Hall's Bulrush Habitat Characterization and Monitoring

Total Page:16

File Type:pdf, Size:1020Kb

Hall's Bulrush Habitat Characterization and Monitoring Hall’s Bulrush Habitat Characterization and Monitoring Project 2003 Report Prepared by: Phyllis J. Higman and Michael R. Penskar Michigan Natural Features Inventory P.O. Box 30444 Lansing, MI 48909-7944 For: U.S. Fish and Wildlife Service Region 3 Office Minneapolis, MN March 31, 2004 Report Number 2004-14 Table of Contents Introduction ................................................................................................................................................ 1 Study Site ..................................................................................................................................................... 1 Methods ....................................................................................................................................................... 1 Population and Vegetation Monitoring ................................................................................................... 1 Floristic Characterization ....................................................................................................................... 5 Well Monitoring ....................................................................................................................................... 5 Soil Characterization .............................................................................................................................. 5 Seed Bank Characterization .................................................................................................................... 5 Photo Monitoring .................................................................................................................................... 6 Status Surveys ............................................................................................................................................. 6 De novo Surveys .......................................................................................................................................... 6 Results and Discussion ............................................................................................................................... 6 Population and Vegetation Monitoring ................................................................................................... 6 Floristic Characterization ....................................................................................................................... 9 Well Monitoring ....................................................................................................................................... 9 Soil Characterization ............................................................................................................................ 12 Seed Bank Characterization .................................................................................................................. 12 Photo Monitoring .................................................................................................................................. 13 Status Surveys ........................................................................................................................................... 17 Carr Lake............................................................................................................................................... 17 Pine Island Lake-North ......................................................................................................................... 18 Pine Island Lake Marsh ........................................................................................................................ 18 36th Avenue Lake Marsh ....................................................................................................................... 18 De Novo Surveys ....................................................................................................................................... 19 Summary and Future Work .................................................................................................................... 19 Acknowledgments..................................................................................................................................... 23 Literature Cited ........................................................................................................................................ 24 List of Figures Figure 1. Study Site .................................................................................................................................... 2 Figure 2. Sites surveyed for Hall’s bulrush in Allegan County during 2003.............................................. 3 Figure 3. Sites surveyed for Hall’s bulrush in Muskegon County during 2003 ......................................... 4 Figure 4. Percent average coverage values of dominant species ................................................................ 