The Smart, Practical Way to Use Space (PDF:8847KB)

Total Page:16

File Type:pdf, Size:1020Kb

The Smart, Practical Way to Use Space (PDF:8847KB) These are Big Bang–sized opportunities! The smart, practical way to use space Space used to be just a realm of dreams and rare scientific exploration, but now that it is regard to small debris, which is difficult Although you may think space markets is possible if you can provide becoming a realistic business field, how should businesses proceed? to remove, another measure is to equipment needs higher performance solutions based on tested technologies We are looking at two companies for the answer: ASTROSCALE Pte. Ltd., which is a private determine the distribution and sizes of and is hard to develop, there is already and business models responding to the debris by using small satellites so existing equipment that can be used in needs.” Because small satellites have company working on the issue of removing space debris, and Weathernews Inc., which uses their as to prevent collisions in advance. space if they are protected against the been improved, entry into space own satellites to strengthen their services. A Japanese subsidiary which was environmental dangers of space, such business is possible without established as a base of research and as UV and radiation. The strength of astronomical expenses. development in April 2015 is making private companies is their ability to “In Europe, 200 companies were We tackle the challenges of Nobu Okada, CEO of the company, We were wondering if we could progress in the development of freely cooperate with companies of engaged in space ventures in 2013. But says “The amount of debris bigger than overcome the situation by developing space through flexible and satellites, aiming to launch satellites for various scales throughout a broad this increased by 100 companies in one 10 centimeters is thought to be in excess removal technologies and demonstrating effective development debris removal in 2017 and satellites for range of industries. Therefore, we want year, and the space industry is facing a of 20,000 pieces. That number is the methods and funding necessary to A massive amount of information, observation in the second half of 2016. to proceed with such development in a situation like that of the emerging increasing year after year, and it causes achieve our goals.” including broadcasting and President Miki Ito has made the flexible and effective manner.” Internet in the 1990s. damage, such as collisions with communication signals, weather and Astroscale has two strategies in mind. following statement: The key points of entry into spacecraft and the malfunctions in As more companies enter into this current geographical positions is being One method is to burn and dispose of space ventures are making satellites. Although it is certain that the large debris by using small “Japan is more concerned with the industry, it will only increase in vitality. transmitted to us through satellites in removal of debris is necessary, every satellites to allow the debris to issues of debris than other countries strong resolutions and However, if you want to utilize space for space, and space is already a part of country is slow to proceed with the re-enter the atmosphere. In are. In addition, in Japan, there are establishing business plans business, you need to make a the essential infrastructure of our daily measures for doing so because the many companies which have superior Astroscale has followed business plans resolution to commercialize it by taking lives. An increasing number of cost for removal is unclear and there technologies that are contributing to steadily since its establishment in 2013. the initiative in finding capital without companies are using space as a field are issues with the financial burden and solving the issue. Mr. Okada says, “Financing from depending on support such as and means of business. Astroscale is a establishment of rules. Singapore-based company, which works on the issue of space debris. 12 METI Journal The smart, practical way to use space METI Journal 13 (Left) Mr. Nobu Okada CEO, ASTROSCALE PTE. LTD. SPACE The use of space is BUISINESS Graduated from the Faculty of Agriculture, the University of Tokyo. Completed MBA at Purdue 2 University. Established new business abroad an effective choice after gaining work experience at the Ministry of Finance and McKinsey & Company, and established ASTROSCALE Pte. Ltd. for business. (Right) Ms. Miki Ito President, Astroscale Japan Inc. Circle, on the sea, and high in the issues such as a capacity shortage for Completed the master’s course in aerospace mountains. Furthermore, the company frequency control. In the meantime, as engineering at the Graduate School of Nihon can understand the conditions of the small satellite performance is improving University. Participated in the Hodoyoshi Project and engaged in the development of the sea and ground surfaces through both and the growth of space-related HODOYOSHI-3 and -4. images and the reflection of radio venture companies is being seen waves. The company has around the world, the environment is CLICK! ASTROSCALE PTE. LTD. comprehensively considered the becoming ripe for private companies to advantages of having its own satellites have their own satellites. We will for its business of providing weather improve the precision and function of information and associated solutions, the planned satellite, and we will also and so it decided to launch the satellite. consider new applications such as company plans to launch a new, even Dr. Yamamoto talked about his visions using our satellites for communication SPACE Confronting the worldwide more precise satellite within a year. with ships.” When appropriate business BUISINESS for the future: “As long as there is Satellites provide choice in issue of space debris with information which we can get only from models are applied to achieve specific 1 responding to the needs