Sound 101 Cheat Sheet*

Total Page:16

File Type:pdf, Size:1020Kb

Sound 101 Cheat Sheet* Sound 101 Cheat Sheet* Sound: compression and rarefaction within a medium (which in singing = air) ​ Compression: things are closer together ​ Rarefaction: things are farther apart ​ Period: one cycle of compression and rarefaction ​ “the propagation of pressure waves radiating from a vibrating body through an elastic medium” Four measurable, inter-related properties: 1. Frequency 4:25 ​ - number of periods that occur each second - produced by an oscillating or vibrating body (ie the sound source or vibrator) - measured in cycles per second, or hertz (Hz) - eg: 440 Hz = each second, 440 cycles of compression and rarefaction occur within a medium (ie air) - musical sounds are made up of many frequencies combined to create a complex sound wave - for the purposes of keeping the Sound Cheat Sheet as EASY TO FOLLOW AS HUMANLY POSSIBLE, the frequencies above the Fundamental Frequency (see below) are referred to as “harmonics” or “upper frequencies” (but not “overtones”) 1a) Fundamental Frequency 6:10 & 10:17 ​ - lowest frequency / harmonic of a sound - abbreviated to “H1” (ie first / lowest harmonic) and/or “Fo” (ie “frequency of oscillation” where “oscillation” refers ​ ​ to “periods”) - basically equivalent to perceived pitch of sound and may be referred to as an objective measurement of pitch - eg: 440 Hz = A440 / A4 / A above middle C 11:20 ​ - faster / higher Fundamental Frequency = higher pitch and slower / lower Fundamental Frequency = lower pitch - eg 1: a small increase or decrease of the Fundamental Frequency will most likely be perceived as a “sharp” or “flat” sound - eg 2: “Baroque tuning” is lowered approximately a half-step (or semi-tone) from generally accepted contemporary tuning, so in Baroque tuning, A4 is NOT A440 (ie does not have a Fundamental Frequency of 440 Hz) but A415 (ie has a Fundamental Frequency of 415 Hz) - eg 3: doubling or halving the Fundamental Frequency of a sound results in an octave change, so A440 / 440 Hz = A4 and A880 / 880 Hz = A5 and A220 / 220 Hz = A3 1b) Harmonics 6:48 ​ - frequencies that make up a sound - either the Fundamental Frequency OR whole number multiples of the Fundamental Frequency (note: frequencies that are not whole number multiples of the Fundamental Frequency are perceived as noise) - abbreviated to “H#” (ie the first harmonic (ie the Fundamental Frequency) = H1, the second harmonic = H2, etc.) 1bi) Harmonic Series 17:05 ​ - the relationship between the Fundamental Frequency and its harmonics - harmonics occur in a consistent pattern: Fo/H1 to H2 = 8ve, H2 to H3 = p5th, H3 to H4 = p4th, H4 to ​ ​ H5 = M3rd, etc. - usually, the Fundamental Frequency is the strongest (ie loudest) frequency/harmonic in a sound (fun fact: overtone singing occurs when one (or more!) harmonics is nearly as loud or louder than the Fundamental Frequency so it ‘sticks out’ of the sound) 2. Amplitude 19:15 ​ - refers to the relative magnitude (or amplitude) of the displacement of molecules during a period (or cycle of compression and rarefaction) - generally referred to as produced by/at the sound source / vibrator - thicker / bigger sound source / vibrator = greater displacement of molecules during compression and rarefaction cycles = louder perceived sound - eg: the piano strings that produce the lowest pitches (AKA slowest Fundamental Frequencies) are thicker than the strings that produce the highest pitches (AKA fastest Fundamental Frequencies) so when the thicker strings vibrate, the magnitude of their movement is greater than the magnitude of the movement of the thinner strings, so they may sound louder (AND they have a ‘richer’ tone quality … which has to do with Fundamental Frequency AND timbre so READ ON!) - may be referred to as the objective measurement of loudness - calculated on a logarithmic scale (ie non-linear scale, similar to the scale that is used to measure the strength of an earthquake) - measured in decibels (dB) using a decibel or sound level meter 2a) Intensity 21:03 ​ - refers to relationship between amount of harmonics in sound and amplitude (or strength) of upper harmonics in sound - more overall harmonics in the sound AND strong higher harmonics = more intense sound = louder perceived sound - fewer overall harmonics in the sound AND weaker higher harmonics = less intense sound = softer perceived sound - may be viewed and measured using sound analysis programmes - at the simplest level, may be thought of as a product of the shape of the resonator - sound source resonator shaped in such a way as to strengthen upper harmonics 3. Timbre 21:20 ​ - AKA tone quality - result of unique patterns of strengthened and weakened harmonics in each sound - resonator / filter is responsible for selectively strengthening or weakening harmonics - similarly-shaped resonators will strengthen and/or weaken many of the same harmonics in a sound - eg 1: all brass instruments have a similarly-shaped resonator (the HORN part of the