Yangonin Blocks Tumor Necrosis Factor-Α–Induced Nuclear Factor-Κb–Dependent Transcription by Inhibiting the Transactivation Potential of the Rela/P65 Subunit
J Pharmacol Sci 118, 447 – 454 (2012) Journal of Pharmacological Sciences © The Japanese Pharmacological Society Full Paper Yangonin Blocks Tumor Necrosis Factor-α–Induced Nuclear Factor-κB–Dependent Transcription by Inhibiting the Transactivation Potential of the RelA/p65 Subunit Juan Ma1,†, He Liang1,†, Hong Ri Jin2, Nguyen Tien Dat3, Shan Yu Zhang1, Ying Zi Jiang1, Ji Xing Nan1, Donghao Li1, Xue Wu1, Jung Joon Lee1,2,*a, and Xuejun Jin1,*b 1Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Yanbian University, Ministry of Education, Yanji Jilin 133002, China 2Center for Molecular Cancer Research, Korea Research Institute of Bioscience and Biotechnology, Ochang, Chungbuk 363-883, Republic of Korea 3Institute of Marine Biochemistry, Vietnam Academy of Science and Technology, 18-Hoang Quoc Viet, Hanoi, Vietnam Received November 13, 2011; Accepted January 23, 2012 Abstract. The nuclear factor-κB (NF-κB) transcription factors control many physiological pro- cesses including inflammation, immunity, and apoptosis. In our search for NF-κB inhibitors from natural resources, we identified yangonin from Piper methysticum as an inhibitor of NF-κB activa- tion. In the present study, we demonstrate that yangonin potently inhibits NF-κB activation through suppression of the transcriptional activity of the RelA/p65 subunit of NF-κB. This compound sig- nificantly inhibited the induced expression of the NF-κB-reporter gene. However, this compound did not interfere with tumor necrosis factor-α (TNF-α)-induced inhibitor of κBα (IκBα) degrada- tion, p65 nuclear translocation, and DNA-binding activity of NF-κB. Further analysis revealed that yangonin inhibited not only the induced NF-κB activation by overexpression of RelA/p65, but also transactivation activity of RelA/p65.
[Show full text]