Waves in Strings

Total Page:16

File Type:pdf, Size:1020Kb

Waves in Strings 32 WAVES IN STRINGS 32.1 INTRODUCTION If a transverse wave is caused to travel along a stretched string, the wave is reflected on reaching the ends of the string. The incident and reflected waves have the same speed, frequency and amplitude, and therefore their superposition results in a stationary wave. If a stretched string is caused to vibrate by being plucked or struck, a number of different stationary waves are produced simultaneously. Only specific modes of vibration are possible, and these are considered in section 32.2. 32.2 THE MODES OF VIBRATION The ends ofa stretched string are fixed, and therefore the ends ofthe string must be displacement nodes. The three simplest modes of vibration which satisfy this condition in the case of a string of length L are shown in Fig. 32.1. Fig. 32.1 L L L Modes of vibration of a stretched string ... ----- .,., A, 2 1st harmonic 2nd harmonic 3rd harmonic (fundamental) (1st overtone) (2nd overtone) (a) (b) (c) The simplest mode of vibration (a) is called the fundamental, and the frequency at which it vibrates is called the fundamental frequency. The higher frequencies (e.g. (b) and (c)) are called overtones. (Note that the first overtone is the second harmonic, etc.) Representing the wavelengths of the first, second and third harmonics by 21, 22 and 23 respectively, and bearing in mind that the separation of adjacent nodes is equal to half a wavelength (section 31.2), we see from Fig. 32.1 that: L L L 2 3 489 490 SECTION f.' WAVES AND THE WAVE PROPERTIES OF LIGHT Therefore, if A., is the wavelength of the nth harmonic, L [32.1] 2 n The frequency,fn, of the nth harmonic is given by equation [23.1] as v fn =- [32.2] A., where v the velocity ofeither one ofthe progressive waves that have produced the stationary wave. (Note that the velocity is the same for all wavelengths.) Therefore, from equations [32.1] and [32.2] nv [32.3] fn = 2L The frequency,/1, of the fundamental (i.e. the first harmonic) is given, by putting n = 1 in equation [32.3], as v fi = 2L Therefore, equation [32.3] can be rewritten as i.e. the frequencies of the various overtones are whole-number multiples ofthe fundamental frequency. It can be shown that [32.4] where T = the tension in the string (N) fJ- = the mass per unit length of the string (kg m - I). Therefore, by equations [32.2] and [32.4] (n 1, 2, 3, 0 0 .) [32.5] 1. A wire of length · 400mm and mass 2. The fundamental frequency of vibration of a 1.20 x 10- 3 kg is under a tension of 120N. particular string is f What would the funda­ What is: (a) the fundamental frequency of mental frequency be if the length of the string vibration, (b) the frequency of the third har­ were to be halved and the tension in it were to be monic? increased by a factor of 4? WAVES IN STRINGS 491 32.3 STRINGED INSTRUMENTS When a guitar string is plucked or a piano string is struck, transverse waves travel along the string and are reflected on reaching its ends. The energy of any wave whose wavelength is such that it does not give rise to one of the allowed stationary waves is very quickly dissipated. The waves which remain have frequencies that are given by equation [32.5], and the string vibrates with all these frequencies simultaneously. The largest amplitude of vibration, and therefore the predominant frequency, is that of the fundamental. The relative amplitudes of the various overtones depend on the particular instrument being played, and it is this that gives an instrument its characteristic sound (see section 34.2). 32.4 MELDE'S EXPERIMENT Ifa string is caused to vibrate by being plucked or struck, it vibrates freely at all ofits natural frequencies (i.e. the frequencies given by equation [32.5]). On the other hand, ifa string is forced to vibrate at some particular frequency, it will vibrate with large amplitude only if the forcing frequency is one ofthe natural frequencies ofthe string. This can be very effectively demonstrated by the apparatus shown in Fig. 32.2, and is known as Melde's experiment. Fig. 32.2 String under Mechanica l Signal Pulley Apparatus for Melde's tension oscillator gene(ator experiment The frequency of the signal generator is slowly increased and, at first, very little happens. Eventually though, a frequency / 1 (say) is reached at which the string vibrates with large amplitude in the form of a single loop (Fig. 32.3(a)). If the frequency is increased beyond this value, the amplitude ofthe vibrations dies away. When the forcing frequency reaches 2/1, the string again vibrates with large amplitude, but this time it vibrates as two loops (Fig. 32.3(b)). At 3/1 it vibrates as three loops, etc. Substituting the relevant values of L, T and J1 in equation [32. 