instrument) so they will strengthen and/or weaken similar harmonics so they will have a similar sound that is easily distinguishable from other instrument families, such as wood winds - eg 2: family members who have similarly-shaped necks and faces, will likely be difficult to tell apart when talking to them on the phone because those similarly-shaped resonators are strengthening and weakening nearly the same harmonics - measured using sound analysis programmes 3a) Tone Colour 25:17 ​ - when the vibrator / sound source creates a low pitch (AKA slow Fundamental Frequency), the resonator / filter gets MORE harmonics to choose from to produce the final sound and when the vibrator / sound source creates a high pitch (AKA fast Fundamental Frequency), the resonator / filter gets FEWER harmonics to choose from to produce the final sound … MORE harmonics = darker sound and FEWER harmonics = brighter sound - eg 1 (role of the vibrator / sound source): a tuba and a trumpet are both brass instruments so they have similarly-shaped resonators (and the resonators are made out of the same material). However, a tuba produces Fundamental Frequencies that are generally slower (or pitches that are lower) than a trumpet produces. So if a tuba produces C32 / C1 (AKA the lowest C on the piano keyboard), there are corresponding harmonics produced with that Fundamental Frequency and there are A LOT MORE of them produced than in the C261 / C4 (AKA middle C) that the trumpet produces simply because the trumpet starts with a faster Fundamental Frequency (AKA higher pitch). SO, because there are more harmonics in the lower pitched / slower Fundamental Frequency sound, the sound is perceived as ‘richer’ or ‘darker’ - eg 2 (role of the resonator): say that same trumpet and tuba decide to meet in the middle (ish) and both play A110 / A2 (which: not actually possible for the trumpet). Even though both instruments are producing the same Fundamental Frequency (AND harmonics), the shape of the tuba prefers strengthening those lower harmonics while the shape of the trumpet prefers strengthening the higher harmonics so … the tuba’s A110 / A2 will be perceived as ‘darker’ or ‘richer’ than the trumpet’s A110 / A2. 4. Duration 28:50 ​ Guess what? If the sound isn’t long enough (ie doesn’t have enough DURATION) for us to perceive it? It’s not a sound. #yourewelcome BONUS MATERIAL: 29:19 References Bozeman, Kenneth. Practical Vocal Acoustics. Press Hillside: Pendragon, 2013. Print. ​ ​ McCoy, Scott. Your Voice: An Inside View. Delaware: Inside View Press, 2012. Print. ​ ​ McCoy, Scott. Your Voice: The Basics. Gahanna: Inside View Press, 2016. EBook. ​ ​ McKinney, James C. The Diagnosis & Correction of Vocal Faults. Nashville: Genevox Music Group, 1982. Print. ​ ​ Sataloff, Robert T., ed. Vocal Health and Pedagogy Volume I. San Diego: 2006. Print. ​ ​ Vennard, William. Singing - the Mechanism and the Technic. New York: Carl Fischer, 1967. Print. ​ ​ Ware, Clifton. Basics of Vocal Pedagogy. Boston: McGraw-Hill, 1998. Print. ​ ​ * And by “Cheat Sheet”, I mean: CHEAT SHEET. This is IN NO WAY comprehensive and is NOT intended to be taken as such. If you want to stop cheating, just read the books your own self already. .
Recommended publications
  • Lab 12. Vibrating Strings
    Lab 12. Vibrating Strings Goals • To experimentally determine the relationships between the fundamental resonant frequency of a vibrating string and its length, its mass per unit length, and the tension in the string. • To introduce a useful graphical method for testing whether the quantities x and y are related by a “simple power function” of the form y = axn. If so, the constants a and n can be determined from the graph. • To experimentally determine the relationship between resonant frequencies and higher order “mode” numbers. • To develop one general relationship/equation that relates the resonant frequency of a string to the four parameters: length, mass per unit length, tension, and mode number. Introduction Vibrating strings are part of our common experience. Which as you may have learned by now means that you have built up explanations in your subconscious about how they work, and that those explanations are sometimes self-contradictory, and rarely entirely correct. Musical instruments from all around the world employ vibrating strings to make musical sounds. Anyone who plays such an instrument knows that changing the tension in the string changes the pitch, which in physics terms means changing the resonant frequency of vibration. Similarly, changing the thickness (and thus the mass) of the string also affects its sound (frequency). String length must also have some effect, since a bass violin is much bigger than a normal violin and sounds much different. The interplay between these factors is explored in this laboratory experi- ment. You do not need to know physics to understand how instruments work. In fact, in the course of this lab alone you will engage with material which entire PhDs in music theory have been written.
