Nanolaser Arrays

Total Page:16

File Type:pdf, Size:1020Kb

Nanolaser Arrays Nanophotonics 2021; 10(1): 149–169 Review Suruj S. Deka*, Sizhu Jiang, Si Hui Pan and Yeshaiahu Fainman Nanolaser arrays: toward application-driven dense integration https://doi.org/10.1515/nanoph-2020-0372 1 Introduction Received July 4, 2020; accepted September 8, 2020; published online September 29, 2020 In the quest for attaining Moore’s law-type scaling for Abstract: The past two decades have seen widespread photonics, miniaturization of components for dense efforts being directed toward the development of nano- integration is imperative [1]. One of these essential scale lasers. A plethora of studies on single such emitters nanophotonic components for future photonic inte- have helped demonstrate their advantageous character- grated circuits (PICs) is a chip-scale light source. To istics such as ultrasmall footprints, low power consump- this end, the better part of the past two decades has tion, and room-temperature operation. Leveraging seen the development of nanoscale lasers that offer knowledge about single nanolasers, the next phase of salient advantages for dense integration such as ultra- nanolaser technology will be geared toward scaling up compact footprints, low thresholds, and room- design to form arrays for important applications. In this temperature operation [2–4]. These nanolasers have review, we discuss recent progress on the development of been demonstrated based on a myriad of cavity designs such array architectures of nanolasers. We focus on and physical mechanisms some of which include pho- valuable attributes and phenomena realized due to tonic crystal nanolasers [5–8], metallo-dielectric nano- unique array designs that may help enable real-world, lasers [9–15], coaxial-metal nanolasers [16, 17], and practical applications. Arrays consisting of exactly two plasmonic lasers or spasers [18–22]. The applications of nanolasers are first introduced since they can serve as a such ultrasmall lasers are not just limited to on-chip building block toward comprehending the behavior of communications as their unique characteristics allow larger lattices. These larger-sized lattices can be distin- them to be used for biological sensing [7, 23, 24], super- guished depending on whether or not their constituent resolutionimaging[25,26],aswellasopticalin- elements are coupled to one another in some form. While terconnects [27]. uncoupled arrays are suitable for applications such as In most practical applications, however, a single imaging, biosensing, and even cryptography, coupling in nanolaser would never operate in isolation but rather in arrays allows control over many aspects of the emission tandem with multiple such devices. Doing so can enable behavior such as beam directionality, mode switching, novel applications that would otherwise be infeasible to and orbital angular momentum. We conclude by discus- achieve using an isolated laser. Therefore, the next logical sing some important future directions involving nano- step in the evolution of nanolaser technology is to realize laser arrays. large-scale, dense arrays of nanolasers by leveraging the Keywords: applications; arrays; coupling; dynamics; knowledge gained so far from the plethora of studies on integration; nanolasers. single such emitters. In this review, we focus on the progress made to- ward realizing nanolaser arrays. In Section 2, we elab- orate on the interaction between only two nanolaser devices. Such a dual nanolaser system can be consid- ered as a unit cell that can assist in understanding *Corresponding author: Suruj S. Deka, Department of Electrical and larger scale arrays. Section 3 discusses the distinct Computer Engineering, University of California at San Diego, La Jolla, types of arrays demonstrated thus far and the unique CA, 92093-0407, USA, E-mail: [email protected] applications they can help enable. Finally, we conclude Sizhu Jiang, Si Hui Pan and Yeshaiahu Fainman, Department of Electrical and Computer Engineering, University of California at San and present possible research directions yet to be Diego, La Jolla, CA, 92093-0407, USA explored on this front in Section 4. Open Access. © 2020 Suruj S. Deka et al., published by De Gruyter. This work is licensed under the Creative Commons Attribution 4.0 International License. 150 S.S. Deka et al.: Toward application-driven dense integration 2 Interaction between two resonators, represented by d in the schematic, is varied, while the modes supported by the system are recorded. The nanolasers authors first consider two extreme cases of when the cav- ities are spaced far apart (d = 90 nm) and when their Perusing the recent literature on array architectures of dielectric shields are in contact (d = 0 nm). For each case, nanolasers reveals that based on array size, most studies the electric field intensity is calculated, as portrayed in a can be segmented into two categories. If N is used to denote two-dimensional side and top cross section in Figure 1B. the number of individual elements (or nanolasers) in the When designed far apart, the TE011 modes