Plasmon Lasers
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Nanowire-Based Light-Emitting Diodes: a New Path Towards High-Speed Visible Light Communication." (2017)
University of New Mexico UNM Digital Repository Physics & Astronomy ETDs Electronic Theses and Dissertations Fall 9-30-2017 NANOWIRE-BASED LIGHT-EMITTING DIODES: A NEW PATH TOWARDS HIGH- SPEED VISIBLE LIGHT COMMUNICATION Mohsen Nami University of New Mexico Follow this and additional works at: https://digitalrepository.unm.edu/phyc_etds Part of the Astrophysics and Astronomy Commons, Electromagnetics and Photonics Commons, Nanoscience and Nanotechnology Commons, Nanotechnology Fabrication Commons, Physics Commons, and the Semiconductor and Optical Materials Commons Recommended Citation Nami, Mohsen. "NANOWIRE-BASED LIGHT-EMITTING DIODES: A NEW PATH TOWARDS HIGH-SPEED VISIBLE LIGHT COMMUNICATION." (2017). https://digitalrepository.unm.edu/phyc_etds/168 This Dissertation is brought to you for free and open access by the Electronic Theses and Dissertations at UNM Digital Repository. It has been accepted for inclusion in Physics & Astronomy ETDs by an authorized administrator of UNM Digital Repository. For more information, please contact [email protected]. Mohsen Nami Candidate Physics and Astronomy Department This dissertation is approved, and it is acceptable in quality and form for publication: Approved by the Dissertation Committee: Professor: Daniel. F. Feezell, Chairperson Professor: Steven. R. J. Brueck Professor: Igal Brener Professor: Sang. M. Han i NANOWIRE-BASED LIGHT-EMITTING DIODES: A NEW PATH TOWARDS HIGH-SPEED VISIBLE LIGHT COMMUNICATION by MOHSEN NAMI B.S., Physics, University of Zanjan, Zanjan, Iran, 2003 M. Sc., Photonics, Shahid Beheshti University, Tehran, Iran, 2006 M.S., Optical Science Engineering, University of New Mexico, Albuquerque, USA, 2012 DISSERTATION Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Engineering The University of New Mexico Albuquerque, New Mexico December, 2017 ii ©2017, Mohsen Nami iii Dedication To my parents, my wife, and my daughter for their endless love, support, and encouragement. -
Plasmonic Colloidal Nanoparticles with Open Eccentric Cavities Via Acid-Induced Chemical Transformation
View metadata, citation and similar papers at core.ac.uk brought to you by CORE NPG Asia Materials (2015) 7, e167; doi:10.1038/am.2015.15 OPEN & 2015 Nature Publishing Group All rights reserved 1884-4057/15 www.nature.com/am ORIGINAL ARTICLE Plasmonic colloidal nanoparticles with open eccentric cavities via acid-induced chemical transformation Won Joon Cho1,5, Alum Jung2,5, Suenghoon Han2, Sung-Min Lee3, Taewook Kang4, Kun-Hong Lee2, Kyung Cheol Choi3 and Jin Kon Kim1 Surface-enhanced Raman spectroscopy (SERS) has been considered a promising technique for the detection of trace molecules in biomedicine and environmental monitoring. The ideal metal nanoparticles for SERS must not only fulfill important requirements such as high near-field enhancement and a tunable far-field response but also overcome the diffusion limitation at extremely lower concentrations of a target material. Here, we introduce a novel method to produce gold nanoparticles with open eccentric cavities by selectively adapting the structure of non-plasmonic nanoparticles via acid-mediated surface replacement. Copper oxide nanoparticles with open eccentric cavities are first prepared using a microwave-irradiation-assisted surfactant-free hydrothermal reaction and are then transformed into gold nanoparticles by an acidic gold precursor while maintaining their original structure. Because of the strong near-field enhancement occurring at the mouth of the open cavities and the very rough surfaces resulting from the uniformly covered hyperbranched sharp multi-tips and the free access of SERS molecules inside of the nanoparticles without diffusion limitation, adenine, one of the four bases in DNA, in an extremely diluted aqueous solution (1.0 pM) was successfully detected with excellent reproducibility upon laser excitation with a 785-nm wavelength. -
SPASER As a Complex System: Femtosecond Dynamics Traced by Ab-Initio Simulations