    [Show full text]
  • The Physics of Sound 1
    The Physics of Sound 1 The Physics of Sound Sound lies at the very center of speech communication. A sound wave is both the end product of the speech production mechanism and the primary source of raw material used by the listener to recover the speaker's message. Because of the central role played by sound in speech communication, it is important to have a good understanding of how sound is produced, modified, and measured. The purpose of this chapter will be to review some basic principles underlying the physics of sound, with a particular focus on two ideas that play an especially important role in both speech and hearing: the concept of the spectrum and acoustic filtering. The speech production mechanism is a kind of assembly line that operates by generating some relatively simple sounds consisting of various combinations of buzzes, hisses, and pops, and then filtering those sounds by making a number of fine adjustments to the tongue, lips, jaw, soft palate, and other articulators. We will also see that a crucial step at the receiving end occurs when the ear breaks this complex sound into its individual frequency components in much the same way that a prism breaks white light into components of different optical frequencies. Before getting into these ideas it is first necessary to cover the basic principles of vibration and sound propagation. Sound and Vibration A sound wave is an air pressure disturbance that results from vibration. The vibration can come from a tuning fork, a guitar string, the column of air in an organ pipe, the head (or rim) of a snare drum, steam escaping from a radiator, the reed on a clarinet, the diaphragm of a loudspeaker, the vocal cords, or virtually anything that vibrates in a frequency range that is audible to a listener (roughly 20 to 20,000 cycles per second for humans).
    [Show full text]
  • The Musical Kinetic Shape: a Variable Tension String Instrument
    The Musical Kinetic Shape: AVariableTensionStringInstrument Ismet Handˇzi´c, Kyle B. Reed University of South Florida, Department of Mechanical Engineering, Tampa, Florida Abstract In this article we present a novel variable tension string instrument which relies on a kinetic shape to actively alter the tension of a fixed length taut string. We derived a mathematical model that relates the two-dimensional kinetic shape equation to the string’s physical and dynamic parameters. With this model we designed and constructed an automated instrument that is able to play frequencies within predicted and recognizable frequencies. This prototype instrument is also able to play programmed melodies. Keywords: musical instrument, variable tension, kinetic shape, string vibration 1. Introduction It is possible to vary the fundamental natural oscillation frequency of a taut and uniform string by either changing the string’s length, linear density, or tension. Most string musical instruments produce di↵erent tones by either altering string length (fretting) or playing preset and di↵erent string gages and string tensions. Although tension can be used to adjust the frequency of a string, it is typically only used in this way for fine tuning the preset tension needed to generate a specific note frequency. In this article, we present a novel string instrument concept that is able to continuously change the fundamental oscillation frequency of a plucked (or bowed) string by altering string tension in a controlled and predicted Email addresses: [email protected] (Ismet Handˇzi´c), [email protected] (Kyle B. Reed) URL: http://reedlab.eng.usf.edu/ () Preprint submitted to Applied Acoustics April 19, 2014 Figure 1: The musical kinetic shape variable tension string instrument prototype.
    [Show full text]
  • AN INTRODUCTION to MUSIC THEORY Revision A
    AN INTRODUCTION TO MUSIC THEORY Revision A By Tom Irvine Email: [email protected] July 4, 2002 ________________________________________________________________________ Historical Background Pythagoras of Samos was a Greek philosopher and mathematician, who lived from approximately 560 to 480 BC. Pythagoras and his followers believed that all relations could be reduced to numerical relations. This conclusion stemmed from observations in music, mathematics, and astronomy. Pythagoras studied the sound produced by vibrating strings. He subjected two strings to equal tension. He then divided one string exactly in half. When he plucked each string, he discovered that the shorter string produced a pitch which was one octave higher than the longer string. A one-octave separation occurs when the higher frequency is twice the lower frequency. German scientist Hermann Helmholtz (1821-1894) made further contributions to music theory. Helmholtz wrote “On the Sensations of Tone” to establish the scientific basis of musical theory. Natural Frequencies of Strings A note played on a string has a fundamental frequency, which is its lowest natural frequency. The note also has overtones at consecutive integer multiples of its fundamental frequency. Plucking a string thus excites a number of tones. Ratios The theories of Pythagoras and Helmholz depend on the frequency ratios shown in Table 1. Table 1. Standard Frequency Ratios Ratio Name 1:1 Unison 1:2 Octave 1:3 Twelfth 2:3 Fifth 3:4 Fourth 4:5 Major Third 3:5 Major Sixth 5:6 Minor Third 5:8 Minor Sixth 1 These ratios apply both to a fundamental frequency and its overtones, as well as to relationship between separate keys.