supported by the array, the categories correspond to the cases of N = 2 and two equally sized nanocavities are independent and iden- N > 2. Prior to reviewing what occurs in larger arrays, it is tical (Figure 1B, left). This results from the metal between helpful to first consider an array of only two resonant the resonators damping any evanescent fields arising from nanocavities (i.e., N = 2). The primary reason for this is that the cavities, thus inhibiting coupling [35]. If d = 0 nm, a dual nanolaser system can be regarded as a type of unit however, the increased evanescent coupling between the cell or building block that can help explain the behaviors cavities leads to the formation of two new modes – the observed in larger lattices. Since lasers are inherently antibonding supermode (Figure 1B, middle) and the nonlinear systems, the interactions between them can bonding supermode (Figure 1B, right). The former exhibits produce rich and complex dynamics. The linewidth strong confinement of the electromagnetic field to the in- enhancement factor for semiconductor materials used in dividual gain media while the latter demonstrates an most gain media further complicates the physics involved electric field maximum in the central region between the [28]. In this scenario, limiting the number of nanolasers to two gains due to constructive interference. two simplifies the associated rate equations and can be a Furthermore, by varying d in discrete steps and stepping-stone toward understanding array behaviors. calculating the eigenmode wavelength (λ) and quality This section reviews a few aspects of the interesting physics factor (Q) of the cavity modes for each distance, the authors that can result from the interaction of two nanolasers. report a split in the two parameters as d is reduced (Figure 1C, top and middle). Since the cavities are purposed for lasing, the gain threshold, gth, of each mode is also 2.1 Creation of supermodes calculated (Figure 1C, bottom). Owing to a larger overlap with the dissipative metal, the bonding supermode expe- The coupling between two lasers can be introduced in riences a higher loss and is therefore less likely to lase as various near-field and far-field manners including evidenced by its higher threshold [35]. The creation of these evanescent coupling [29–37], leaky wave coupling [38], dissimilar supermodes due to evanescent coupling has and mutual injection [39]. Among them, evanescent also been reported in other material systems such as pho- coupling induced between two resonant cavities in close tonic crystals. Figure 1D depicts a schematic of two coupled proximity is the most common and feasible way to build photonic crystal nanolasers taken from the work of Hamel densely integrated nanolaser arrays and has already been et al. [36]. When pumped equally, their system supports extensively investigated in microscale cavities [29–34]. bonding and antibonding supermodes with the latter This type of coupling occurs when increased interaction becoming the dominant lasing mode at higher pump between the evanescent electromagnetic fields of the two powers (Figure 1E). Therefore, the formation of bonding individual resonators gives rise to a characteristic splitting and antibonding supermodes is one of the most basic of the observed modes in both frequency and loss [29, 32– phenomena to occur due to increased evanescent coupling 34]. The bifurcation is the consequence of the creation of between nanolasers. bonding and antibonding supermodes which are dissimi- It is important to note, however, that besides bonding lar in both their optical losses and frequency. and antibonding modes, various other types of superm- With advances in fabrication technology, the corre- odes can also be observed in coupled nanolaser systems. sponding higher precision has facilitated moving from the Parto et al. [40] demonstrate that depending on the size of microscale to the nanoscale. Consequentially, similar the metallic nanodisks used in their study, either ferro- coupling behavior has now been reported in coupled magnetic (FM) or antiferromagnetic (AF) coupling is nanolaser cavities. Deka et al. demonstrate such coupling exhibited between the constituent elements of the lattice. in a dual nanolaser system comprising two metallo- These FM and AF couplings arise due to the interaction dielectric nanocavities shown in the schematic in between the vectorial electromagnetic modes supported by Figure 1A [35]. In their design, the distance between
Recommended publications
  • Book of Abstracts