SPASER as a complex system: femtosecond dynamics traced by ab-initio simulations Item Type Conference Paper Authors Gongora, J. S. Totero; Miroshnichenko, Andrey E.; Kivshar, Yuri S.; Fratalocchi, Andrea Citation Juan Sebastian Totero Gongora ; Andrey E. Miroshnichenko ; Yuri S. Kivshar and Andrea Fratalocchi " SPASER as a complex system: femtosecond dynamics traced by ab-initio simulations ", Proc. SPIE 9746, Ultrafast Phenomena and Nanophotonics XX, 974618 (March 14, 2016); doi:10.1117/12.2212967; http:// dx.doi.org/10.1117/12.2212967 Eprint version Publisher's Version/PDF DOI 10.1117/12.2212967 Publisher SPIE-Intl Soc Optical Eng Journal Ultrafast Phenomena and Nanophotonics XX Rights Copyright 2016 Society of Photo Optical Instrumentation Engineers. One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper are prohibited. Download date 27/09/2021 00:14:10 Link to Item http://hdl.handle.net/10754/619757 SPASER as a complex system: femtosecond dynamics traced by ab-initio simulations Juan Sebastian Totero Gongoraa, Andrey E. Miroshnichenkob, Yuri S. Kivsharb, and Andrea Fratalocchia aPRIMALIGHT, King Abdullah University of Science and Technology (KAUST),Thuwal 23955-6900, Saudi Arabia bNonlinear Physics Centre, Australian National University, Canberra ACT 2601, Australia. ABSTRACT Integrating coherent light sources at the nanoscale with spasers is one of the most promising applications of plasmonics. A spaser is a nano-plasmonic counterpart of a laser, with photons replaced by surface plasmon polaritons and the resonant cavity replaced by a nanoparticle supporting localized plasmonic modes. -
Nanolaser Arrays
Nanophotonics 2021; 10(1): 149–169 Review Suruj S. Deka*, Sizhu Jiang, Si Hui Pan and Yeshaiahu Fainman Nanolaser arrays: toward application-driven dense integration https://doi.org/10.1515/nanoph-2020-0372 1 Introduction Received July 4, 2020; accepted September 8, 2020; published online September 29, 2020 In the quest for attaining Moore’s law-type scaling for Abstract: The past two decades have seen widespread photonics, miniaturization of components for dense efforts being directed toward the development of nano- integration is imperative [1]. One of these essential scale lasers. A plethora of studies on single such emitters nanophotonic components for future photonic inte- have helped demonstrate their advantageous character- grated circuits (PICs) is a chip-scale light source. To istics such as ultrasmall footprints, low power consump- this end, the better part of the past two decades has tion, and room-temperature operation. Leveraging seen the development of nanoscale lasers that offer knowledge about single nanolasers, the next phase of salient advantages for dense integration such as ultra- nanolaser technology will be geared toward scaling up compact footprints, low thresholds, and room- design to form arrays for important applications. In this temperature operation [2–4]. These nanolasers have review, we discuss recent progress on the development of been demonstrated based on a myriad of cavity designs such array architectures of nanolasers. We focus on and physical mechanisms some of which include pho- valuable attributes and phenomena realized due to tonic crystal nanolasers [5–8], metallo-dielectric nano- unique array designs that may help enable real-world, lasers [9–15], coaxial-metal nanolasers [16, 17], and practical applications. -
Title All-Dielectric Nanolaser with Subnanometer Field Confinement
FRONT MATTER Title All-Dielectric Nanolaser with Subnanometer Field Confinement Authors Hao Wu,1 Peizhen Xu,1 Xin Guo,1* Pan Wang,1 Limin Tong1,2* Affiliations 1 Interdisciplinary Center for Quantum Information, State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China. 2 Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China. *[email protected]; [email protected]. Abstract The ability to generate a laser field with ultratight spatial confinement is important for pushing the limit of optical science and technology. Although plasmon lasers can offer sub-diffraction-confined laser fields, it is restricted by a trade-off between optical confinement and loss of free-electron oscillation in metals. We show here an all-dielectric nanolaser that can circumvent the confinement- loss trade-off, and offer a field confinement down to subnanometer level. The ultra-confined lasing field, supported by low-loss oscillation of polarized bound electrons surrounding a 1-nm-width slit in a coupled CdS nanowire pair, is manifested as the dominant peak of a TE0-like lasing mode around 520-nm wavelength, with a field confinement down to 0.23 nm and a peak-to-background ratio of ~32.7 dB. This laser may pave a way towards new regions for nanolasers and light-matter interaction. MAIN TEXT Introduction Lasers with tighter field confinement is a key to lower-dimensional light-matter interaction for applications ranging from optical microscopy, sensing, photolithography to information technology (1–3). Since the early age of laser technology, pursuing tighter field confinement in a lasing cavity mode has been a continuous effort. -