5] confirms that the forcing frequencies, / 1 , 2/1 and 3/1 , are respectively equal to the frequencies of the first, second and third harmonics of the string. This, then, is an example of resonance - the string responds well only to those forcing frequencies which are equal to its natural frequencies of vibration. Fig. 32.3 Modes of vibration in Melde's experiment T.---J'""---------- - (a) (b) 492 SECTION E: WAVES AND THE WAVE PROPERTIES OF LIGHT Notes (i) The amplitude of vibration of the oscillator is small in comparison with that of the string, and therefore the string behaves (almost) as if it is fixed at its point of attachment to the oscillator. -- (ii) The reflected waves are not quite as 'strong' as the incident waves, and this prevents the displacements at the nodes being exactly zero. (iii) The motion of the string can be 'frozen' if stroboscopic illumination is available. This demonstrates very convincingly that each section of the string is in anti-phase with that in an adjacent loop. 1 32.5 EXPERIMENTAL VERIFICATION OF f, = 2 L ~ The frequency, f 1 , of the fundamental mode of vibration of a stretched string is given, by putting n = 1 in equation [32.5], as f, = -12Ly fT--;; It follows that: (i) j 1 ex 1IL if T and J1. are constant (ii) f 1 ex ,jT if L and J1. are constant (iii) .h. ex 1I JJi if L and Tare constant. These relationships are sometimes referred to as the laws of vibration of stretched strings. They may be verified experimentally by using a sonometer (Fig. 32.4), as described below. Fig. 32.4 Movable Wire under Fixed Sonometer bridge tension bridge Wire f\.--LL-----=--~-------11"'-4-- anchored here Known Hollow -- mass(M) sounding box To verify f 1 ex: 1/ L Having selected suitable values of T and JL, the position of the movable bridge is altered so that the vibrating length, L, of the wire is such that when the wire is plucked it produces the same note as a tuning fork of known frequency. If the experimenter is not sufficiently 'musical' to detect whether the two notes have the same pitch, he can make use of a resonance technique. A small piece of paper in the form of an inverted vee is placed on the centre of the wire, and the stern of a vibrating tuning fork is held against one of the bridges. This forces the wire to vibrate, and if its length is such that its fundamental frequency of vibration is equal to the frequency of the ~ning fork, the wire vibrates with large amplitude and throws the paper_ off the w1re. The procedure is repeated using tuning forks of other ~own frequencies, and without altering either Tor Jl.. A graph ofj1 against 11Lis hnear and passes through the origin, thus verifying the relationship. WAVES IN STRINGS 493 To Verify f1 ex VT With L kept constant at some suitable value, the mass, M, and thererore the tension T ( = Mg), is altered so that when the wire is plucked it produces the same note as a tuning fork ofknown frequency. The procedure is repeated using tuning forks of other known frequencies, and without changing either Lor J.L. A graph of!I against n is linear and passes through the origin, thus verifying the relationship. To Verify f, ex 1/..Jii This relationship cannot be verified directly if tuning forks are used, because neither the frequencies ofa set of tuning forks nor the masses per unit length ofa set of wires are continuously variable. However, once it has been verified that f 1 ex 1I L , it is sufficient to show that L ex 1I JJi at constant Tand constantf1. First, the mass per unit length, J.L, of a wire is determined by weighing. The length, L, of the wire is then adjusted so that when the wire is plucked it produces the same note as one of the tuning forks. The procedure is repeated using wires of different masses per unit length. Each wire must be under the same tension as the first wire, and in each case the length is adjusted until the wire vibrates at the same frequency as the tuning fork that was used with the first wire. A graph of L against II fo is linear and passes through the origin, thus verifyingj1 ex 1I Vfi. .