    Book of Abstracts 3 Foreword The 23 rd International Conference on Atomic Physics takes place in Ecole Polytechnique, a high level graduate school close to Paris. Following the tradition of ICAP, the conference presents an outstanding programme of invited VSHDNHUVFRYHULQJWKHPRVWUHFHQWVXEMHFWVLQWKH¿HOGRIDWRPLFSK\VLFVVXFKDV Ultracold gases and Bose Einstein condensates, Ultracold Fermi gases, Fundamental atomic tests and measurements, Precision measurements, atomic clocks and interferometers, Quantum information and simulations with atoms and ions, Quantum optics and cavity QED with atoms, Atoms and molecules in optical lattices, From two-body to many-body systems, Ultrafast phenomena and free electron lasers, Beyond atomic physics (biophysics, optomechanics...). The program includes 31 invited talks and 13 ‘hot topic’ talks. This book of abstracts gathers the contributions of these talks and of all posters, organized in three sessions. The proceedings of the conference will be published online in open access by the “European 3K\VLFDO-RXUQDO:HERI&RQIHUHQFHV´KWWSZZZHSMFRQIHUHQFHVRUJ On behalf of the committees, we would like to welcome you in Palaiseau, and to wish you an excit- ing conference. 4 Committees Programme committee Alain Aspect France Michèle Leduc France Hans Bachor Australia Maciej Lewenstein Spain Vanderlei Bagnato Brazil Anne L’Huillier Sweden Victor Balykin Russia Luis Orozco USA Rainer Blatt Austria Jian-Wei Pan China Denise Caldwell USA Hélène Perrin France Gordon Drake Canada Monika Ritsch-Marte Austria Wolfgang Ertmer Germany Sandro Stringari Italy Peter Hannaford Australia Regina de Vivie-Riedle Germany Philippe Grangier France Vladan Vuletic USA Massimo Inguscio Italy Ian Walmsley UK Hidetoshi Katori Japan Jun Ye USA Local organizing committee Philippe Grangier (co-chair) Institut d’Optique - CNRS Michèle Leduc (co-chair) ENS - CNRS Hélène Perrin (co-chair) U.
    [Show full text]
  • Title All-Dielectric Nanolaser with Subnanometer Field Confinement
    FRONT MATTER Title All-Dielectric Nanolaser with Subnanometer Field Confinement Authors Hao Wu,1 Peizhen Xu,1 Xin Guo,1* Pan Wang,1 Limin Tong1,2* Affiliations 1 Interdisciplinary Center for Quantum Information, State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China. 2 Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China. *[email protected]; [email protected]. Abstract The ability to generate a laser field with ultratight spatial confinement is important for pushing the limit of optical science and technology. Although plasmon lasers can offer sub-diffraction-confined laser fields, it is restricted by a trade-off between optical confinement and loss of free-electron oscillation in metals. We show here an all-dielectric nanolaser that can circumvent the confinement- loss trade-off, and offer a field confinement down to subnanometer level. The ultra-confined lasing field, supported by low-loss oscillation of polarized bound electrons surrounding a 1-nm-width slit in a coupled CdS nanowire pair, is manifested as the dominant peak of a TE0-like lasing mode around 520-nm wavelength, with a field confinement down to 0.23 nm and a peak-to-background ratio of ~32.7 dB. This laser may pave a way towards new regions for nanolasers and light-matter interaction. MAIN TEXT Introduction Lasers with tighter field confinement is a key to lower-dimensional light-matter interaction for applications ranging from optical microscopy, sensing, photolithography to information technology (1–3). Since the early age of laser technology, pursuing tighter field confinement in a lasing cavity mode has been a continuous effort.
    [Show full text]
  • Integrated Photonics on Thin-Film Lithium Niobate
    Integrated photonics on thin-film lithium niobate DI ZHU,1,* LINBO SHAO,1 MENGJIE YU,1 REBECCA CHENG,1 BORIS DESIATOV,1 C. J. XIN,1 YAOWEN HU,1 JEFFREY HOLZGRAFE,1 SOUMYA GHOSH,1 AMIRHASSAN SHAMS-ANSARI,1 ERIC PUMA,1 NEIL SINCLAIR,1,2 CHRISTIAN REIMER,3 MIAN ZHANG,3 AND MARKO LONČAR1,* 1John A. Paulson School of Engineering and Applied Sciences, Harvard University, 29 Oxford Street, Cambridge, Massachusetts 02138, USA 2Division of Physics, Mathematics and Astronomy, and Alliance for Quantum Technologies (AQT), California Institute of Technology, 1200 E. California Boulevard, Pasadena, CA 91125, USA 3HyperLight Corporation, 501 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA [email protected], [email protected] Lithium niobate (LN), an outstanding and versatile material, has influenced our daily life for decades: from enabling high-speed optical communications that form the backbone of the Internet to realizing radio-frequency filtering used in our cell phones. This half-century-old material is currently embracing a revolution in thin-film LN integrated photonics. The success of manufacturing wafer-scale, high-quality, thin films of LN on insulator (LNOI), accompanied with breakthroughs in nanofabrication techniques, have made high-performance integrated nanophotonic components possible. With rapid development in the past few years, some of these thin-film LN devices, such as optical modulators and nonlinear wavelength converters, have already outperformed their legacy counterparts realized in bulk LN crystals. Furthermore, the nanophotonic integration enabled ultra-low-loss resonators in LN, which unlocked many novel applications such as optical frequency combs and quantum transducers. In this Review, we cover—from basic principles to the state of the art—the diverse aspects of integrated thin- film LN photonics, including the materials, basic passive components, and various active devices based on electro-optics, all-optical nonlinearities, and acousto-optics.