    [Show full text]
  • Physics 1240: Sound and Music
    Physics 1240: Sound and Music Today (7/29/19): Percussion: Vibrating Beams *HW 3 due at the front, HW 4 now posted (due next Mon.) Next time: Percussion: Vibrating Membranes Review Types of Instruments (Hornbostel–Sachs classification) • Chordophones: vibrating strings • Aerophones: vibrating columns of air • Idiophones: vibrating the whole instrument • Membranophones: vibrating membrane/skin • Electrophones: vibrating loudspeaker Review Aerophones e.g. flute, e.g. clarinet e.g. saxophone, recorder oboe, bassoon • Free (no standing waves) • Flute-type (edge tones) • Reed-type (vibrating reed/lips) = = = 2 4 1 • How to create waves: Edge tones Bernoulli effect Review • Tone holes, valves: decrease/increase effective length L • Register holes, octave holes: excite 3rd/2nd harmonics • Ear canal: tube closed at one end 1 3 BA Clicker Question 14.1 A 1 m long, homemade PVC pipe flute has a large, open tone hole that is a distance 0.6 m from the source end of the flute. What frequencies are present in the spectrum (in Hz)? A) 286, 572, 857, … B) 143, 286, 429, … C) 143, 429, 715, … D) 286, 857, 1429, … E) 172, 343, 515, … BA Clicker Question 14.1 A 1 m long, homemade PVC pipe flute has a large, open tone hole that is a distance 0.6 m from the source end of the flute. What frequencies are present in the spectrum (in Hz)? A) 286, 572, 857, … B) 143, 286, 429, … • Flute: open-open tube C) 143, 429, 715, … • Tone hole: decreases L D) 286, 857, 1429, … from 1 m to 0.6 m E) 172, 343, 515, … 343 m/s = = 2(0.6 m) = (286 Hz) 2 BA Clicker Question 14.2 An oboe can be modelled as a cone open at one end.
    [Show full text]
  • Ch 12: Sound Medium Vs Velocity
    Ch 12: Sound Medium vs velocity • Sound is a compression wave (longitudinal) which needs a medium to compress. A wave has regions of high and low pressure. • Speed- different for various materials. Depends on the elastic modulus, B and the density, ρ of the material. v B/ • Speed varies with temperature by: v (331 0.60T)m/s • Here we assume t = 20°C so v=343m/s Sound perceptions • A listener is sensitive to 2 different aspects of sound: Loudness and Pitch. Each is subjective yet measureable. • Loudness is related to Energy of the wave • Pitch (highness or lowness of sound) is determined by the frequency of the wave. • The Audible Range of human hearing is from 20Hz to 20,000Hz with higher frequencies disappearing as we age. Beyond hearing • Sound frequencies above the audible range are called ultrasonic (above 20,000 Hz). Dogs can detect sounds as high as 50,000 Hz and bats as high as 100,000 Hz. Many medicinal applications use ultrasonic sounds. • Sound frequencies below 20 Hz are called infrasonic. Sources include earthquakes, thunder, volcanoes, & waves made by heavy machinery. Graphical analysis of sound • We can look at a compression (pressure) wave from a perspective of displacement or of pressure variations. The waves produced by each are ¼ λ out of phase with each other. Sound Intensity • Loudness is a sensation measuring the intensity of a wave. • Intensity = energy transported per unit time across a unit area. I≈A2 • Intensity (I) has units power/area = watt/m2 • Human ear can detect I from 10-12 w/m2 to 1w/m2 which is a wide range! • To make a sound twice as loud requires 10x the intensity.
