Quantum Teleportation Mediated by Surface Plasmon Polariton
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Unconditional Quantum Teleportation
R ESEARCH A RTICLES our experiment achieves Fexp 5 0.58 6 0.02 for the field emerging from Bob’s station, thus Unconditional Quantum demonstrating the nonclassical character of this experimental implementation. Teleportation To describe the infinite-dimensional states of optical fields, it is convenient to introduce a A. Furusawa, J. L. Sørensen, S. L. Braunstein, C. A. Fuchs, pair (x, p) of continuous variables of the electric H. J. Kimble,* E. S. Polzik field, called the quadrature-phase amplitudes (QAs), that are analogous to the canonically Quantum teleportation of optical coherent states was demonstrated experi- conjugate variables of position and momentum mentally using squeezed-state entanglement. The quantum nature of the of a massive particle (15). In terms of this achieved teleportation was verified by the experimentally determined fidelity analogy, the entangled beams shared by Alice Fexp 5 0.58 6 0.02, which describes the match between input and output states. and Bob have nonlocal correlations similar to A fidelity greater than 0.5 is not possible for coherent states without the use those first described by Einstein et al.(16). The of entanglement. This is the first realization of unconditional quantum tele- requisite EPR state is efficiently generated via portation where every state entering the device is actually teleported. the nonlinear optical process of parametric down-conversion previously demonstrated in Quantum teleportation is the disembodied subsystems of infinite-dimensional systems (17). The resulting state corresponds to a transport of an unknown quantum state from where the above advantages can be put to use. squeezed two-mode optical field. -
Two-Plasmon Spontaneous Emission from a Nonlocal Epsilon-Near-Zero Material ✉ ✉ Futai Hu1, Liu Li1, Yuan Liu1, Yuan Meng 1, Mali Gong1,2 & Yuanmu Yang1
ARTICLE https://doi.org/10.1038/s42005-021-00586-4 OPEN Two-plasmon spontaneous emission from a nonlocal epsilon-near-zero material ✉ ✉ Futai Hu1, Liu Li1, Yuan Liu1, Yuan Meng 1, Mali Gong1,2 & Yuanmu Yang1 Plasmonic cavities can provide deep subwavelength light confinement, opening up new avenues for enhancing the spontaneous emission process towards both classical and quantum optical applications. Conventionally, light cannot be directly emitted from the plasmonic metal itself. Here, we explore the large field confinement and slow-light effect near the epsilon-near-zero (ENZ) frequency of the light-emitting material itself, to greatly enhance the “forbidden” two-plasmon spontaneous emission (2PSE) process. Using degenerately- 1234567890():,; doped InSb as the plasmonic material and emitter simultaneously, we theoretically show that the 2PSE lifetime can be reduced from tens of milliseconds to several nanoseconds, com- parable to the one-photon emission rate. Furthermore, we show that the optical nonlocality may largely govern the optical response of the ultrathin ENZ film. Efficient 2PSE from a doped semiconductor film may provide a pathway towards on-chip entangled light sources, with an emission wavelength and bandwidth widely tunable in the mid-infrared. 1 State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing, China. ✉ 2 State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing, China. email: [email protected]; [email protected] COMMUNICATIONS PHYSICS | (2021) 4:84 | https://doi.org/10.1038/s42005-021-00586-4 | www.nature.com/commsphys 1 ARTICLE COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-021-00586-4 lasmonics is a burgeoning field of research that exploits the correction of TPE near graphene using the zero-temperature Plight-matter interaction in metallic nanostructures1,2. -
Quantum Error Modelling and Correction in Long Distance Teleportation Using Singlet States by Joe Aung