    [Show full text]
  • Physics and Applications of Photonic Crystal Nanocavities
    PHYSICS AND APPLICATIONS OF PHOTONIC CRYSTAL NANOCAVITIES A DISSERTATION SUBMITTED TO THE DEPARTMENT OF APPLIED PHYSICS AND THE COMMITTEE ON GRADUATE STUDIES OF STANFORD UNIVERSITY IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY Hatice Altug December 2006 © Copyright by Hatice Altug 2007 All Rights Reserved 2 I certify that I have read this dissertation and that in my opinion it is fully adequate, in scope and quality, as dissertation for the degree of Doctor of Philosophy. __________________________________ (Jelena Vuckovic) Principal Advisor I certify that I have read this dissertation and that in my opinion it is fully adequate, in scope and quality, as dissertation for the degree of Doctor of Philosophy. __________________________________ (Martin M. Fejer) Academic Advisor I certify that I have read this dissertation and that in my opinion it is fully adequate, in scope and quality, as dissertation for the degree of Doctor of Philosophy. __________________________________ (Shanhui Fan) Academic Advisor Approved for the University Committee on Graduate Studies __________________________________ 3 ABSTRACT The capability to confine and manipulate photons at nanometer scales opens up unprecedented opportunities in classical and quantum information processing technologies, and also in life sciences. There have been various demonstrations of sub-micron light confinement, but yet the most critical issue ahead is the development of new device concepts and technologies that will reliably operate at such length scales. In this thesis, we present our efforts along this direction. The large aggregated bandwidths of the optical interconnects require memory and delay components to launch, buffer, and collect optical signals at the nodes.
    [Show full text]
  • Uncorrected Proof
    Polymer 44 (2003) 4389–4403 www.elsevier.com/locate/polymer Feature Article Recent developments in the formation, characterization, and simulation of micron and nano-scale droplets of amorphous polymer blends and semi-crystalline polymers Bobby G. Sumptera,*, Donald W. Noida, Michael D. Barnesb aComputer Science and Mathematics Division, Oak Ridge National Laboratory, P.O. Box 2008, One Bethel Valley Road, Oak Ridge, TN 37831, USA bChemical Science Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA Received 25 April 2003; received in revised form 13 May 2003; accepted 13 May 2003 Abstract Polymer micro- and nano-particles are fundamental to a number of modern technological applications, including polymer blends or alloys, biomaterials for drug delivery systems, electro-optic and luminescent devices, coatings, polymer powder impregnation of inorganic fibers in composites, and are also critical in polymer-supported heterogeneous catalysis. In this article, we review some of our recent progress in experimental and simulation methods for generating, characterizing, and modeling polymer micro- and nano-particles in a number of polymer and polymer blend systems. By using instrumentation developed for probing single fluorescent molecules in micron-sized liquid droplets, we have shown that polymer particles of nearly arbitrary size and composition can be made with a size dispersion that is ultimately limited by the chain length and number distribution within the droplets. Depending on the time scale for solvent evaporation—a tunable parameter in our experiments—phase separation of otherwise immiscible polymers can be avoided by confinement effects, producing homogeneous polymer blend micro- or nano-particles. These particles have tunable properties that can be controlled simply by adjusting the size of the particle, or the relative mass fractions of the polymer components in solution.