8 Figures 5-10. Chronological series of photos from NW corner of macroplot .......................................... 14 List of Tables Table 1. Percentage average cover and frequency of species identified in sampling quadrats .................. 7 Table 2. Frequency and average cover of rare coastal plain disjunct species ............................................. 9 Table 3. Compiled vascular plant species list ........................................................................................... 10 Table 4. Field characterization of soil profiles ......................................................................................... 12 Table 5. Number of seeds in upper and lower portions of four soil samples............................................ 13 Table 6. De novo and previously known sites surveyed for Hall’s bulrush .............................................. 20 Hall’s bulrush 2003 Page i Introduction Michigan Natural Features Inventory The methods and results of the first three (MNFI) initiated population and vegetation years of monitoring are presented in our 1999- monitoring of an exemplary occurrence of 2002 report (Penskar & Higman 2003). The Hall’s bulrush (Shoenoplectus hallii (A. Gray) same monitoring protocol was conducted in S.G. Smith) in a coastal plain marsh within 2003 and will be continued through 2006, Allegan State Game Area, in 1999. This resulting in detailed population and habitat data widespread but extremely rare annual sedge is over a seven-year period. In addition, in 2003, ranked as globally imperiled (G2) by four other known Michigan occurrences of the NatureServe and it is anticipated that it will be bulrush were re-visited to assess their status and recommended for candidate status (C1), leading de novo surveys were conducted in Allegan ultimately to designation as a threatened (LT) County to look for additional occurrences of species under the Federal Endangered Species this species. De novo surveys will be conducted Act (ESA). The Michigan study was initiated to in Muskegon and Van Buren counties in 2004 help fill data gaps on the habitat and ecological and 2005. This report presents the results of the requirements of Hall’s bulrush and to develop monitoring and of the status and de novo and test a long-term monitoring protocol. The surveys conducted in 2003. More results of this study will help ensure that comprehensive site comparisons will be made in appropriate protection and management 2006 during the final year of the study. measures will be taken to conserve this species. Study Site The monitoring protocol was conducted in coastal plain marshes, this site is one of several Section 7 Marsh, located within the Allegan such exemplary occurrences in the SGA and one State Game Area (SGA), a 50,000 acre (20,234 of approximately 40 in southwest Michigan. ha) public tract located in western Allegan Status surveys were conducted at three of County in southwest Lower Michigan (Figure four additional sites where Hall’s bulrush has 1). The site is one of two documented been previously documented in Michigan, occurrences of Hall’s bulrush in the SGA and is including Carr Lake and Pine Island Lake-North located in the northeastern region of the tract in Muskegon County, and 36th Avenue Marsh in where a large population was first identified in Allegan County. The fourth site, Pine Island 1989. The population occurs within a high Lake Marsh, in Muskegon County, was not quality occurrence of coastal plain marsh, a surveyed in 2003 because we were unable to globally imperiled (G2) natural community obtain permission to access the site during the (Kost 2000). The marsh occurs in a shallow, survey window. Additional surveys were isolated depression within an extensive sand conducted at 19 other sites, one in Muskegon plain dominated by closed canopy oak-pine County and the remainder in Allegan County. forest. Largely dominated by graminoids The known Hall’s bulrush sites and other (grasses, sedges, and rushes), as is typical of surveyed sites are shown in Figures 2 and 3. Methods Population and Vegetation Monitoring Population and vegetation monitoring were permanent macroplot (Penskar and Higman conducted according to the protocol first 2003). Percent cover of all vascular plant established in 1999, whereby 100 random species, bare soil, and litter detected in each quadrats were sampled within a 50m x 50m quadrat were recorded. Because of the timing Hall’s bulrush 2003 Page 1 ¡ ¢ ¢ ¤ ¥ § © § ¤ § ¤ ¡ ¤ § ! " # % & ' ' ( Figure 1. The study site in the Allegan State Game Area in southwest Lower Michigan.
Recommended publications
  • Improved Conservation Plant Materials Released by NRCS and Cooperators Through December 2014