Recommended publications
  • Rotational and Translational Waves in a Bowed String Eric Bavu, Manfred Yew, Pierre-Yves Pla•Ais, John Smith and Joe Wolfe
    Proceedings of the International Symposium on Musical Acoustics, March 31st to April 3rd 2004 (ISMA2004), Nara, Japan Rotational and translational waves in a bowed string Eric Bavu, Manfred Yew, Pierre-Yves Pla•ais, John Smith and Joe Wolfe School of Physics, University of New South Wales, Sydney Australia [email protected] relative motion of the bow and string, and therefore the Abstract times of commencement of stick and slip phases, We measure and compare the rotational and transverse depends on both the transverse and torsional velocity velocity of a bowed string. When bowed by an (Fig 2). Consequently, torsional waves can introduce experienced player, the torsional motion is phase-locked aperiodicity or jitter to the motion of the string. Human to the transverse waves, producing highly periodic hearing is very sensitive to jitter [9]. Small amounts of motion. The spectrum of the torsional motion includes jitter contribute to a sound's being identified as 'natural' the fundamental and harmonics of the transverse wave, rather than 'mechanical'. Large amounts of jitter, on the with strong formants at the natural frequencies of the other hand, sound unmusical. Here we measure and torsional standing waves in the whole string. Volunteers compare translational and torsional velocities of a with no experience on bowed string instruments, bowed bass string and examine the periodicity of the however, often produced non-periodic motion. We standing waves. present sound files of both the transverse and torsional velocity signals of well-bowed strings. The torsional y string signal has not only the pitch of the transverse signal, but kink it sounds recognisably like a bowed string, probably because of its rich harmonic structure and the transients and amplitude envelope produced by bowing.
    [Show full text]
  • Lab 12. Vibrating Strings
    Lab 12. Vibrating Strings Goals • To experimentally determine the relationships between the fundamental resonant frequency of a vibrating string and its length, its mass per unit length, and the tension in the string. • To introduce a useful graphical method for testing whether the quantities x and y are related by a “simple power function” of the form y = axn. If so, the constants a and n can be determined from the graph. • To experimentally determine the relationship between resonant frequencies and higher order “mode” numbers. • To develop one general relationship/equation that relates the resonant frequency of a string to the four parameters: length, mass per unit length, tension, and mode number. Introduction Vibrating strings are part of our common experience. Which as you may have learned by now means that you have built up explanations in your subconscious about how they work, and that those explanations are sometimes self-contradictory, and rarely entirely correct. Musical instruments from all around the world employ vibrating strings to make musical sounds. Anyone who plays such an instrument knows that changing the tension in the string changes the pitch, which in physics terms means changing the resonant frequency of vibration. Similarly, changing the thickness (and thus the mass) of the string also affects its sound (frequency). String length must also have some effect, since a bass violin is much bigger than a normal violin and sounds much different. The interplay between these factors is explored in this laboratory experi- ment. You do not need to know physics to understand how instruments work. In fact, in the course of this lab alone you will engage with material which entire PhDs in music theory have been written.
    [Show full text]
  • The Science of String Instruments
    The Science of String Instruments Thomas D. Rossing Editor The Science of String Instruments Editor Thomas D. Rossing Stanford University Center for Computer Research in Music and Acoustics (CCRMA) Stanford, CA 94302-8180, USA [email protected] ISBN 978-1-4419-7109-8 e-ISBN 978-1-4419-7110-4 DOI 10.1007/978-1-4419-7110-4 Springer New York Dordrecht Heidelberg London # Springer Science+Business Media, LLC 2010 All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights. Printed on acid-free paper Springer is part of Springer ScienceþBusiness Media (www.springer.com) Contents 1 Introduction............................................................... 1 Thomas D. Rossing 2 Plucked Strings ........................................................... 11 Thomas D. Rossing 3 Guitars and Lutes ........................................................ 19 Thomas D. Rossing and Graham Caldersmith 4 Portuguese Guitar ........................................................ 47 Octavio Inacio 5 Banjo ...................................................................... 59 James Rae 6 Mandolin Family Instruments........................................... 77 David J. Cohen and Thomas D. Rossing 7 Psalteries and Zithers .................................................... 99 Andres Peekna and Thomas D.
    [Show full text]
  • Standing Waves and Sound
    Standing Waves and Sound Waves are vibrations (jiggles) that move through a material Frequency: how often a piece of material in the wave moves back and forth. Waves can be longitudinal (back-and- forth motion) or transverse (up-and- down motion). When a wave is caught in between walls, it will bounce back and forth to create a standing wave, but only if its frequency is just right! Sound is a longitudinal wave that moves through air and other materials. In a sound wave the molecules jiggle back and forth, getting closer together and further apart. Work with a partner! Take turns being the “wall” (hold end steady) and the slinky mover. Making Waves with a Slinky 1. Each of you should hold one end of the slinky. Stand far enough apart that the slinky is stretched. 2. Try making a transverse wave pulse by having one partner move a slinky end up and down while the other holds their end fixed. What happens to the wave pulse when it reaches the fixed end of the slinky? Does it return upside down or the same way up? Try moving the end up and down faster: Does the wave pulse get narrower or wider? Does the wave pulse reach the other partner noticeably faster? 3. Without moving further apart, pull the slinky tighter, so it is more stretched (scrunch up some of the slinky in your hand). Make a transverse wave pulse again. Does the wave pulse reach the end faster or slower if the slinky is more stretched? 4. Try making a longitudinal wave pulse by folding some of the slinky into your hand and then letting go.