    [Show full text]
  • Generalized Bose-Einstein Condensation in Driven-Dissipative Quantum Gases
    Generalized Bose-Einstein Condensation in Driven-dissipative Quantum Gases Dissertation zur Erlangung des wissenschaftlichen Grades Doctor rerum naturalium vorgelegt von Daniel Christian Vorberg geboren am 21. Dezember 1987 in Dresden Institut für Theoretische Physik Fakultät Physik Technische Universität Dresden Max-Planck-Institut für Physik komplexer Systeme Dresden Eingereicht am 20. Oktober 2017 Verteidigt am 7. Februar 2018 Erster Gutachter: Prof. Dr. Roland Ketzmerick Zweiter Gutachter: Prof. Dr. Sebastian Diehl Dritter Gutachter: Dr. André Eckardt Für Kerstin, die mir Jakob schenkte. Abstract Bose-Einstein condensation is a collective quantum phenomenon where a macroscopic number of bosons occupies the lowest quantum state. For fixed temperature, bosons condense above a critical particle density. This phenomenon is a consequence of the Bose-Einstein distribution which dictates that excited states can host only a finite number of particles so that all remaining particles must form a condensate in the ground state. This reasoning applies to thermal equilibrium. We investigate the fate of Bose condensation in nonisolated systems of noninteracting Bose gases driven far away from equilibrium. An example of such a driven-dissipative scenario is a Floquet sys- tem coupled to a heat bath. In these time-periodically driven systems, the particles are distributed among the Floquet states, which are the solutions of the Schrödinger equation that are time pe- riodic up to a phase factor. The absence of the definition of a ground state in Floquet systems raises the question, whether Bose condensation survives far from equilibrium. We show that Bose condensation generalizes to an unambiguous selection of multiple states each acquiring a large occu- pation proportional to the total particle number.
    [Show full text]
  • Topological Phases in Ring Resonators: Recent Progress and Future Prospects Techniques to Their Limits
    Nanophotonics 2020; 9(15): 4473–4487 Review Daniel Leykam* and Luqi Yuan* Topological phases in ring resonators: recent progress and future prospects https://doi.org/10.1515/nanoph-2020-0415 techniques to their limits. Continued progress will require Received July 23, 2020; accepted September 12, 2020; new approaches to minimize the detrimental influence of published online September 25, 2020 fabrication imperfections and disorder. Topological pho- tonics is a young subfield of photonics that seeks to Abstract: Topological photonics has emerged as a novel address this challenge using novel design approaches paradigm for the design of electromagnetic systems from inspired by exotic electronic condensed matter materials microwaves to nanophotonics. Studies to date have largely such as topological insulators [1, 2]. Loosely speaking, to- focused on the demonstration of fundamental concepts, pological systems provide a systematic way to create such as nonreciprocity and waveguiding protected against disorder-robust modes or observables using a collection of fabrication disorder. Moving forward, there is a pressing imperfect components or modes. For example, certain need to identify applications where topological designs classes of “topologically nontrivial” systems exhibit spe- can lead to useful improvements in device performance. cial edge modes that can propagate reliably without Here, we review applications of topological photonics to backscattering even in the presence of strongly scattering ring resonator–based systems, including one- and two- defects, forming the basis for superior optical waveguides. dimensional resonator arrays, and dynamically modulated One natural setting where this robustness can poten- resonators. We evaluate potential applications such as tially be useful is in the design of integrated photonic cir- quantum light generation, disorder-robust delay lines, and cuits [3], where strong light confinement brings sensitivity to optical isolation, as well as future research directions and nanometre-scale fabrication imperfections.