of our needs-based goals, space-based space, it is certain that the use of space Dr. Masaya Yamamoto our own technologies. customers will be an effective choice for business. enterprises can be profitable. In the future, space will become a more Director, Weathernews Inc. Dr. Yamamoto is of the opinion that For the future, it will be necessary for Completed doctoral program of when considering the use of space for the government to proceed with common facet of businesses. Department of Aeronautics and Astronautics at the Graduate School of subsidies. So, in addition to the Yamamoto, a director of the company, business, one must give the highest establishing systems that can handle Engineering, the University of Tokyo. Completed doctoral degrees at the same physical technologies, strategies and explains the advantages: “Although priority to the needs of customers. graduate school. Entered Weathernews business plans are also essential. And, there were other satellites from external Inc. after receiving work experience in Once those needs are understood, one Space Systems Div., Hitachi, Ltd. I think that it is important to maintain an organizations which could provide should investigate the time and cost positive attitude in gaining technologies, high-precision images, the per-image requirements for developing satellites, CLICK! Weathernews Inc. human resources and funds by cost was high. Having our own satellites and only consider use of space as an leveraging various opportunities from a allows us to get a lot of quality option if one is truly able to leverage the global point of view despite any barriers information while reducing the costs. specific information obtained from which may exist between the public and Also, having our own source of space. By using satellites, the company private sectors.” information allows us to strengthen risk can collect information from a wider 7000 nm Supporting safe operation in management.” area and it is easier to get information 7600 nm the Arctic Ocean based on The satellite was the world’s first private from terrestrial locations where it is information from satellites. weather satellite which succeeded in difficult to set up observation providing weather images. The instruments, such as within the Arctic Europe There is another company which aims Europe to strengthen its current business by Tokyo Ice in the Arctic Ocean melts, and the leveraging space. That company is shortest routes to the east coast of North Weathernews, a company that provides 11000 nm America and Europe form Asia are open. weather information. The company <Left> Ice of the Arctic Ocean melts due to the rise of sea water temperature, and as a observes, analyzes and predicts world result, the Northern Sea Route opens. It weather, jointly with companies makes the distance significantly shorter compared with conventional routes via the overseas including those in France and Suez Canal or the Cape of Good Hope. China, and provides global services. 15000 nm <Above> Weathernews satellite pictures of the condition of sea ice in Canada’s Since 2008, the company has also Hudson Bay implemented Polar Routeing Service to navigate ships through the Arctic Ocean based on information from Nano-/Micro-satellites offer highest flexibility suitable satellites and other sources. The for various customer needs Northern Sea Route has an advantage Nano-/Micro-satellites have enabled private possible ground resolution available for of reducing fuel costs because it companies to use space for their various state-of-the-art Earth observation satellites enables ships to take the shortest route business purposes thanks to their low are not necessary, leading to significant cost from countries in Europe to Japan, for development cost, which is just 1% of savings while still meeting the particular conventional satellites. Their rapid needs of Weathernews. I am sure that the example. However, sea ice presents improvement of performance also helped a capability to satisfy such specific customer significant risks. The company supports Source: Professor Toshiya Hanada, Kyushu University lot. The satellite currently in joint needs is also a unique advantage of nano-/ development by Weathernews and micro-satellites.
Recommended publications
  • Detecting, Tracking and Imaging Space Debris
    r bulletin 109 — february 2002 Detecting, Tracking and Imaging Space Debris D. Mehrholz, L. Leushacke FGAN Research Institute for High-Frequency Physics and Radar Techniques, Wachtberg, Germany W. Flury, R. Jehn, H. Klinkrad, M. Landgraf European Space Operations Centre (ESOC), Darmstadt, Germany Earth’s space-debris environment tracked, with estimates for the number of Today’s man-made space-debris environment objects larger than 1 cm ranging from 100 000 has been created by the space activities to 200 000. that have taken place since Sputnik’s launch in 1957. There have been more than 4000 The sources of this debris are normal launch rocket launches since then, as well as many operations (Fig. 2), certain operations in space, other related debris-generating occurrences fragmentations as a result of explosions and such as more than 150 in-orbit fragmentation collisions in space, firings of satellite solid- events. rocket motors, material ageing effects, and leaking thermal-control systems. Solid-rocket Among the more than 8700 objects larger than 10 cm in Earth orbits, motors use aluminium as a catalyst (about 15% only about 6% are operational satellites and the remainder is space by mass) and when burning they emit debris. Europe currently has no operational space surveillance aluminium-oxide particles typically 1 to 10 system, but a powerful radar facility for the detection and tracking of microns in size. In addition, centimetre-sized space debris and the imaging of space objects is available in the form objects are formed by metallic aluminium melts, of the 34 m dish radar at the Research Establishment for Applied called ‘slag’.