Quantum Error Modelling and Correction in Long Distance Teleportation using Singlet States by Joe Aung Submitted to the Department of Electrical Engineering and Computer Science in partial fulfillment of the requirements for the degree of Master of Science in Electrical Engineering and Computer Science at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY May 2002 @ Massachusetts Institute of Technology 2002. All rights reserved. Author ................... " Department of Electrical Engineering and Computer Science May 21, 2002 72-1 14 Certified by.................. .V. ..... ..'P . .. ........ Jeffrey H. Shapiro Ju us . tn Professor of Electrical Engineering Director, Research Laboratory for Electronics Thesis Supervisor Accepted by................I................... ................... Arthur C. Smith Chairman, Department Committee on Graduate Students BARKER MASSACHUSE1TS INSTITUTE OF TECHNOLOGY JUL 3 1 2002 LIBRARIES 2 Quantum Error Modelling and Correction in Long Distance Teleportation using Singlet States by Joe Aung Submitted to the Department of Electrical Engineering and Computer Science on May 21, 2002, in partial fulfillment of the requirements for the degree of Master of Science in Electrical Engineering and Computer Science Abstract Under a multidisciplinary university research initiative (MURI) program, researchers at the Massachusetts Institute of Technology (MIT) and Northwestern University (NU) are devel- oping a long-distance, high-fidelity quantum teleportation system. This system uses a novel ultrabright source of entangled photon pairs and trapped-atom quantum memories. This thesis will investigate the potential teleportation errors involved in the MIT/NU system. A single-photon, Bell-diagonal error model is developed that allows us to restrict possible errors to just four distinct events. The effects of these errors on teleportation, as well as their probabilities of occurrence, are determined. -
Bidirectional Quantum Controlled Teleportation by Using Five-Qubit Entangled State As a Quantum Channel
Bidirectional Quantum Controlled Teleportation by Using Five-qubit Entangled State as a Quantum Channel Moein Sarvaghad-Moghaddam1,*, Ahmed Farouk2, Hussein Abulkasim3 to each other simultaneously. Unfortunately, the proposed Abstract— In this paper, a novel protocol is proposed for protocol required additional quantum and classical resources so implementing BQCT by using five-qubit entangled states as a that the users required two-qubit measurements and applying quantum channel which in the same time, the communicated users global unitary operations. There are many approaches and can teleport each one-qubit state to each other under permission prototypes for the exploitation of quantum principles to secure of controller. The proposed protocol depends on the Controlled- the communication between two parties and multi-parties [18, NOT operation, proper single-qubit unitary operations and single- 19, 20, 21, 22]. While these approaches used different qubit measurement in the Z-basis and X-basis. The results showed that the protocol is more efficient from the perspective such as techniques for achieving a private communication among lower shared qubits and, single qubit measurements compared to authorized users, but most of them depend on the generation of the previous work. Furthermore, the probability of obtaining secret random keys [23, 2]. In this paper, a novel protocol is Charlie’s qubit by eavesdropper is reduced, and supervisor can proposed for implementing BQCT by using five-qubit control one of the users or every two users. Also, we present a new entanglement state as a quantum channel. In this protocol, users method for transmitting n and m-qubits entangled states between may transmit an unknown one-qubit quantum state to each other Alice and Bob using proposed protocol. -
7 Plasmonics
7 Plasmonics Highlights of this chapter: In this chapter we introduce the concept of surface plasmon polaritons (SPP). We discuss various types of SPP and explain excitation methods. Finally, di®erent recent research topics and applications related to SPP are introduced. 7.1 Introduction Long before scientists have started to investigate the optical properties of metal nanostructures, they have been used by artists to generate brilliant colors in glass artefacts and artwork, where the inclusion of gold nanoparticles of di®erent size into the glass creates a multitude of colors. Famous examples are the Lycurgus cup (Roman empire, 4th century AD), which has a green color when observing in reflecting light, while it shines in red in transmitting light conditions, and church window glasses. Figure 172: Left: Lycurgus cup, right: color windows made by Marc Chagall, St. Stephans Church in Mainz Today, the electromagnetic properties of metal{dielectric interfaces undergo a steadily increasing interest in science, dating back in the works of Gustav Mie (1908) and Rufus Ritchie (1957) on small metal particles and flat surfaces. This is further moti- vated by the development of improved nano-fabrication techniques, such as electron beam lithographie or ion beam milling, and by modern characterization techniques, such as near ¯eld microscopy. Todays applications of surface plasmonics include the utilization of metal nanostructures used as nano-antennas for optical probes in biology and chemistry, the implementation of sub-wavelength waveguides, or the development of e±cient solar cells. 