    [Show full text]
  • Impact of Fundamental Temperature Fluctuations on the Frequency Stability of Metallo- Dielectric Nanolasers Sizhu Jiang ,Sihuipan , Suruj S
    IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. 55, NO. 5, OCTOBER 2019 2000910 Impact of Fundamental Temperature Fluctuations on the Frequency Stability of Metallo- Dielectric Nanolasers Sizhu Jiang ,SiHuiPan , Suruj S. Deka, Cheng-Yi Fang ,ZijunChen, Yeshaiahu Fainman, Fellow, IEEE, and Abdelkrim El Amili Abstract— The capability of nanolasers to generate coherent I. INTRODUCTION light in small volume resonators has made them attractive to be implemented in future ultra-compact photonic integrated circuits. HE miniaturization of optical resonators has established However, compared to conventional lasers, nanolasers are also Tnanolasers as promising coherent light source candidates known for their broader spectral linewidths, that are usually for future integrated nanophotonics with wide applications on the order of 1 nm. While it is well known that the broad in bio-sensing [1]–[3], imaging [4]–[6], far-field beam syn- linewidths in light emitters originate from various noise sources, thesis [7] and optical interconnects [8]. The ultra-compact there has been no rigorous study on evaluating the origins of the linewidth broadening for nanolasers to date to the best of mode volume of nanolasers also enables them to exploit our knowledge. In this manuscript, we investigate the impact the cavity quantum electrodynamics (QED) effect [9]–[12]. of fundamental thermal fluctuations on the nanolaser linewidth. In these nanocavities, conspicuous Purcell enhancement helps We show that such thermal fluctuations are one of the intrinsic to dramatically increase the modulation speed and lower noise sources in a sub-wavelength metal-clad nanolaser inducing the power consumption for optical communication systems. significant linewidth broadening. We further show that with the reduction of the nanolaser’s dimensions, i.e., mode volume, However, shrinking the dimension of a nanolaser can also be and the increase of the ambient temperature, such linewidth detrimental to its performance.
    [Show full text]
  • Invited Talks
    Invited Talks Ultracold gases… Invited Talk 33 Quantum simulations with ultracold bosons and fermions Wolfgang Ketterle 1 Research Laboratory for Electronics, MIT-Harvard Center for Ultracold Atoms, and Department of Physics, Massachusetts Institute of Technology, Cambridge, USA [email protected] I will summarize recent work at MIT on quantum simulations. A two-component systems of bosons in optical lattices can realize spin Hamiltonians. We present Bragg scattering of light as a detection method for magnetic phases, analogous to neutron scattering in condensed matter systems. A two-component Fermi gas with repulsive interactions, described by the so-called Stoner model, was predicted to undergo a phase transition to a ferromag- netic phase. We show that the phase transition is preempted by pair formation. Therefore, the Stoner model is an idealization not realized in Nature, since the paired state cannot be neglected. Ultracold gases… Invited Talk Anderson localization of ultra-cold atoms Alain Aspect Laboratoire Charles Fabry, Institut d’Optique/CNRS/Université Paris-Sud, Palaiseau, France [email protected] $QGHUVRQORFDOL]DWLRQLVDSKHQRPHQRQ¿UVWSURSRVHGLQWKHFRQWH[WRIFRQGHQVHGPDWWHUSK\VLFVEXWDOVRH[ - pected to exist in wave physics. It has been realized in recent years that ultra-cold atoms offer remarkable possibili- ties to observe experimentally Anderson localization [1], After presenting my naïve understanding of that fascinat- ing problem, I will present some experimental results [2], and argue that ultra-cold atoms in a disordered potential can be considered a quantum simulator that should allow experimentalists to answer open theoretical questions. References [1] A. Aspect and M. Inguscio, Anderson localization of ultracold atoms , Physics Today 62 (2009) 30, and references in.
    [Show full text]
  • On the Origin of Strong Photon Antibunching in Weakly Nonlinear Photonic Molecules Motoaki Bamba, Atac Imamoglu, Iacopo Carusotto, Cristiano Ciuti
    On the origin of strong photon antibunching in weakly nonlinear photonic molecules Motoaki Bamba, Atac Imamoglu, Iacopo Carusotto, Cristiano Ciuti To cite this version: Motoaki Bamba, Atac Imamoglu, Iacopo Carusotto, Cristiano Ciuti. On the origin of strong photon antibunching in weakly nonlinear photonic molecules. Physical Review A, American Physical Society, 2011, 83, pp.021802. 10.1103/PhysRevA.83.021802. hal-00499490 HAL Id: hal-00499490 https://hal.archives-ouvertes.fr/hal-00499490 Submitted on 9 Jul 2010 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. On the origin of strong photon antibunching in weakly nonlinear photonic molecules 1, 2 3 1, Motoaki Bamba, ∗ Atac Imamo˘glu, Iacopo Carusotto, and Cristiano Ciuti † 1Laboratoire Mat´eriaux et Ph´enom`enes Quantiques, Universit´eParis Diderot-Paris 7 et CNRS, Bˆatiment Condorcet, 10 rue Alice Domon et L´eonie Duquet, 75205 Paris Cedex 13, France 2Institute of Quantum Electronics, ETH Z¨urich, 8093 Z¨urich, Switzerland 3INO-CNR BEC Center and Dipartimento di Fisica, Universit`a di Trento, I-38123 Povo, Italy (Dated: July 9, 2010) In a recent work [T. C. H. Liew and V. Savona, Phys. Rev.