    [Show full text]
  • Waves and Music
    Team: Waves and Music Part I. Standing Waves Whenever a wave ( sound, heat, light, ...) is confined to a finite region of space (string, pipe, cavity, ... ) , something remarkable happens − the space fills up with a spectrum of vibrating patterns called “standing waves”. Confining a wave “quantizes” the frequency. Standing waves explain the production of sound by musical instruments and the existence of stationary states (energy levels) in atoms and molecules. Standing waves are set up on a guitar string when plucked, on a violin string when bowed, and on a piano string when struck. They are set up in the air inside an organ pipe, a flute, or a saxophone. They are set up on the plastic membrane of a drumhead, the metal disk of a cymbal, and the metal bar of a xylophone. They are set up in the “electron cloud” of an atom. Standing waves are produced when you ring a bell, drop a coin, blow across an empty soda bottle, sing in a shower stall, or splash water in a bathtub. Standing waves exist in your mouth cavity when you speak and in your ear canal when you hear. Electromagnetic standing waves fill a laser cavity and a microwave oven. Quantum-mechanical standing waves fill the space inside atomic systems and nano devices. A. Normal Modes. Harmonic Spectrum. A mass on a spring has one natural frequency at which it freely oscillates up and down. A stretched string with fixed ends can oscillate up and down with a whole spectrum of frequencies and patterns of vibration. Mass on Spring String with Fixed Ends (mass m, spring constant k) (length L, tension F, mass density µ) ___ ___ f = (1/2 π) √k/m f1 = (1/2L) √F/ µ Fundamental nd f2 = 2f 1 2 harmonic rd f3 = 3f 1 3 harmonic th f4 = 4f 1 4 harmonic • • • These special “Modes of Vibration” of a string are called STANDING WAVES or NORMAL MODES .
    [Show full text]
  • Standing Waves
    Chapter 21. Superposition Chapter 21. Superposition The combination of two or more waves is called a superposition of waves. Applications of superposition range from musical instruments to the colors of an oil film to lasers. Chapter Goal: To understand and use the idea of superposition. 1 2 Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley. Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley. Principal of superposition Chapter 21. Superposition Topics: • The Principle of Superposition • Standing Waves • Transverse Standing Waves • Standing Sound Waves and Musical Superimposed Superposition Acoustics N • Interference in One Dimension = + + + = • The Mathematics of Interference Dnet D1 D2 ... DN ∑Di i=1 • Interference in Two and Three Dimensions • Beats 3 4 Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley. Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley. When a wave pulse on a string reflects from a hard boundary, how is the reflected pulse related to the incident pulse? A. Shape unchanged, amplitude unchanged Chapter 21. Reading Quizzes B. Shape inverted, amplitude unchanged C. Shape unchanged, amplitude reduced D. Shape inverted, amplitude reduced E. Amplitude unchanged, speed reduced 5 6 Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley. Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley. When a wave pulse on a string reflects There are some points on a standing from a hard boundary, how is the wave that never move. What are reflected pulse related to the incident these points called? pulse? A. Shape unchanged, amplitude unchanged A. Harmonics B. Shape inverted, amplitude unchanged B.
    [Show full text]
  • Lab 5A: Mersenne's Laws & Melde's Experiment
    CSUEB Physics 1780 Lab 5a: Mersenne & Melde Page 1 Lab 5a: Mersenne’s Laws & Melde's experiment Introduction Vincenzo Galilei (1520 –1591), the father of Galileo Galilei, was an Italian lutenist, composer, and music theorist. It is reported that he showed that the pitch of a vibrating string was proportional to the square root of its tension. In other words, in order to increase the pitch by an octave (factor of 2 in frequency) it would require the tension to be quadrupled. Marin Mersenne (1588-1648, see picture), often called the “father of acoustics” , around 1630 published a book summarizing the properties of sound, based on the earlier work of Vincenzo and Galileo. He established that: • Frequency is inversely proportional to length of string • Frequency is inversely proportional to the diameter of the string • Frequency is proportional to the root of the tension • Frequency is inversely proportional to the root of the mass (density) of the string. So in summary, if you want a low note, use a fat (massive) long string under low tension. For a high pitch, use a thin short string under high tension. We can summarize all of his results with a single equation showing that the frequency “f” is proportional to: 1 F f ∝ , (1) L µ where “L” is the length of the violin string, “F” is the tension (in Newtons of force) and µ (“mu”) is the mass density of the string (in units of mass per unit length, e.g. kg per meter). In this experiment the string is assumed to be vibrating in its “fundamental” mode, like this, (figure 1).