208 7.2 Electro-magnetics in metals and on metal surfaces 7.2.1 Basics The interaction of metals with electro-magnetic ¯elds can be completely described within the frame of classical Maxwell equations: r ¢ D = ½ (316) r ¢ B = 0 (317) r £ E = ¡@B=@t (318) r £ H = J + @D=@t; (319) which connects the macroscopic ¯elds (dielectric displacement D, electric ¯eld E, magnetic ¯eld H and magnetic induction B) with an external charge density ½ and current density J. -
Arxiv:2009.07590V2 [Quant-Ph] 9 Dec 2020
Emulating quantum teleportation of a Majorana zero mode qubit He-Liang Huang,1, 2, 3 Marek Naro˙zniak,4, 5 Futian Liang,1, 2, 3 Youwei Zhao,1, 2, 3 Anthony D. Castellano,1, 2, 3 Ming Gong,1, 2, 3 Yulin Wu,1, 2, 3 Shiyu Wang,1, 2, 3 Jin Lin,1, 2, 3 Yu Xu,1, 2, 3 Hui Deng,1, 2, 3 Hao Rong,1, 2, 3 6, 7, 8 1, 2, 3 4, 8, 9, 5 1, 2, 3, 1, 2, 3 Jonathan P. Dowling ∗, Cheng-Zhi Peng, Tim Byrnes, Xiaobo Zhu, † and Jian-Wei Pan 1Hefei National Laboratory for Physical Sciences at the Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China 2Shanghai Branch, CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Shanghai 201315, China 3Shanghai Research Center for Quantum Sciences, Shanghai 201315, China 4New York University Shanghai, 1555 Century Ave, Pudong, Shanghai 200122, China 5Department of Physics, New York University, New York, NY 10003, USA 6Hearne Institute for Theoretical Physics, Department of Physics and Astronomy, Louisiana State University, Baton Rouge, Louisiana 70803, USA 7Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, China 8NYU-ECNU Institute of Physics at NYU Shanghai, 3663 Zhongshan Road North, Shanghai 200062, China 9State Key Laboratory of Precision Spectroscopy, School of Physical and Material Sciences, East China Normal University, Shanghai 200062, China (Dated: December 10, 2020) Topological quantum computation based on anyons is a promising approach to achieve fault- tolerant quantum computing. -
Plasmon‑Polaron Coupling in Conjugated Polymers on Infrared Metamaterials
This document is downloaded from DR‑NTU (https://dr.ntu.edu.sg) Nanyang Technological University, Singapore. Plasmon‑polaron coupling in conjugated polymers on infrared metamaterials Wang, Zilong 2015 Wang, Z. (2015). Plasmon‑polaron coupling in conjugated polymers on infrared metamaterials. Doctoral thesis, Nanyang Technological University, Singapore. https://hdl.handle.net/10356/65636 https://doi.org/10.32657/10356/65636 Downloaded on 04 Oct 2021 22:08:13 SGT PLASMON-POLARON COUPLING IN CONJUGATED POLYMERS ON INFRARED METAMATERIALS WANG ZILONG SCHOOL OF PHYSICAL & MATHEMATICAL SCIENCES 2015 Plasmon-Polaron Coupling in Conjugated Polymers on Infrared Metamaterials WANG ZILONG WANG WANG ZILONG School of Physical and Mathematical Sciences A thesis submitted to the Nanyang Technological University in partial fulfilment of the requirement for the degree of Doctor of Philosophy 2015 Acknowledgements First of all, I would like to express my deepest appreciation and gratitude to my supervisor, Asst. Prof. Cesare Soci, for his support, help, guidance and patience for my research work. His passion for sciences, motivation for research and knowledge of Physics always encourage me keep learning and perusing new knowledge. As one of his first batch of graduate students, I am always thankful to have the opportunity to join with him establishing the optical spectroscopy lab and setting up experiment procedures, through which I have gained invaluable and unique experiences comparing with many other students. My special thanks to our collaborators, Professor Dr. Harald Giessen and Dr. Jun Zhao, Ms. Bettina Frank from the University of Stuttgart, Germany. Without their supports, the major idea of this thesis cannot be experimentally realized. -
Quasiparticle Scattering, Lifetimes, and Spectra Using the GW Approximation