    Natural Resources Conservation Service Improved Conservation Plant Materials Released by Plant Materials Program NRCS and Cooperators through December 2014 Page intentionally left blank. Natural Resources Conservation Service Plant Materials Program Improved Conservation Plant Materials Released by NRCS and Cooperators Through December 2014 Norman A. Berg Plant Materials Center 8791 Beaver Dam Road Building 509, BARC-East Beltsville, Maryland 20705 U.S.A. Phone: (301) 504-8175 prepared by: Julie A. DePue Data Manager/Secretary [email protected] John M. Englert Plant Materials Program Leader [email protected] January 2015 Visit our Website: http://Plant-Materials.nrcs.usda.gov TABLE OF CONTENTS Topics Page Introduction ...........................................................................................................................................................1 Types of Plant Materials Releases ........................................................................................................................2 Sources of Plant Materials ....................................................................................................................................3 NRCS Conservation Plants Released in 2013 and 2014 .......................................................................................4 Complete Listing of Conservation Plants Released through December 2014 ......................................................6 Grasses ......................................................................................................................................................8
    [Show full text]
  • The Vascular Plants of Massachusetts
    The Vascular Plants of Massachusetts: The Vascular Plants of Massachusetts: A County Checklist • First Revision Melissa Dow Cullina, Bryan Connolly, Bruce Sorrie and Paul Somers Somers Bruce Sorrie and Paul Connolly, Bryan Cullina, Melissa Dow Revision • First A County Checklist Plants of Massachusetts: Vascular The A County Checklist First Revision Melissa Dow Cullina, Bryan Connolly, Bruce Sorrie and Paul Somers Massachusetts Natural Heritage & Endangered Species Program Massachusetts Division of Fisheries and Wildlife Natural Heritage & Endangered Species Program The Natural Heritage & Endangered Species Program (NHESP), part of the Massachusetts Division of Fisheries and Wildlife, is one of the programs forming the Natural Heritage network. NHESP is responsible for the conservation and protection of hundreds of species that are not hunted, fished, trapped, or commercially harvested in the state. The Program's highest priority is protecting the 176 species of vertebrate and invertebrate animals and 259 species of native plants that are officially listed as Endangered, Threatened or of Special Concern in Massachusetts. Endangered species conservation in Massachusetts depends on you! A major source of funding for the protection of rare and endangered species comes from voluntary donations on state income tax forms. Contributions go to the Natural Heritage & Endangered Species Fund, which provides a portion of the operating budget for the Natural Heritage & Endangered Species Program. NHESP protects rare species through biological inventory,
    [Show full text]
  • NJ Native Plants - USDA
    NJ Native Plants - USDA Scientific Name Common Name N/I Family Category National Wetland Indicator Status Thermopsis villosa Aaron's rod N Fabaceae Dicot Rubus depavitus Aberdeen dewberry N Rosaceae Dicot Artemisia absinthium absinthium I Asteraceae Dicot Aplectrum hyemale Adam and Eve N Orchidaceae Monocot FAC-, FACW Yucca filamentosa Adam's needle N Agavaceae Monocot Gentianella quinquefolia agueweed N Gentianaceae Dicot FAC, FACW- Rhamnus alnifolia alderleaf buckthorn N Rhamnaceae Dicot FACU, OBL Medicago sativa alfalfa I Fabaceae Dicot Ranunculus cymbalaria alkali buttercup N Ranunculaceae Dicot OBL Rubus allegheniensis Allegheny blackberry N Rosaceae Dicot UPL, FACW Hieracium paniculatum Allegheny hawkweed N Asteraceae Dicot Mimulus ringens Allegheny monkeyflower N Scrophulariaceae Dicot OBL Ranunculus allegheniensis Allegheny Mountain buttercup N Ranunculaceae Dicot FACU, FAC Prunus alleghaniensis Allegheny plum N Rosaceae Dicot UPL, NI Amelanchier laevis Allegheny serviceberry N Rosaceae Dicot Hylotelephium telephioides Allegheny stonecrop N Crassulaceae Dicot Adlumia fungosa allegheny vine N Fumariaceae Dicot Centaurea transalpina alpine knapweed N Asteraceae Dicot Potamogeton alpinus alpine pondweed N Potamogetonaceae Monocot OBL Viola labradorica alpine violet N Violaceae Dicot FAC Trifolium hybridum alsike clover I Fabaceae Dicot FACU-, FAC Cornus alternifolia alternateleaf dogwood N Cornaceae Dicot Strophostyles helvola amberique-bean N Fabaceae Dicot Puccinellia americana American alkaligrass N Poaceae Monocot Heuchera americana
    [Show full text]
  • The Role of Seed Bank and Germination Dynamics in the Restoration of a Tidal Freshwater Marsh in the Sacramento–San Joaquin Delta Taylor M