    [Show full text]
  • Fundamental Frequency Estimation
    Fundamental frequency estimation summer 2006 lecture on analysis, modeling and transformation of audio signals Axel Robel¨ Institute of communication science TU-Berlin IRCAM Analysis/Synthesis Team 25th August 2006 KW - TU Berlin/IRCAM - Analysis/Synthesis Team AMT Part V: Fundamental frequency estimation 1/27 Contents 1 Pitch and fundamental frequency 1.1 Relation between pitch and fundamental frequency 1.2 Harmonic sound sources 2 Fundamental frequency estimation problem 3 Algorithms 3.1 direct evaluation of periodicity 3.2 frequency domain harmonic matching 3.3 spectral period evaluation 3.4 psycho acoustic approaches 3.5 Properties of the auditory processing model KW - TU Berlin/IRCAM - Analysis/Synthesis Team Contents AMT Part V: Fundamental frequency estimation 2/27 3.6 half wave rectification 3.7 Performance KW - TU Berlin/IRCAM - Analysis/Synthesis Team Contents AMT Part V: Fundamental frequency estimation 3/27 1 Pitch and fundamental frequency Pitch • perceived tone frequency of a sound in comparison with the perceptively best match with a pure sinusoid. fundamental frequency • inverse of the signal period of a periodic or quasi periodic signal, • spectrum contains energy mostly at integer multiples of the fundamental frequency. • the sinusoids above the fundamental are called the harmonics of the fundamental frequency. IRCAM - Analysis/Synthesis Team Contents AMT Part V: Fundamental frequency estimation 4/27 1.1 Relation between pitch and fundamental frequency • For many signals both terms are closely related, if the higher harmonics are strongly amplified due to formants the pitch may be located not at th first but a higher harmonic. • if a sound signal contains in-harmonically related sinusoids more then one pitch may be perceived while the signal is actually not periodic.
    [Show full text]
  • Lab 11. Vibrating Strings
    Lab 11. Vibrating Strings Goals • To experimentally determine the relationships between the fundamental resonant frequency of a vibrating string and its length, its mass per unit length, and the tension in the string. • To introduce a useful graphical method for testing whether the quantities x and y are related by a “simple power function” of the form y = axn. If so, the constants a and n can be determined from the graph. • To experimentally determine the relationship between resonant frequencies and higher order “mode” numbers. • To develop one general relationship/equation that relates the resonant frequency of a string to the four parameters: length, mass per unit length, tension, and mode number. Introduction Vibrating strings are part of our common experience. Musical instruments from all around the world employ vibrating strings to make musical sounds. Anyone who plays such an instrument knows that changing the tension in the string changes the resonant frequency of vibration. Sim- ilarly, changing the thickness (and thus the mass) of the string also affects its frequency. String length must also have some effect, since a bass violin is much bigger than a normal violin. The interplay between these factors is explored in this laboratory experiment. Water waves, sound waves, waves on strings, and even electromagnetic waves (light, radio, TV, microwaves, etc.) have similar behaviors when they encounter boundaries from one medium to another. In general all waves reflect part of the energy and transmit some into the new medium. In some cases the amount of energy transmitted is very small. For example a water wave set up in your bathtub moves down the length of the tub and hits the end.
    [Show full text]
  • Standing Waves on a String PURPOSE
    San Diego Miramar College Physics 197 NAME: _______________________________________ DATE: _________________________ LABORATORY PARTNERS : ______________________________________________________ Standing Waves on a String PURPOSE: To study the relationship among stretching force (FT), wavelength (흺), vibrational frequency (f), linear mass density (µ), and wave velocity (v) in a vibrating string; to observe standing waves and the harmonic frequencies of a stretched string. THEORY: Standing waves can be produced when two waves of identical wavelength, velocity, and amplitude are traveling in opposite directions through the same medium. Standing waves can be established using a stretched string to create a train of waves, set up by a vibrating body, and reflected at the end of the string. Newly generated waves will interfere with the old reflected waves. If the conditions are right, then a standing wave pattern will be created. A Stretched string has many modes of vibration, i.e. standing waves. It may vibrate as a single segment; its length is then equal to one half of the wavelength of the vibrations produced. It may also vibrate in two segments, with a node at each end in the middle; the wavelength produced is then equal to the length of the string. It may also vibrate in a larger number of segments. In every case, the length of the string is some integer multiple of half wavelengths. So, if a string is stretched between two fixed points, the ends are constrained not to move; hence, these are the nodes. In a standing wave the nodes, or the points that do not vibrate, occur every half the wavelength; thus, the ends of the string must correspond to nodes and the whole length of the string must accommodate an integer nymber of half wavelengths.
    [Show full text]