    [Show full text]
  • To Secure Long-Term Spaceflight Safety and Orbital Sustainability for the Benefit of Future Generations the Impact of Space Debris
    To secure long-term spaceflight safety and orbital sustainability for the benefit of future generations The impact of space debris Our growing reliance on satellite services 1 active satellite 1957 1,950 active satellites 2019 20,000+ active satellites by 2030 67,000 collision alerts per year very day billions of people around the world rely One of the key ways to reduce the risk of collision in on data from satellites to go about their lives. We orbit is to remove potential threats. Designing and Eexchange messages, talk to family and friends, building a satellite to identify, track, rendezvous, dock check the weather, manage finances, and undertake and de-orbit a piece of debris is an extraordinarily numerous other tasks. In addition, satellites are used difficult technical task on its own. However, developing to manage and mitigate natural disasters, monitor the an orbital debris removal business involves more than Earth’s climate and well-being and provide information just creating the technical solution. We now need a for national security. In short, without satellite data, the consistent global effort to shape regulations and a lives of people around the world would be dramatically vibrant ecosystem that assures a business case. At different. And now the source of this data is at growing Astroscale we are working these important tasks risk of being destroyed by space debris. – developing the technologies, working with the policymakers and closing the business case – that will We don’t see these satellites and the millions of pieces allow for a long-term orbital debris solution.
    [Show full text]
  • B-180466 Polar Orbiting Weather Satellite Programs
    U-180466 l’ht! Honorable Frank E. Moss Chai rmnn, Committee on Aeronautical .r- Cf ‘ind Space Sciences ;>, r-,rr*Id- l~llll~llllllllllllllllllluu~llllllllllllllll United States Senate LM095911 f?- Dear Ilr. Chairman: Your January 1.6, 19 74, letter asked us to obtain cost and other data ~ on both the Department of the Air Force and the joint Natioual Aeronauticsn and Space Administration (NASA)/National Oceanic and Atmospheric Adminis- *76 tration (NOAA) polar orbiting weather satellite programs. L .-__,__ cs&~yl”.^-b -.,I-*Ii*--... --:- -*-“a .-,. We interviewed officials in NASA, NOM, the Department of the Air Force and the Office of Management and Budget (OHU). At these meetings they told us of the existence of two classified studies which provided some comparative analyses of the technical cfrar; cteristics and costs of the NASA and Air Force operational weather satellite systems and the follow-on sys tems in development . We then met with your staff on February 13, 1974, and orally presented the information, At that meeting your staff as ed us for 11 written re- port, We have not independently verified the d :ta; however, we have dis- cussed the matters in this report with the agent y officials. We plan to discuss briefly the history of I he NASA/NOM and Air Force satellite sys terns, compare tl~e characteristics Ilf both systems, provide cost comparisons of the operational- and develop~oental satellite --.-.systems, and furnish information on plans to obtain some mcasurc of commonality of bcltll sys terns. --_.III STORY _-- OF NASA/NOM --_-PKOCRhM The purpose of the joint NASA/NOAA weather satellite system is to provide systematic, +;Lobal cloud cover observations and other meteorologi- cal observations to incrt*&x: man’s ability to -forecast wc;lthcrI m--...YII-._conditions.