    SEPTEMBER 2019 Sponsored by the Delta Science Program and the UC Davis Muir Institute RESEARCH The Role of Seed Bank and Germination Dynamics in the Restoration of a Tidal Freshwater Marsh in the Sacramento–San Joaquin Delta Taylor M. Sloey,1,2 Mark W. Hester2 ABSTRACT enhanced using a pre-germination cold exposure, Liberty Island, California, is a historical particularly for species of concern for wetland freshwater tidal wetland that was converted restoration. The cold stratification study showed to agricultural fields in the early 1900s. that longer durations of pre-germination cold Liberty Island functioned as farmland until an enhanced germination in Schoenoplectus acutus, accidental levee break flooded the area in 1997, but reduced germination in Schoenoplectus inadvertently restoring tidal marsh hydrology. californicus, and had no effect on Typha latifolia. Since then, wetland vegetation has naturally Overall, germination of S. californicus and recolonized part of the site. We conducted a seed S. acutus was much lower than T. latifolia. Our bank assay at the site and found that despite a findings suggest that seeding may not be an lack of germination or seedling recruitment at effective restoration technique for Schoenoplectus the site, the seed bank contained a diverse plant spp., and, to improve restoration techniques, community, indicating that the site’s continuous further study is needed to more comprehensively flooding was likely suppressing germination. understand the reproduction ecology of important Additionally, the frequency
    [Show full text]
  • Botanical Resources and Wetlands Technical Report
    Chapter 1 Affected Environment Figure 1-3g. Sensitive Biological Resources Between Shasta Dam and Red Bluff Pumping Plant 1-45 Draft – June 2013 Shasta Lake Water Resources Investigation Biological Resources Appendix – Botanical Resources and Wetlands Technical Report This page left blank intentionally. 1-46 Draft – June 2013 Chapter 1 Affected Environment Figure 1-3h. Sensitive Biological Resources Between Shasta Dam and Red Bluff Pumping Plant 1-47 Draft – June 2013 Shasta Lake Water Resources Investigation Biological Resources Appendix – Botanical Resources and Wetlands Technical Report This page left blank intentionally. 1-48 Draft – June 2013 Chapter 1 Affected Environment Figure 1-3i. Sensitive Biological Resources Between Shasta Dam and Red Bluff Pumping Plant 1-49 Draft – June 2013 Shasta Lake Water Resources Investigation Biological Resources Appendix – Botanical Resources and Wetlands Technical Report This page left blank intentionally. 1-50 Draft – June 2013 Chapter 1 Affected Environment Figure 1-3j. Sensitive Biological Resources Between Shasta Dam and Red Bluff Pumping Plant 1-51 Draft – June 2013 Shasta Lake Water Resources Investigation Biological Resources Appendix – Botanical Resources and Wetlands Technical Report This page left blank intentionally. 1-52 Draft – June 2013 Chapter 1 Affected Environment 1 Valley Oak Woodland This habitat type consists of an open savanna of 2 valley oak (Quercus lobata) trees and an annual grassland understory. Valley 3 oak is typically the only tree species present and shrubs are generally absent 4 except for occasional poison oak. Canopy cover rarely exceeds 30–40 percent in 5 valley oak woodland. This community occupies the highest portions of the 6 floodplain terrace where flooding is infrequent and shallow.
    [Show full text]
  • Evaluation of Restoration Techniques and Management Practices of Tule Pertaining to Eco-Cultural Use
    EVALUATION OF RESTORATION TECHNIQUES AND MANAGEMENT PRACTICES OF TULE PERTAINING TO ECO-CULTURAL USE By Irene Angel Vasquez A Thesis Presented to The Faculty of Humboldt State University In Partial Fulfillment of the Requirements for the Degree Master of Science in Natural Resources: Environmental & Natural Resource Science Committee Membership Dr. Steven Martin, Committee Chair Dr. Alison O’Dowd Committee Member Dr. Laurie Richmond, Committee Member Dr. Andrew Stubblefield, Graduate Coordinator May 2019 ABSTRACT EVALUATION OF RESTORATION TECHNIQUES AND MANAGEMENT PRACTICES OF TULE PERTAINING TO ECO-CULTURAL USE Irene Angel Vasquez Tule (Schoenoplectus sp.) is a native plant commonly used by California tribes and Indigenous people throughout the world (Macía & Balslev 2000). Ecological, social and regulatory threats to its use in contemporary Indigenous culture highlight major issues concerning natural resource management. My ancestral homeland, what is now Yosemite National Park, stands as a figurehead in the intersection of land management and Indigenous peoples. An important element of Traditional Ecological Management (TEM) for quality basketry materials is prescribed fire, an element western science is increasingly acknowledging for creating a more biodiverse and heterogeneous landscape. This research was conducted in Mariposa and Colusa counties and aimed to examine the Traditional Ecological Knowledge (TEK) of prescribed burning and cutting to manage tule for eco-cultural purposes. An interdisciplinary approach used archival and legal research along with interviews of ten Native American cultural practitioners and four public land agency staff personnel between March 2017 and March 2018 to assess the quality of tule as sought by weavers/cultural practitioners and to understand perspectives of public land agency professionals’ assessment of TEK into resource management.
