<<

Magnons and Ferromagnetic - simple cubic

The dispersion relation in one dimension:

 41cos()J Ska 

The dispersion relation for a cubic lattice in three dimensions:

   2cos()JS z k   

The contribution to thermodynamic properties can be calculated similar to the contribution to the thermodynamic properties. Magnons

   2cos()JS z k   

Dispersion relation is mathematically equivalent to tight binding model for .

There is a maximum frequency analogous to the Debye frequency.

 Long wavelength / low temperature limit

Dispersion relation:   2JSk22 a

The : D()  

1 n  Magnons are : k  expk  1 kTB

 Dd() uT 5/2 0  expk  1 kTB

3/2 cTv  Magnons magnetic scattering   G  can scatter inelastically from magnetic material and create k or annihilate magnons    k  kkkn n magnon  G

0

22kkG 22 22 magnon 222mmmn n crystal From: State Theory, Harrison Antiferromagnet magnons

a

dS Ax  p 22JS SBy S Ay S By dt ppp1 Ay Ax Ax dS p Bx Ax Bx S p uk  22JS  Sppp  S  S1 dt Ay Ay S p u Bx k Bx expikpat 2   dS p Ay By Ay Bx    22JS S S S S p uk ppp1  dt S By By p uk dS By  p 22JS SAx  S Bx  S Ax dt ppp1 dSAz dS Bz pp0 0 dt dt Antiferromagnet magnons

  4sin()JS ka

RbMnF3

Brillouin zone boundary is at k = /2a Antiferromagnet magnons

  4sin()JS ka

Mathematically equivalent to in 1-d Student project

Make a table of magnon properties like the table of phonon properties

Fe bcc Ni fcc Co hcp

1 student / column Longitudinal

dy2 nm neE dt 2

ney E   0

dy222 ney nm 2  dt  0

dy2   2 y  0 dt 2 p

2 Plasma frequency ne  p  m 0 Kittel There is no magnetic component of the .

Plasma waves can be quantized like any other wave loss spectroscopy

En p

EELS is often used to measure phonons Electron energy loss spectroscopy

Aluminum Magnesium

Plasmons 15.3 eV Plasmons 10.6 eV

Surface plasmons 10.3 eV Surface plasmons 7.1 eV Transverse optical plasma waves

The dispersion relation for     2 22  k 00 c2 For a free electron  2  1 p  2 Kittel  2 1p 222ck 2   Plasmons

2222 p ck Surface Plasmons

Waves in the electron density at the boundary of two materials.

Surface plasmons have a lower frequency that bulk plasmons. This confines them to the interface. Surface Plasmons

High-resolution surface imaging of by energy-filtered transmission electron microscopy

PHYSICAL REVIEW B 79, 041401 R 2009

Surface plasmons on nanoparticles are efficient at scattering light.

Green and blue require different sized . Nature

Surface plasmons are used for . Plasmon filter

Plasmon modes on the other side of the films are excited.

http://web.pdx.edu/~larosaa/Applied_Optics_464-564/Lecture_Notes_Posted/2010_Lecture-7_ SURFACE%20PLASMON%20POLARITONS%20AT%20%20METALINSULATOR%20INTERFACES/Lecture_on_the_Web_SURFAC E-PLASMONS-.pdf Polaritons

Transverse optical phonons will couple to with the same  and k.

dispersion avoided crossing

Light Bragg reflects off the sound wave; sound Bragg reflects off the light wave.