    [Show full text]
  • History of NOAA's Polar Observational Environmental Satellites the First
    History of NOAA’s Polar Observational Environmental Satellites The first weather satellite in a series of spacecraft originally known as the Television Infrared Observation Satellites (TIROS) was launched on April 1, 1960. By the mid 1970’s NOAA and NASA agreed to produce the series operationally based on the TIROS-N generation of satellites. TIROS-N, a research and development spacecraft serving as a prototype for the operational follow-on series, NOAA-A through NOAA-N Prime was on launched October 13, 1978. Beginning with NOAA-E, launched in 1983, the basic satellite was “stretched” to permit accommodation of additional research instruments. This became known as the Advanced TIROS-N configuration. Some of the additional instruments flown include: Search and Rescue; Earth Radiation Budget Experiment, and the Solar Backscatter Ultraviolet spectrometer. Three of those instruments, Search and Rescue Repeater, Search and Rescue Processor and Solar Backscatter Ultraviolet Radiometer, became part of the operational program. The primary sounding instrumentation has remained essentially unchanged until the addition of Advanced Microwave Sounding Units-A and -B on NOAA-K (15). The Microwave Humidity Sounder replaces the AMSU-B on NOAA-N Prime performing essentially the same science. The satellite design life throughout the series has been two years. The lifetime is a cost/risk tradeoff since more years normally result in a more expensive satellite. To mitigate that risk, the NOAA-N Prime satellite uses the most reliable NASA-approved flight parts, Class S, and considerable redundancy in critical subsystem components. The instruments are not redundant, but they have a three-year design life in order to enhance their expected operational reliability.
    [Show full text]
  • NASA Process for Limiting Orbital Debris
    NASA-HANDBOOK NASA HANDBOOK 8719.14 National Aeronautics and Space Administration Approved: 2008-07-30 Washington, DC 20546 Expiration Date: 2013-07-30 HANDBOOK FOR LIMITING ORBITAL DEBRIS Measurement System Identification: Metric APPROVED FOR PUBLIC RELEASE – DISTRIBUTION IS UNLIMITED NASA-Handbook 8719.14 This page intentionally left blank. Page 2 of 174 NASA-Handbook 8719.14 DOCUMENT HISTORY LOG Status Document Approval Date Description Revision Baseline 2008-07-30 Initial Release Page 3 of 174 NASA-Handbook 8719.14 This page intentionally left blank. Page 4 of 174 NASA-Handbook 8719.14 This page intentionally left blank. Page 6 of 174 NASA-Handbook 8719.14 TABLE OF CONTENTS 1 SCOPE...........................................................................................................................13 1.1 Purpose................................................................................................................................ 13 1.2 Applicability ....................................................................................................................... 13 2 APPLICABLE AND REFERENCE DOCUMENTS................................................14 3 ACRONYMS AND DEFINITIONS ...........................................................................15 3.1 Acronyms............................................................................................................................ 15 3.2 Definitions .........................................................................................................................
    [Show full text]
  • Space Debris
    IADC-11-04 April 2013 Space Debris IADC Assessment Report for 2010 Issued by the IADC Steering Group Table of Contents 1. Foreword .......................................................................... 1 2. IADC Highlights ................................................................ 2 3. Space Debris Activities in the United Nations ................... 4 4. Earth Satellite Population .................................................. 6 5. Satellite Launches, Reentries and Retirements ................ 10 6. Satellite Fragmentations ................................................... 15 7. Collision Avoidance .......................................................... 17 8. Orbital Debris Removal ..................................................... 18 9. Major Meetings Addressing Space Debris ........................ 20 Appendix: Satellite Break-ups, 2000-2010 ............................ 22 IADC Assessment Report for 2010 i Acronyms ADR Active Debris Removal ASI Italian Space Agency CNES Centre National d’Etudes Spatiales (France) CNSA China National Space Agency CSA Canadian Space Agency COPUOS Committee on the Peaceful Uses of Outer Space, United Nations DLR German Aerospace Center ESA European Space Agency GEO Geosynchronous Orbit region (region near 35,786 km altitude where the orbital period of a satellite matches that of the rotation rate of the Earth) IADC Inter-Agency Space Debris Coordination Committee ISRO Indian Space Research Organization ISS International Space Station JAXA Japan Aerospace Exploration Agency LEO Low
    [Show full text]
  • Orbiting Debris: a Space Environmental Problem (Part 4 Of
    Orbiting Debris: A Since Environmential Problem ● 3 Table 2--of Hazardous Interference by environment. Yet, orbital debris is part of a Orbital Debris larger problem of pollution in space that in- cludes radio-frequency interference and inter- 1. Loss or damage to space assets through collision; ference to scientific observations in all parts of 2. Accidental re-entry of space hardware; the spectrum. For example, emissions at ra- 3. Contamination by nuclear material of manned or unmanned spacecraft, both in space and on Earth; dio frequencies often interfere with radio as- 4. Interference with astronomical observations, both from the tronomy observations. For several years, ground and in space; gamma-ray astronomy data have been cor- 5. Interference with scientific and military experiments in space; rupted by Soviet intelligence satellites that 14 6. Potential military use. are powered by unshielded nuclear reactors. The indirect emissions from these satellites SOURCE: Space Debris, European Space Agency, and Office of Technology As- sessment. spread along the Earth’s magnetic field and are virtually impossible for other satellites to Earth. The largest have attracted worldwide escape. The Japanese Ginga satellite, attention. 10 Although the risk to individuals is launched in 1987 to study gamma-ray extremely small, the probability of striking bursters, has been triggered so often by the populated areas still finite.11 For example: 1) Soviet reactors that over 40 percent of its available observing time has been spent trans- the U.S.S.R. Kosmos 954, which contained a 15 nuclear power source,12 reentered the atmos- mitting unintelligible “data.” All of these phere over northwest Canada in 1978, scatter- problem areas will require attention and posi- ing debris over an area the size of Austria; 2) a tive steps to guarantee access to space by all Japanese ship was hit in 1969 by pieces of countries in the future.