    [Show full text]
  • Sources Dicken, S
    Tules By Frank A. Lang In Oregon and much of the western United States, tule is the common name for two species of emergent plants that grow in shallow water of marshes, muddy shores, and lakes. These sedges (family Cyperaceae) are named hard-stemmed (Schoenoplectus acutus var. occidentalis) and soft-stemmed (S. tabernaemontani) bulrushes. Tule, a Spanish name, is based on tollin, of Nahurtl Native American lingustic stock, meaning a rush. Older botanical literature places these bulrushes in Scirpus, a closely related genus with various species names attached. Tule, the basis of the name of the Klamath basin town of Tulelake in northern California, was named after the extensive shallow Tule Lake (not to be confused with ancient Lake Tulare in the Great Valley of California). Present-day Tule Lake is the remainder of Pluvial Lake Modoc, which filled the Klamath Basin during the Pleistocene. As climates changed, ancient Lake Modoc shrank, forming Upper and Lower Klamath Lakes and Tule Lake. Irrigation projects reduced the lakes to their present size. Oregonians are probably most familiar with the extensive marshes on the margins and in the shallows of the great interior Klamath Lakes and Marsh and Malheur lakes. The tall (three- to six-foot), round, green stems are topped with clusters of brown, seed-producing spikelets of flowers. This contrasts with the cattail (Typha latifolia, family Typhaceae), another common emergent aquatic plant with flat leaves and characteristic flower clusters at the end of a leafless round shoot. Tule bulrushes arise from an extensive rhizome system that forms vegetative mats with cattails and other graminoids (grasses and grass-like plants, including other sedges and rushes).
    [Show full text]
  • Cyperaceae of Alberta
    AN ILLUSTRATED KEY TO THE CYPERACEAE OF ALBERTA Compiled and writen by Linda Kershaw and Lorna Allen April 2019 © Linda J. Kershaw & Lorna Allen This key was compiled using information primarily from and the Flora North America Association (2008), Douglas et al. (1998), and Packer and Gould (2017). Taxonomy follows VASCAN (Brouillet, 2015). The main references are listed at the end of the key. Please try the key this summer and let us know if there are ways in which it can be improved. Over the winter, we hope to add illustrations for most of the entries. The 2015 S-ranks of rare species (S1; S1S2; S2; S2S3; SU, according to ACIMS, 2015) are noted in superscript ( S1; S2;SU) after the species names. For more details go to the ACIMS web site. Similarly, exotic species are followed by a superscript X, XX if noxious and XXX if prohibited noxious (X; XX; XXX) according to the Alberta Weed Control Act (2016). CYPERACEAE SedgeFamily Key to Genera 1b 01a Flowers either ♂ or ♀; ovaries/achenes enclosed in a sac-like or scale-like structure 1a (perigynium) .....................Carex 01b Flowers with both ♂ and ♀ parts (sometimes some either ♂ or ♀); ovaries/achenes not in a perigynium .........................02 02a Spikelets somewhat fattened, with keeled scales in 2 vertical rows, grouped in ± umbrella- shaped clusters; fower bristles (perianth) 2a absent ....................... Cyperus 02b Spikelets round to cylindrical, with scales 2b spirally attached, variously arranged; fower bristles usually present . 03 03a Achenes tipped with a rounded protuberance (enlarged style-base; tubercle) . 04 03b Achenes without a tubercle (achenes 3a 3b often beaked, but without an enlarged protuberence) .......................05 04a Spikelets single; stems leafess .
