accepted 21 January 2004 Abstract This study describes the coeval development of the depositional environments in three areas across the Mut Basin (Southern Turkey) throughout the Late Burdigalian (early Miocene). Antecedent topography and rapid high-amplitude sea-level change are the main controlling factors on stratigraphic architecture and sediment type. Stratigraphic evidence is observed for two high- amplitude (100–150 m) sea-level cycles in the Late Burdigalian to Langhian. These cycles are interpreted to be eustatic in nature and driven by the long-term 400-Ka orbital eccentricity-cycle-changing ice volumes in the nascent Antarctic icecap. We propose that the Mut Basin is an exemplary case study area for guiding lithostratigraphic predictions in early Miocene shallow- marine carbonate and mixed environments elsewhere in the world. The Late Burdigalian in the Mut Basin was a time of relative tectonic quiescence, during which a complex relict basin topography was flooded by a rapid marine transgression. This area was chosen for study because it presents extraordinary large- scale 3D outcrops and a large diversity of depositional environments throughout the basin. Three study transects were constructed by combining stratal geometries and facies observations into a high-resolution sequence stratigraphic framework. 3346 m of section were logged, 400 thin sections were studied, and 145 biostratigraphic samples were analysed for nannoplankton dates (Bassant, P., 1999.
    [Show full text]