    [Show full text]
  • The Physics of Sound 1
    The Physics of Sound 1 The Physics of Sound Sound lies at the very center of speech communication. A sound wave is both the end product of the speech production mechanism and the primary source of raw material used by the listener to recover the speaker's message. Because of the central role played by sound in speech communication, it is important to have a good understanding of how sound is produced, modified, and measured. The purpose of this chapter will be to review some basic principles underlying the physics of sound, with a particular focus on two ideas that play an especially important role in both speech and hearing: the concept of the spectrum and acoustic filtering. The speech production mechanism is a kind of assembly line that operates by generating some relatively simple sounds consisting of various combinations of buzzes, hisses, and pops, and then filtering those sounds by making a number of fine adjustments to the tongue, lips, jaw, soft palate, and other articulators. We will also see that a crucial step at the receiving end occurs when the ear breaks this complex sound into its individual frequency components in much the same way that a prism breaks white light into components of different optical frequencies. Before getting into these ideas it is first necessary to cover the basic principles of vibration and sound propagation. Sound and Vibration A sound wave is an air pressure disturbance that results from vibration. The vibration can come from a tuning fork, a guitar string, the column of air in an organ pipe, the head (or rim) of a snare drum, steam escaping from a radiator, the reed on a clarinet, the diaphragm of a loudspeaker, the vocal cords, or virtually anything that vibrates in a frequency range that is audible to a listener (roughly 20 to 20,000 cycles per second for humans).
    [Show full text]
  • The Musical Kinetic Shape: a Variable Tension String Instrument
    The Musical Kinetic Shape: AVariableTensionStringInstrument Ismet Handˇzi´c, Kyle B. Reed University of South Florida, Department of Mechanical Engineering, Tampa, Florida Abstract In this article we present a novel variable tension string instrument which relies on a kinetic shape to actively alter the tension of a fixed length taut string. We derived a mathematical model that relates the two-dimensional kinetic shape equation to the string’s physical and dynamic parameters. With this model we designed and constructed an automated instrument that is able to play frequencies within predicted and recognizable frequencies. This prototype instrument is also able to play programmed melodies. Keywords: musical instrument, variable tension, kinetic shape, string vibration 1. Introduction It is possible to vary the fundamental natural oscillation frequency of a taut and uniform string by either changing the string’s length, linear density, or tension. Most string musical instruments produce di↵erent tones by either altering string length (fretting) or playing preset and di↵erent string gages and string tensions. Although tension can be used to adjust the frequency of a string, it is typically only used in this way for fine tuning the preset tension needed to generate a specific note frequency. In this article, we present a novel string instrument concept that is able to continuously change the fundamental oscillation frequency of a plucked (or bowed) string by altering string tension in a controlled and predicted Email addresses: [email protected] (Ismet Handˇzi´c), [email protected] (Kyle B. Reed) URL: http://reedlab.eng.usf.edu/ () Preprint submitted to Applied Acoustics April 19, 2014 Figure 1: The musical kinetic shape variable tension string instrument prototype.