Quasiparticle scattering, lifetimes, and spectra using the GW approximation by Derek Wayne Vigil-Fowler A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Physics in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Steven G. Louie, Chair Professor Feng Wang Professor Mark D. Asta Summer 2015 Quasiparticle scattering, lifetimes, and spectra using the GW approximation c 2015 by Derek Wayne Vigil-Fowler 1 Abstract Quasiparticle scattering, lifetimes, and spectra using the GW approximation by Derek Wayne Vigil-Fowler Doctor of Philosophy in Physics University of California, Berkeley Professor Steven G. Louie, Chair Computer simulations are an increasingly important pillar of science, along with exper- iment and traditional pencil and paper theoretical work. Indeed, the development of the needed approximations and methods needed to accurately calculate the properties of the range of materials from molecules to nanostructures to bulk materials has been a great tri- umph of the last 50 years and has led to an increased role for computation in science. The need for quantitatively accurate predictions of material properties has never been greater, as technology such as computer chips and photovoltaics require rapid advancement in the control and understanding of the materials that underly these devices. As more accuracy is needed to adequately characterize, e.g. the energy conversion processes, in these materials, improvements on old approximations continually need to be made. Additionally, in order to be able to perform calculations on bigger and more complex systems, algorithmic devel- opment needs to be carried out so that newer, bigger computers can be maximally utilized to move science forward. -
Quantum Technology: Advances and Trends
American Journal of Engineering and Applied Sciences Review Quantum Technology: Advances and Trends 1Lidong Wang and 2Cheryl Ann Alexander 1Institute for Systems Engineering Research, Mississippi State University, Vicksburg, Mississippi, USA 2Institute for IT innovation and Smart Health, Vicksburg, Mississippi, USA Article history Abstract: Quantum science and quantum technology have become Received: 30-03-2020 significant areas that have the potential to bring up revolutions in various Revised: 23-04-2020 branches or applications including aeronautics and astronautics, military Accepted: 13-05-2020 and defense, meteorology, brain science, healthcare, advanced manufacturing, cybersecurity, artificial intelligence, etc. In this study, we Corresponding Author: Cheryl Ann Alexander present the advances and trends of quantum technology. Specifically, the Institute for IT innovation and advances and trends cover quantum computers and Quantum Processing Smart Health, Vicksburg, Units (QPUs), quantum computation and quantum machine learning, Mississippi, USA quantum network, Quantum Key Distribution (QKD), quantum Email: [email protected] teleportation and quantum satellites, quantum measurement and quantum sensing, and post-quantum blockchain and quantum blockchain. Some challenges are also introduced. Keywords: Quantum Computer, Quantum Machine Learning, Quantum Network, Quantum Key Distribution, Quantum Teleportation, Quantum Satellite, Quantum Blockchain Introduction information and the computation that is executed throughout a transaction (Humble, 2018). The Tokyo QKD metropolitan area network was There have been advances in developing quantum established in Japan in 2015 through intercontinental equipment, which has been indicated by the number of cooperation. A 650 km QKD network was established successful QKD demonstrations. However, many problems between Washington and Ohio in the USA in 2016; a still need to be fixed though achievements of QKD have plan of a 10000 km QKD backbone network was been showcased. -
The Higgs Particle in Condensed Matter
The Higgs particle in condensed matter Assa Auerbach, Technion N. H. Lindner and A. A, Phys. Rev. B 81, 054512 (2010) D. Podolsky, A. A, and D. P. Arovas, Phys. Rev. B 84, 174522 (2011)S. Gazit, D. Podolsky, A.A, Phys. Rev. Lett. 110, 140401 (2013); S. Gazit, D. Podolsky, A.A., D. Arovas, Phys. Rev. Lett. 117, (2016). D. Sherman et. al., Nature Physics (2015) S. Poran, et al., Nature Comm. (2017) Outline _ Brief history of the Anderson-Higgs mechanism _ The vacuum is a condensate _ Emergent relativity in condensed matter _ Is the Higgs mode overdamped in d=2? _ Higgs near quantum criticality Experimental detection: Charge density waves Cold atoms in an optical lattice Quantum Antiferromagnets Superconducting films 1955: T.D. Lee and C.N. Yang - massless gauge bosons 1960-61 Nambu, Goldstone: massless bosons in spontaneously broken symmetry Where are the massless particles? 