Nanowire Lasers
Nanophotonics 2015; 4:90–107 Review Article Open Access C. Couteau, A. Larrue, C. Wilhelm, and C. Soci Nanowire Lasers DOI 10.1515/nanoph-2015-0005 Received September 19, 2014; accepted March 24, 2015 1 Introduction Abstract: We review principles and trends in the use of Nowadays, lasers are ubiquitous in science and technol- semiconductor nanowires as gain media for stimulated ogy as well as in everyday life: They are vital for com- emission and lasing. Semiconductor nanowires have re- munication, sensing, and metrology and are widely used cently been widely studied for use in integrated opto- for biological imaging, local surgery, metal welding, con- electronic devices, such as light-emitting diodes (LEDs), sumer electronics, and so on. The success and widespread solar cells, and transistors. Intensive research has also application of semiconductor lasers are mainly because been conducted in the use of nanowires for subwave- they are much smaller, consume less power, and are far length laser systems that take advantage of their quasi- cheaper than any other kind of laser. Further applica- one-dimensional (1D) nature, flexibility in material choice tions and consequent benefits for the society are expected and combination, and intrinsic optoelectronic properties. from a new generation of even smaller, cheaper, and more First, we provide an overview on using quasi-1D nanowire energy-efficient devices. Nanolasers have emerged asa systems to realize subwavelength lasers with efficient, di- new class of miniaturized semiconductor lasers that are rectional, and low-threshold emission. We then describe potentially cost-effective and easier to integrate. They con- the state of the art for nanowire lasers in terms of materi- sist of submicron-sized "wires" typically formed of metal als, geometry, and wavelength tunability. -
Recent Advances in Vertically Aligned Nanowires for Photonics Applications
micromachines Review Recent Advances in Vertically Aligned Nanowires for Photonics Applications Sehui Chang, Gil Ju Lee and Young Min Song * School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Korea; [email protected] (S.C.); [email protected] (G.J.L.) * Correspondence: [email protected]; Tel.: +82-62-715-2655 Received: 29 June 2020; Accepted: 25 July 2020; Published: 26 July 2020 Abstract: Over the past few decades, nanowires have arisen as a centerpiece in various fields of application from electronics to photonics, and, recently, even in bio-devices. Vertically aligned nanowires are a particularly decent example of commercially manufacturable nanostructures with regard to its packing fraction and matured fabrication techniques, which is promising for mass-production and low fabrication cost. Here, we track recent advances in vertically aligned nanowires focused in the area of photonics applications. Begin with the core optical properties in nanowires, this review mainly highlights the photonics applications such as light-emitting diodes, lasers, spectral filters, structural coloration and artificial retina using vertically aligned nanowires with the essential fabrication methods based on top-down and bottom-up approaches. Finally, the remaining challenges will be briefly discussed to provide future directions. Keywords: nanowires; photonics; LED; nanowire laser; spectral filter; coloration; artificial retina 1. Introduction In recent years, nanowires originated from a wide variety of materials have arisen as a centerpiece for optoelectronic applications such as sensors, solar cells, optical filters, displays, light-emitting diodes and photodetectors [1–12]. Tractable but outstanding, optical features of nanowire arrays achieved by modulating its physical properties (e.g., diameter, height and pitch) allow to confine and absorb the incident light considerably, albeit its compact configuration. -
Two-Plasmon Spontaneous Emission from a Nonlocal Epsilon-Near-Zero Material ✉ ✉ Futai Hu1, Liu Li1, Yuan Liu1, Yuan Meng 1, Mali Gong1,2 & Yuanmu Yang1