    [Show full text]
  • Space Almanac 2007
    2007 Space Almanac The US military space operation in facts and figures. Compiled by Tamar A. Mehuron, Associate Editor, and the staff of Air Force Magazine 74 AIR FORCE Magazine / August 2007 Space 0.05g 60,000 miles Geosynchronous Earth Orbit 22,300 miles Hard vacuum 1,000 miles Medium Earth Orbit begins 300 miles 0.95g 100 miles Low Earth Orbit begins 60 miles Astronaut wings awarded 50 miles Limit for ramjet engines 28 miles Limit for turbojet engines 20 miles Stratosphere begins 10 miles Illustration not to scale Artist’s conception by Erik Simonsen AIR FORCE Magazine / August 2007 75 US Military Missions in Space Space Support Space Force Enhancement Space Control Space Force Application Launch of satellites and other Provide satellite communica- Ensure freedom of action in space Provide capabilities for the ap- high-value payloads into space tions, navigation, weather infor- for the US and its allies and, plication of combat operations and operation of those satellites mation, missile warning, com- when directed, deny an adversary in, through, and from space to through a worldwide network of mand and control, and intel- freedom of action in space. influence the course and outcome ground stations. ligence to the warfighter. of conflict. US Space Funding Millions of constant Fiscal 2007 dollars 60,000 50,000 40,000 30,000 20,000 10,000 0 Fiscal Year 59 62 65 68 71 74 77 80 83 86 89 92 95 98 01 04 Fiscal Year NASA DOD Other Total Fiscal Year NASA DOD Other Total 1959 1,841 3,457 240 5,538 1983 13,051 18,601 675 32,327 1960 3,205 3,892
    [Show full text]
  • IADC Space Debris Mitigation Guidelines
    IADC-02-01 Revision 2 Mar 2020 IADC Space Debris Mitigation Guidelines Issued by IADC Steering Group and Working Group 4 Table of Contents Table of Contents .................................................................................................................. 1 Revision History .................................................................................................................... 2 List of Abbreviations .............................................................................................................. 3 1 Scope ............................................................................................................................. 6 2 Application ...................................................................................................................... 6 3 Terms and definitions ..................................................................................................... 6 3.1 Space Debris ........................................................................................................... 6 3.2 Spacecraft, Launch Vehicles, and Orbital Stages .................................................... 6 3.3 Orbits and Protected Regions ................................................................................. 7 3.4 Mitigation Measures and Related Terms ................................................................. 8 3.5 Operational Phases ................................................................................................. 8 4 General Guidance .........................................................................................................