    [Show full text]
  • Checklist Flora of the Former Carden Township, City of Kawartha Lakes, on 2016
    Hairy Beardtongue (Penstemon hirsutus) Checklist Flora of the Former Carden Township, City of Kawartha Lakes, ON 2016 Compiled by Dale Leadbeater and Anne Barbour © 2016 Leadbeater and Barbour All Rights reserved. No part of this publication may be reproduced, stored in a retrieval system or database, or transmitted in any form or by any means, including photocopying, without written permission of the authors. Produced with financial assistance from The Couchiching Conservancy. The City of Kawartha Lakes Flora Project is sponsored by the Kawartha Field Naturalists based in Fenelon Falls, Ontario. In 2008, information about plants in CKL was scattered and scarce. At the urging of Michael Oldham, Biologist at the Natural Heritage Information Centre at the Ontario Ministry of Natural Resources and Forestry, Dale Leadbeater and Anne Barbour formed a committee with goals to: • Generate a list of species found in CKL and their distribution, vouchered by specimens to be housed at the Royal Ontario Museum in Toronto, making them available for future study by the scientific community; • Improve understanding of natural heritage systems in the CKL; • Provide insight into changes in the local plant communities as a result of pressures from introduced species, climate change and population growth; and, • Publish the findings of the project . Over eight years, more than 200 volunteers and landowners collected almost 2000 voucher specimens, with the permission of landowners. Over 10,000 observations and literature records have been databased. The project has documented 150 new species of which 60 are introduced, 90 are native and one species that had never been reported in Ontario to date.
    [Show full text]
  • Flora-Lab-Manual.Pdf
    LabLab MManualanual ttoo tthehe Jane Mygatt Juliana Medeiros Flora of New Mexico Lab Manual to the Flora of New Mexico Jane Mygatt Juliana Medeiros University of New Mexico Herbarium Museum of Southwestern Biology MSC03 2020 1 University of New Mexico Albuquerque, NM, USA 87131-0001 October 2009 Contents page Introduction VI Acknowledgments VI Seed Plant Phylogeny 1 Timeline for the Evolution of Seed Plants 2 Non-fl owering Seed Plants 3 Order Gnetales Ephedraceae 4 Order (ungrouped) The Conifers Cupressaceae 5 Pinaceae 8 Field Trips 13 Sandia Crest 14 Las Huertas Canyon 20 Sevilleta 24 West Mesa 30 Rio Grande Bosque 34 Flowering Seed Plants- The Monocots 40 Order Alistmatales Lemnaceae 41 Order Asparagales Iridaceae 42 Orchidaceae 43 Order Commelinales Commelinaceae 45 Order Liliales Liliaceae 46 Order Poales Cyperaceae 47 Juncaceae 49 Poaceae 50 Typhaceae 53 Flowering Seed Plants- The Eudicots 54 Order (ungrouped) Nymphaeaceae 55 Order Proteales Platanaceae 56 Order Ranunculales Berberidaceae 57 Papaveraceae 58 Ranunculaceae 59 III page Core Eudicots 61 Saxifragales Crassulaceae 62 Saxifragaceae 63 Rosids Order Zygophyllales Zygophyllaceae 64 Rosid I Order Cucurbitales Cucurbitaceae 65 Order Fabales Fabaceae 66 Order Fagales Betulaceae 69 Fagaceae 70 Juglandaceae 71 Order Malpighiales Euphorbiaceae 72 Linaceae 73 Salicaceae 74 Violaceae 75 Order Rosales Elaeagnaceae 76 Rosaceae 77 Ulmaceae 81 Rosid II Order Brassicales Brassicaceae 82 Capparaceae 84 Order Geraniales Geraniaceae 85 Order Malvales Malvaceae 86 Order Myrtales Onagraceae