ARTICLE https://doi.org/10.1038/s42005-021-00586-4 OPEN Two-plasmon spontaneous emission from a nonlocal epsilon-near-zero material ✉ ✉ Futai Hu1, Liu Li1, Yuan Liu1, Yuan Meng 1, Mali Gong1,2 & Yuanmu Yang1 Plasmonic cavities can provide deep subwavelength light confinement, opening up new avenues for enhancing the spontaneous emission process towards both classical and quantum optical applications. Conventionally, light cannot be directly emitted from the plasmonic metal itself. Here, we explore the large field confinement and slow-light effect near the epsilon-near-zero (ENZ) frequency of the light-emitting material itself, to greatly enhance the “forbidden” two-plasmon spontaneous emission (2PSE) process. Using degenerately- 1234567890():,; doped InSb as the plasmonic material and emitter simultaneously, we theoretically show that the 2PSE lifetime can be reduced from tens of milliseconds to several nanoseconds, com- parable to the one-photon emission rate. Furthermore, we show that the optical nonlocality may largely govern the optical response of the ultrathin ENZ film. Efficient 2PSE from a doped semiconductor film may provide a pathway towards on-chip entangled light sources, with an emission wavelength and bandwidth widely tunable in the mid-infrared. 1 State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing, China. ✉ 2 State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing, China. email: [email protected]; [email protected] COMMUNICATIONS PHYSICS | (2021) 4:84 | https://doi.org/10.1038/s42005-021-00586-4 | www.nature.com/commsphys 1 ARTICLE COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-021-00586-4 lasmonics is a burgeoning field of research that exploits the correction of TPE near graphene using the zero-temperature Plight-matter interaction in metallic nanostructures1,2. -
Impact of Fundamental Temperature Fluctuations on the Frequency Stability of Metallo- Dielectric Nanolasers Sizhu Jiang ,Sihuipan , Suruj S
IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. 55, NO. 5, OCTOBER 2019 2000910 Impact of Fundamental Temperature Fluctuations on the Frequency Stability of Metallo- Dielectric Nanolasers Sizhu Jiang ,SiHuiPan , Suruj S. Deka, Cheng-Yi Fang ,ZijunChen, Yeshaiahu Fainman, Fellow, IEEE, and Abdelkrim El Amili Abstract— The capability of nanolasers to generate coherent I. INTRODUCTION light in small volume resonators has made them attractive to be implemented in future ultra-compact photonic integrated circuits. HE miniaturization of optical resonators has established However, compared to conventional lasers, nanolasers are also Tnanolasers as promising coherent light source candidates known for their broader spectral linewidths, that are usually for future integrated nanophotonics with wide applications on the order of 1 nm. While it is well known that the broad in bio-sensing [1]–[3], imaging [4]–[6], far-field beam syn- linewidths in light emitters originate from various noise sources, thesis [7] and optical interconnects [8]. The ultra-compact there has been no rigorous study on evaluating the origins of the linewidth broadening for nanolasers to date to the best of mode volume of nanolasers also enables them to exploit our knowledge. In this manuscript, we investigate the impact the cavity quantum electrodynamics (QED) effect [9]–[12]. of fundamental thermal fluctuations on the nanolaser linewidth. In these nanocavities, conspicuous Purcell enhancement helps We show that such thermal fluctuations are one of the intrinsic to dramatically increase the modulation speed and lower noise sources in a sub-wavelength metal-clad nanolaser inducing the power consumption for optical communication systems. significant linewidth broadening. We further show that with the reduction of the nanolaser’s dimensions, i.e., mode volume, However, shrinking the dimension of a nanolaser can also be and the increase of the ambient temperature, such linewidth detrimental to its performance. -
7 Plasmonics
7 Plasmonics Highlights of this chapter: In this chapter we introduce the concept of surface plasmon polaritons (SPP). We discuss various types of SPP and explain excitation methods. Finally, di®erent recent research topics and applications related to SPP are introduced. 7.1 Introduction Long before scientists have started to investigate the optical properties of metal nanostructures, they have been used by artists to generate brilliant colors in glass artefacts and artwork, where the inclusion of gold nanoparticles of di®erent size into the glass creates a multitude of colors. Famous examples are the Lycurgus cup (Roman empire, 4th century AD), which has a green color when observing in reflecting light, while it shines in red in transmitting light conditions, and church window glasses. Figure 172: Left: Lycurgus cup, right: color windows made by Marc Chagall, St. Stephans Church in Mainz Today, the electromagnetic properties of metal{dielectric interfaces undergo a steadily increasing interest in science, dating back in the works of Gustav Mie (1908) and Rufus Ritchie (1957) on small metal particles and flat surfaces. This is further moti- vated by the development of improved nano-fabrication techniques, such as electron beam lithographie or ion beam milling, and by modern characterization techniques, such as near ¯eld microscopy. Todays applications of surface plasmonics include the utilization of metal nanostructures used as nano-antennas for optical probes in biology and chemistry, the implementation of sub-wavelength waveguides, or the development of e±cient solar cells. 