    [Show full text]
  • 10. Satellite Weather and Climate Monitoring
    II. INTENSITY: ACTIVITIES AND OUTPUTS IN THE SPACE ECONOMY 10. Satellite weather and climate monitoring Meteorology was the first scientific discipline to use space Figure 1.2). The United States, the European Space Agency capabilities in the 1960s, and today satellites provide obser- and France have established the most joint operations for vations of the state of the atmosphere and ocean surface environmental satellite missions (e.g. NASA is co-operating for the preparation of weather analyses, forecasts, adviso- with Japan’s Aerospace Exploration Agency on the Tropical ries and warnings, for climate monitoring and environ- Rainfall Measuring Mission (TRMM); ESA and NASA cooper- mental activities. Three quarters of the data used in ate on the Solar and Heliospheric Observatory (SOHO), numerical weather prediction models depend on satellite while the French CNES is co-operating with India on the measurements (e.g. in France, satellites provide 93% of data Megha-Tropiques mission to study the water cycle). Para- used in Météo-France’s Arpège model). Three main types of doxically, although there have never been so many weather satellites provide data: two families of weather satellites and environmental satellites in orbit, funding issues in and selected environmental satellites. several OECD countries threaten the sustainability of the Weather satellites are operated by agencies in China, provision of essential long-term data series on climate. France, India, Japan, Korea, the Russian Federation, the United States and Eumetsat for Europe, with international co-ordination by the World Meteorological Organisation Methodological notes (WMO). Some 18 geostationary weather satellites are posi- Based on data from the World Meteorological Orga- tioned above the earth’s equator, forming a ring located at nisation’s database Observing Systems Capability Analy- around 36 000 km (Table 10.1).
    [Show full text]
  • Joint Polar Satellite System (JPSS) Common Ground System (CGS)
    Joint Polar Satellite System (JPSS) Common Ground System (CGS) A flexible, cost-effective global common ground system designed to support current and future weather and environmental sensing satellite missions. Key Features and Benefits The JPSS Program Overview The JPSS program will also The polar orbiters which are able Joint Polar Satellite System (JPSS) integrate future civilian and to monitor the entire planet and g Operational -- supported is designed to monitor global military (Defense Weather Satellite provide data for long-range successful NPP launch environmental conditions in System – DWSS) polar-orbiting weather and climate forecasts, will g Flexible architecture designed addition to collecting and environmental satellite space and carry a complement of advanced to quickly adapt to evolving disseminating data related to the ground segments with a single imaging and sounding sensors mission needs weather, atmosphere, oceans, land ground system. that will acquire data at a much and near-space environment. The higher fidelity and frequency than g Unique integration of new and JPSS Top Level Architecture new system represents a major heritage systems available today. legacy technologies JPSS is an “end-to-end” system upgrade to the existing Polar- that includes sensors; spacecraft; The JPSS CGS Distributed g Available to support diverse orbiting Operational command, control and Receptor Network (DRN) civil, military and scientific Environmental Satellites (POES), communications; data routing; architecture will provide frequent environmental needs which have successfully served the and ground based processing. JPSS downlinks to maximize contact operational weather forecasting g Fully integrated global ground and DWSS spacecraft will carry duration at low cost. JPSS CGS community for nearly 50 years.
    [Show full text]
  • Japan's Technical Prowess International Cooperation
    Japan Aerospace Exploration Agency April 2016 No. 10 Special Features Japan’s Technical Prowess Technical excellence and team spirit are manifested in such activities as the space station capture of the HTV5 spacecraft, development of the H3 Launch Vehicle, and reduction of sonic boom in supersonic transport International Cooperation JAXA plays a central role in international society and contributes through diverse joint programs, including planetary exploration, and the utilization of Earth observation satellites in the environmental and disaster management fields Japan’s Technical Prowess Contents No. 10 Japan Aerospace Exploration Agency Special Feature 1: Japan’s Technical Prowess 1−3 Welcome to JAXA TODAY Activities of “Team Japan” Connecting the Earth and Space The Japan Aerospace Exploration Agency (JAXA) is positioned as We review some of the activities of “Team the pivotal organization supporting the Japanese government’s Japan,” including the successful capture of H-II Transfer Vehicle 5 (HTV5), which brought overall space development and utilization program with world- together JAXA, NASA and the International Space Station (ISS). leading technology. JAXA undertakes a full spectrum of activities, from basic research through development and utilization. 4–7 In 2013, to coincide with the 10th anniversary of its estab- 2020: The H3 Launch Vehicle Vision JAXA is currently pursuing the development lishment, JAXA defined its management philosophy as “utilizing of the H3 Launch Vehicle, which is expected space and the sky to achieve a safe and affluent society” and to become the backbone of Japan’s space development program and build strong adopted the new corporate slogan “Explore to Realize.” Under- international competitiveness.
    [Show full text]