    [Show full text]
  • Waterton Lakes National Park • Common Name(Order Family Genus Species)
    Waterton Lakes National Park Flora • Common Name(Order Family Genus species) Monocotyledons • Arrow-grass, Marsh (Najadales Juncaginaceae Triglochin palustris) • Arrow-grass, Seaside (Najadales Juncaginaceae Triglochin maritima) • Arrowhead, Northern (Alismatales Alismataceae Sagittaria cuneata) • Asphodel, Sticky False (Liliales Liliaceae Triantha glutinosa) • Barley, Foxtail (Poales Poaceae/Gramineae Hordeum jubatum) • Bear-grass (Liliales Liliaceae Xerophyllum tenax) • Bentgrass, Alpine (Poales Poaceae/Gramineae Podagrostis humilis) • Bentgrass, Creeping (Poales Poaceae/Gramineae Agrostis stolonifera) • Bentgrass, Green (Poales Poaceae/Gramineae Calamagrostis stricta) • Bentgrass, Spike (Poales Poaceae/Gramineae Agrostis exarata) • Bluegrass, Alpine (Poales Poaceae/Gramineae Poa alpina) • Bluegrass, Annual (Poales Poaceae/Gramineae Poa annua) • Bluegrass, Arctic (Poales Poaceae/Gramineae Poa arctica) • Bluegrass, Plains (Poales Poaceae/Gramineae Poa arida) • Bluegrass, Bulbous (Poales Poaceae/Gramineae Poa bulbosa) • Bluegrass, Canada (Poales Poaceae/Gramineae Poa compressa) • Bluegrass, Cusick's (Poales Poaceae/Gramineae Poa cusickii) • Bluegrass, Fendler's (Poales Poaceae/Gramineae Poa fendleriana) • Bluegrass, Glaucous (Poales Poaceae/Gramineae Poa glauca) • Bluegrass, Inland (Poales Poaceae/Gramineae Poa interior) • Bluegrass, Fowl (Poales Poaceae/Gramineae Poa palustris) • Bluegrass, Patterson's (Poales Poaceae/Gramineae Poa pattersonii) • Bluegrass, Kentucky (Poales Poaceae/Gramineae Poa pratensis) • Bluegrass, Sandberg's (Poales
    [Show full text]
  • Plant Guide for Hardstem Bulrush (Schoenoplectus Acutus)
    Plant Guide Waterfowl will feed on the seed. The dense tules provide HARDSTEM BULRUSH excellent nesting cover for numerous waterfowl and wetland birds (Boggs et al., 1990). Schoenoplectus acutus (Muhl. ex Bigelow) A. Löve & D. Löve Muskrats and beaver will eat the rootstock and young Plant Symbol = SCAC3 shoots. Muskrats also use the stems for building their houses. Contributed by: USDA NRCS Idaho Plant Materials Program Water Treatment/Erosion Control: Hardstem bulrush’s dense root mass makes this species an excellent choice for soil stabilization. Its above ground biomass provides protection from erosive wave action and stream currents that erode shorelines or stream banks. The rhizomatous root system also forms a matrix for many beneficial bacteria, making this plant an excellent choice for wastewater treatment (Hurd et al., 1994). Ethnobotany: The young sprouts and shoots of hardstem bulrush can be eaten raw or cooked, and the rhizomes and unripe flower heads can be boiled as a vegetable. Hardstem bulrush rhizomes were also sundried and pounded into a kind of flour. Bulrush pollen is eaten as flour in bread, mush or pancakes. The seeds can be beaten off into baskets or pails, ground into meal and used as flour. Tule houses were common throughout many parts of California; the overlapping tule mats made homes well- insulated and rain-proof. The walls and roofs were thatched with mats of tule or cattail and secured to the frame. In Nevada, tules and willows were bound together in a sort of crude weaving for "Kani", the Paiute name for summerhouse. Hardstem bulrush was also used to make shoes, skirts, baby diapers, bedding, and duck decoys.
    [Show full text]