208 7.2 Electro-magnetics in metals and on metal surfaces 7.2.1 Basics The interaction of metals with electro-magnetic ¯elds can be completely described within the frame of classical Maxwell equations: r ¢ D = ½ (316) r ¢ B = 0 (317) r £ E = ¡@B=@t (318) r £ H = J + @D=@t; (319) which connects the macroscopic ¯elds (dielectric displacement D, electric ¯eld E, magnetic ¯eld H and magnetic induction B) with an external charge density ½ and current density J. -
Plasmon‑Polaron Coupling in Conjugated Polymers on Infrared Metamaterials
This document is downloaded from DR‑NTU (https://dr.ntu.edu.sg) Nanyang Technological University, Singapore. Plasmon‑polaron coupling in conjugated polymers on infrared metamaterials Wang, Zilong 2015 Wang, Z. (2015). Plasmon‑polaron coupling in conjugated polymers on infrared metamaterials. Doctoral thesis, Nanyang Technological University, Singapore. https://hdl.handle.net/10356/65636 https://doi.org/10.32657/10356/65636 Downloaded on 04 Oct 2021 22:08:13 SGT PLASMON-POLARON COUPLING IN CONJUGATED POLYMERS ON INFRARED METAMATERIALS WANG ZILONG SCHOOL OF PHYSICAL & MATHEMATICAL SCIENCES 2015 Plasmon-Polaron Coupling in Conjugated Polymers on Infrared Metamaterials WANG ZILONG WANG WANG ZILONG School of Physical and Mathematical Sciences A thesis submitted to the Nanyang Technological University in partial fulfilment of the requirement for the degree of Doctor of Philosophy 2015 Acknowledgements First of all, I would like to express my deepest appreciation and gratitude to my supervisor, Asst. Prof. Cesare Soci, for his support, help, guidance and patience for my research work. His passion for sciences, motivation for research and knowledge of Physics always encourage me keep learning and perusing new knowledge. As one of his first batch of graduate students, I am always thankful to have the opportunity to join with him establishing the optical spectroscopy lab and setting up experiment procedures, through which I have gained invaluable and unique experiences comparing with many other students. My special thanks to our collaborators, Professor Dr. Harald Giessen and Dr. Jun Zhao, Ms. Bettina Frank from the University of Stuttgart, Germany. Without their supports, the major idea of this thesis cannot be experimentally realized. -
Photonic Crystal Nanolaser Biosensor Simplifies DNA Detection 13 January 2015
Photonic crystal nanolaser biosensor simplifies DNA detection 13 January 2015 laser emission intensity, which in turn can also be used to sense the adsorption of biomolecules. Using laser intensity to detect biomolecules is potentially less expensive than the fluorescent tagging or spectroscopy techniques typically used in biosensors because it is a simpler procedure. When the team first set out to explore photonic crystal nanolaser sensors, they weren't focusing on the intensity of the laser emission because it's sensitive to the quality of the fabricated laser and, frankly, they didn't expect it to show sensing signals. "In the beginning we focused on wavelength behavior, but quickly noticed that [the laser emission] intensity is influenced by both pH and polymers," noted Toshihiko Baba, a professor in Yokohama National University's Department of Electrical and Computer Engineering. "Our results were very reproducible and, interestingly, we found Top view of the group's nanolaser, in which the center that the behaviors of the wavelength and intensity narrow slot (horizontal line) is the main part of the are independent." sensor. The periodic holes form a photonic crystal, and although the size of the holes appears to fluctuate they've been intentionally modified so the laser's The team was surprised by these results, which emission is effectively extracted to the top. Credit: they discovered when they deposited a protective Toshihiko Baba/Yokohama National University film of thin zirconium dioxide (ZrO2) over the device using atomic layer deposition, and then tried sensing in liquids of high or low pH and liquids containing charged polymers.