    [Show full text]
  • University of California Santa Cruz the Vietnamese Đàn
    UNIVERSITY OF CALIFORNIA SANTA CRUZ THE VIETNAMESE ĐÀN BẦU: A CULTURAL HISTORY OF AN INSTRUMENT IN DIASPORA A dissertation submitted in partial satisfaction of the requirements for the degree of DOCTOR OF PHILOSOPHY in MUSIC by LISA BEEBE June 2017 The dissertation of Lisa Beebe is approved: _________________________________________________ Professor Tanya Merchant, Chair _________________________________________________ Professor Dard Neuman _________________________________________________ Jason Gibbs, PhD _____________________________________________________ Tyrus Miller Vice Provost and Dean of Graduate Studies Table of Contents List of Figures .............................................................................................................................................. v Chapter One. Introduction ..................................................................................................................... 1 Geography: Vietnam ............................................................................................................................. 6 Historical and Political Context .................................................................................................... 10 Literature Review .............................................................................................................................. 17 Vietnamese Scholarship .............................................................................................................. 17 English Language Literature on Vietnamese Music
    [Show full text]
  • Chapter 5 Waves I: Generalities, Superposition & Standing Waves
    Chapter 5 Waves I: Generalities, Superposition & Standing Waves 5.1 The Important Stuff 5.1.1 Wave Motion Wave motion occurs when the mass elements of a medium such as a taut string or the surface of a liquid make relatively small oscillatory motions but collectively give a pattern which travels for long distances. This kind of motion also includes the phenomenon of sound, where the molecules in the air around us make small oscillations but collectively give a disturbance which can travel the length of a college classroom, all the way to the students dozing in the back. We can even view the up–and–down motion of inebriated spectators of sports events as wave motion, since their small individual motions give rise to a disturbance which travels around a stadium. The mathematics of wave motion also has application to electromagnetic waves (including visible light), though the physical origin of those traveling disturbances is quite different from the mechanical waves we study in this chapter; so we will hold off on studying electromagnetic waves until we study electricity and magnetism in the second semester of our physics course. Obviously, wave motion is of great importance in physics and engineering. 5.1.2 Types of Waves In some types of wave motion the motion of the elements of the medium is (for the most part) perpendicular to the motion of the traveling disturbance. This is true for waves on a string and for the people–wave which travels around a stadium. Such a wave is called a transverse wave. This type of wave is the easiest to visualize.
    [Show full text]
  • AN INTRODUCTION to MUSIC THEORY Revision A
    AN INTRODUCTION TO MUSIC THEORY Revision A By Tom Irvine Email: [email protected] July 4, 2002 ________________________________________________________________________ Historical Background Pythagoras of Samos was a Greek philosopher and mathematician, who lived from approximately 560 to 480 BC. Pythagoras and his followers believed that all relations could be reduced to numerical relations. This conclusion stemmed from observations in music, mathematics, and astronomy. Pythagoras studied the sound produced by vibrating strings. He subjected two strings to equal tension. He then divided one string exactly in half. When he plucked each string, he discovered that the shorter string produced a pitch which was one octave higher than the longer string. A one-octave separation occurs when the higher frequency is twice the lower frequency. German scientist Hermann Helmholtz (1821-1894) made further contributions to music theory. Helmholtz wrote “On the Sensations of Tone” to establish the scientific basis of musical theory. Natural Frequencies of Strings A note played on a string has a fundamental frequency, which is its lowest natural frequency. The note also has overtones at consecutive integer multiples of its fundamental frequency. Plucking a string thus excites a number of tones. Ratios The theories of Pythagoras and Helmholz depend on the frequency ratios shown in Table 1. Table 1. Standard Frequency Ratios Ratio Name 1:1 Unison 1:2 Octave 1:3 Twelfth 2:3 Fifth 3:4 Fourth 4:5 Major Third 3:5 Major Sixth 5:6 Minor Third 5:8 Minor Sixth 1 These ratios apply both to a fundamental frequency and its overtones, as well as to relationship between separate keys.
    [Show full text]
  • Class Summer Vacation, 2021-22 Subject
    HOLIDAY HOMEWORK: Class 10 IG Summer Vacation, 2021-22 Subject : English Literature Time to be Spent One hour for fifteen days (Hours per day for ___ Days) : Work Read the text of Shakespeare’s Othello. Specification : Materials Hard copy or soft copy of the text of the drama Othello Required : Read the original text and the paraphrase. Make a presentation in about 15 slides . Some online resources are shared below: https://www.youtube.com/watch?v=2aRr6-XXAD8 Instructions / https://www.youtube.com/watch?v=95Vfcb7VvCA Guidelines : https://www.youtube.com/watch?v=Bp6LqSgukOU https://www.youtube.com/watch?v=lN4Kpj1PFKM https://www.youtube.com/watch?v=5z19M1A8MtY Any other Information: 1. List of the characters. 2. Theme of the drama 3. Act wise summary Date of Submission: 30th June 2021 ( you have to present your research in classroom) Head of the Department HOLIDAY HOMEWORK: Class 10 IG Summer Vacation, 2021-22 Subject : BUSINESS STUDIES (0450) Time to be Spent 6 Hours (1 ½ Hours per day for 4 Days) : Past papers for both components. Work Specification : Materials BUSINESS STUDIES (0450) TEXT BOOK Required : Students are expected to take printout of papers using the link: https://drive.google.com/file/d/1RJO1dBuq2eceLwKZ3ptolKL5JZP76rKW/view?usp=sharing Student should strictly avoid copying the answers from the books/ marking Instructions / scheme for their own benefit and well- being. Guidelines: Students are expected to take a print of all the papers given, get them spiral-bind and solve them in the space provided in the question paper itself and avoid taking extra sheet. Any other Information: Answers must fulfill all the criteria of assessment objectives.