    [Show full text]
  • Liquid-Crystal Microdroplets As Optical Microresonators and Lasers
    LIQUID-CRYSTAL MICRODROPLETS AS OPTICAL MICRORESONATORS AND LASERS MatjaˇzHumar Doctoral Dissertation JoˇzefStefan International Postgraduate School Ljubljana, Slovenia, February 2012 Evaluation Board: Prof. Boˇstjan Zalar, Chairman, Joˇzef Stefan Institute, Ljubljana, Slovenia Asst. Prof. Miha Skarabotˇ , Member, Joˇzef Stefan Institute, Ljubljana, Slovenia Prof. Slobodan Zumerˇ , Member, University of Ljubljana, Ljubljana, Slovenia MatjaˇzHumar LIQUID-CRYSTAL MICRODROPLETS AS OPTICAL MICRORESONATORS AND LASERS Doctoral Dissertation TEKOCEKRISTALNEˇ MIKROKAPLJICE KOT OPTICNIˇ MIKRORESONATORJI IN LASERJI Doktorska disertacija Supervisor: Prof. Igor Muˇseviˇc Ljubljana, Slovenia, February 2012 Poets say science takes away from the beauty of the stars - mere globs of gas atoms. I, too, can see the stars on a desert night, and feel them. But do I see less or more? Richard P. Feynman VII Index Abstract XI Povzetek XII Abbreviations XIII 1 Introduction 1 1.1 Whispering-gallery modes . 1 1.1.1 Tunable WGMs . 2 1.1.2 WGM microcavities for biosensing . 3 1.1.3 WGM microcavities for filters and optical communications . 4 1.1.4 WGM ultralow-threshold microlasers . 4 1.1.5 Coupled WGM cavities . 4 1.2 Circular and spherical Bragg microcavities . 5 1.3 Liquid crystals . 6 1.3.1 Polymer dispersed liquid crystals . 6 1.3.2 Lasing in cholesteric liquid crystals . 7 1.3.3 Liquid crystal biosensors . 8 1.4 Goal of the thesis . 10 2 Theoretical background 13 2.1 Optical microcavities . 13 2.1.1 Quality factor . 13 2.1.2 Purcell effect . 14 2.2 Theory of WGMs . 15 2.2.1 WGM frequencies in an isotropic sphere . 15 2.2.2 Approximate solutions . 18 2.2.3 Non-spherical whispering-gallery cavity .
    [Show full text]
  • Photonic Crystal Nanolaser Biosensor Simplifies DNA Detection 13 January 2015
    Photonic crystal nanolaser biosensor simplifies DNA detection 13 January 2015 laser emission intensity, which in turn can also be used to sense the adsorption of biomolecules. Using laser intensity to detect biomolecules is potentially less expensive than the fluorescent tagging or spectroscopy techniques typically used in biosensors because it is a simpler procedure. When the team first set out to explore photonic crystal nanolaser sensors, they weren't focusing on the intensity of the laser emission because it's sensitive to the quality of the fabricated laser and, frankly, they didn't expect it to show sensing signals. "In the beginning we focused on wavelength behavior, but quickly noticed that [the laser emission] intensity is influenced by both pH and polymers," noted Toshihiko Baba, a professor in Yokohama National University's Department of Electrical and Computer Engineering. "Our results were very reproducible and, interestingly, we found Top view of the group's nanolaser, in which the center that the behaviors of the wavelength and intensity narrow slot (horizontal line) is the main part of the are independent." sensor. The periodic holes form a photonic crystal, and although the size of the holes appears to fluctuate they've been intentionally modified so the laser's The team was surprised by these results, which emission is effectively extracted to the top. Credit: they discovered when they deposited a protective Toshihiko Baba/Yokohama National University film of thin zirconium dioxide (ZrO2) over the device using atomic layer deposition, and then tried sensing in liquids of high or low pH and liquids containing charged polymers.
    [Show full text]