1962 1963 The vacuum is not empty: it is stiff. like a metal or a charged Bose condensate! Rewind t 1911 Kamerlingh Onnes Discovery of Superconductivity 1911 R Lord Kelvin Mathiessen R=0 ! mercury Tc = 4.2K T Meissner Effect, 1933 Metal Superconductor persistent currents Phil Anderson Meissner effect -> 1. Wave fncton rigidit 2. Photns get massive Symmetry breaking in O(N) theory N−component real scalar field : “Mexican hat” potential : Spontaneous symmetry breaking ORDERED GROUND STATE Dan Arovas, Princeton 1981 N-1 Goldstone modes (spin waves) 1 Higgs (amplitude) mode Relativistic Dynamics in Lattice bosons Bose Hubbard Model Large t/U : system is a superfluid, (Bose condensate). Small t/U : system is a Mott insulator, (gap for charge fluctuations). -
My Life As a Boson: the Story of "The Higgs"
International Journal of Modern Physics A Vol. 17, Suppl. (2002) 86-88 © World Scientific Publishing Company MY LIFE AS A BOSON: THE STORY OF "THE HIGGS" PETER HIGGS Department of Physics and Astronomy University of Edinburgh, Scotland The story begins in 1960, when Nambu, inspired by the BCS theory of superconductivity, formulated chirally invariant relativistic models of inter acting massless fermions in which spontaneous symmetry breaking generates fermionic masses (the analogue of the BCS gap). Around the same time Jeffrey Goldstone discussed spontaneous symmetry breaking in models con taining elementary scalar fields (as in Ginzburg-Landau theory). I became interested in the problem of how to avoid a feature of both kinds of model, which seemed to preclude their relevance to the real world, namely the exis tence in the spectrum of massless spin-zero bosons (Goldstone bosons). By 1962 this feature of relativistic field theories had become the subject of the Goldstone theorem. In 1963 Philip Anderson pointed out that in a superconductor the elec tromagnetic interaction of the Goldstone mode turns it into a "plasmon". He conjectured that in relativistic models "the Goldstone zero-mass difficulty is not a serious one, because one can probably cancel it off against an equal Yang-Mills zero-mass problem." However, since he did not discuss how the theorem could fail or give an explicit counter example, his contribution had by Dr. Horst Wahl on 08/28/12. For personal use only. little impact on particle theorists. If was not until July 1964 that, follow ing a disagreement in the pages of Physics Review Letters between, on the one hand, Abraham Klein and Ben Lee and, on the other, Walter Gilbert Int. -
Deterministic Quantum Teleportation Received 18 February; Accepted 26 April 2004; Doi:10.1038/Nature02600
letters to nature Mars concretion systems. Although the analogue is not a perfect 24. Hoffman, N. White Mars: A new model for Mars’ surface and atmosphere based on CO2. Icarus 146, match in every geologic parameter, the mere presence of these 326–342 (2000). 25. Ferna´ndez-Remolar, D. et al. The Tinto River, an extreme acidic environment under control of iron, as spherical haematite concretions implies significant pore volumes of an analog of the Terra Meridiani hematite site of Mars. Planet. Space Sci. 53, 239–248 (2004). moving subsurface fluids through porous rock. Haematite is one of the few minerals found on Mars that can be Acknowledgements We thank the donors of the American Chemical Society Petroleum Research linked directly to water-related processes. Utah haematite concre- Fund, and the Bureau of Land Management-Grand Staircase Escalante National Monument for partial support of this research (to M.A.C. and W.T.P.). The work by J.O. was supported by the tions are similar to the Mars concretions with spherical mor- Spanish Ministry for Science and Technology and the Ramon y Cajal Program. The work by G.K. phology, haematite composition, and loose, weathered was supported by funding from the Italian Space Agency. accumulations. The abundance of quartz in the Utah example could pose challenges for finding spectral matches to the concre- Competing interests statement The authors declare that they have no competing financial tions. However, the similarities and differences of the Utah and interests. Mars haematite concretions should stimulate further investigations. Correspondence and requests for materials should be addressed to M.A.C.