    [Show full text]
  • Harmonic Waves the Golden Rule for Waves Example: Wave on a String
    Harmonic waves L 23 – Vibrations and Waves [3] each segment of the string undergoes ¾ resonance √ simple harmonic motion ¾ clocks – pendulum √ ¾ springs √ a snapshot of the string at some time ¾ harmonic motion √ ¾ mechanical waves √ ¾ sound waves ¾ golden rule for waves ¾ musical instruments ¾ The Doppler effect z Doppler radar λ λ z radar guns distance between successive peaks is called the WAVELENGTH λ it is measured in meters The golden rule for waves Example: wave on a string • This is the relationship between the speed of the wave, the wavelength and the period or frequency ( T = 1 / f ) • it follows from speed = distance / time 2 cm 2 cm 2 cm • the wave travels one wavelength in one • A wave moves on a string at a speed of 4 cm/s period, so wave speed v = λ / T, but • A snapshot of the motion reveals that the since f = 1 / T, we have wavelength(λ) is 2 cm, what is the frequency (ƒ)? • v = λ f •v = λ׃, so ƒ = v ÷ λ = (4 cm/s ) / (2 cm) = 2 Hz • this is the “Golden Rule” for waves Why do I sound funny when Sound and Music I breath helium? • SoundÆ pressure waves in a solid, liquid • Sound travels twice as fast in helium, or gas because Helium is lighter than air • Remember the golden rule v = λ׃ • The speed of soundÆ vs s • Air at 20 C: 343 m/s = 767 mph ≈ 1/5 mile/sec • The wavelength of the sound waves you • Water at 20 C: 1500 m/s make with your voice is fixed by the size of • copper: 5000 m/s your mouth and throat cavity.
    [Show full text]
  • Physics 1240: Sound and Music
    Physics 1240: Sound and Music Today (7/29/19): Percussion: Vibrating Beams *HW 3 due at the front, HW 4 now posted (due next Mon.) Next time: Percussion: Vibrating Membranes Review Types of Instruments (Hornbostel–Sachs classification) • Chordophones: vibrating strings • Aerophones: vibrating columns of air • Idiophones: vibrating the whole instrument • Membranophones: vibrating membrane/skin • Electrophones: vibrating loudspeaker Review Aerophones e.g. flute, e.g. clarinet e.g. saxophone, recorder oboe, bassoon • Free (no standing waves) • Flute-type (edge tones) • Reed-type (vibrating reed/lips) = = = 2 4 1 • How to create waves: Edge tones Bernoulli effect Review • Tone holes, valves: decrease/increase effective length L • Register holes, octave holes: excite 3rd/2nd harmonics • Ear canal: tube closed at one end 1 3 BA Clicker Question 14.1 A 1 m long, homemade PVC pipe flute has a large, open tone hole that is a distance 0.6 m from the source end of the flute. What frequencies are present in the spectrum (in Hz)? A) 286, 572, 857, … B) 143, 286, 429, … C) 143, 429, 715, … D) 286, 857, 1429, … E) 172, 343, 515, … BA Clicker Question 14.1 A 1 m long, homemade PVC pipe flute has a large, open tone hole that is a distance 0.6 m from the source end of the flute. What frequencies are present in the spectrum (in Hz)? A) 286, 572, 857, … B) 143, 286, 429, … • Flute: open-open tube C) 143, 429, 715, … • Tone hole: decreases L D) 286, 857, 1429, … from 1 m to 0.6 m E) 172, 343, 515, … 343 m/s = = 2(0.6 m) = (286 Hz) 2 BA Clicker Question 14.2 An oboe can be modelled as a cone open at one end.
    [Show full text]