Joseph G.G. a Passage to Infinity.. Medieval Indian Mathematics From

Total Page:16

File Type:pdf, Size:1020Kb

Joseph G.G. a Passage to Infinity.. Medieval Indian Mathematics From A Passage to Infi nity A Passage to Infi nity Medieval Indian Mathematics from Kerala and Its Impact GEORGE GHEVERGHESE JOSEPH Copyright © George Gheverghese Joseph, 2009 All rights reserved. No part of this book may be reproduced or utilised in any form or by any means, electronic or mechanical, including photocopy- ing, recording or by any information storage or retrieval system, without permission in writing from the publisher. First published in 2009 by SAGE Publications India Pvt Ltd B1/I-1 Mohan Cooperative Industrial Area Mathura Road, New Delhi 110 044, India www.sagepub.in SAGE Publications Inc 2455 Teller Road Thousand Oaks California 91320, USA SAGE Publications Ltd 1 Oliver’s Yard 55 City Road London EC1Y 1SP, United Kingdom SAGE Publications Asia-Pacifi c Pte Ltd 33 Pekin Street #02-01 Far East Square Singapore 048763 Published by Vivek Mehra for SAGE Publications India Pvt Ltd, Photo- typeset in 10.5/12.5 AGaramond by Tantla Composition Services Private Limited, Chandigarh and printed at Chaman Enterprises, New Delhi. Library of Congress Cataloging-in-Publication Data Joseph, George Gheverghese. A passage to infi nity: medieval Indian mathematics from Kerala and its impact/George Gheverghese Joseph. p. cm. Includes bibliographical references and index. 1. Mathematics—India—Kerala—History. 2. Mathematics, Medieval. 3. Astronomy, Medieval—India—Kerala. I. Title. QA27.I4J67 510.954Ј830902—dc22 2009 2009035222 ISBN: 978-81-321-0168-0 (HB) The SAGE Team: Rekha Natarajan, Sushmita Banerjee and Trinankur Banerjee This book is dedicated to my six grandchildren, Sonya, Maya, Tabitha, Zinzi, Petra and Milo, who are encouraged to read whatever appeals to their minds and imaginations, think thoughts that uplift and always have a corner in their hearts for their Indian heritage. Contents List of Tables and Figures viii Acknowledgements xi 1 Introduction 1 2 The Social Origins of the Kerala School 10 3 The Mathematical Origins of the Kerala School 41 4 The Highlights of Kerala Mathematics and Astronomy 67 5 Indian Trigonometry: From Ancient Beginnings 82 to Nilakantha 6 Squaring the Circle: The Kerala Answer 108 7 Reaching for the Stars: The Power Series for Sines 142 and Cosines 8 Changing Perspectives on Indian Mathematics 156 9 Exploring Transmissions: A Case Study 178 of Kerala Mathematics 10 A Final Assessment 198 Bibliography 205 Index 215 About the Author 220 List of Tables and Figures Tables 2.1 Major Personalities and Texts (in Italics) 12 in Indian Mathematics 3.A.1 Applying Bhaskara I’s Approximation Formula in Degrees 58 3.A.2 Applying Bhaskara II’s Approximation Formula in Radians 62 5.1 Aryabhata’s Sine Table 89 5.2 Varahamihira’s Table of Sine-Differences 91 5.3 Brahmagupta’s Table of Sines 94 Figures 2.1 The Madhava (or Kerala) School of Indian Mathematics 16 3.1 The Rat and Hawk: An Application of 47 the Pythagorean Theorem 4.1 Area = ½ Circumference ϫ ½ Diameter 69 4.2 The Chord of a Circle 70 4.3 Summation of Arithmetical Series 72 4.4 Circum-radius of a Cyclical Quadrilateral 74 5.1 The Length of a Chord 83 5.2 Basic Concepts in Indian Trigonometry 84 5.3 A Geometric Evaluation of RSines 99 6.1 Summation of a Geometric Series: 115 A Visual Demonstration List of Tables and Figures 6.2 Summation of Geometric Series: 116 A Geometric Demonstration 6.3 Area under a Curve 118 6.4 A Tangent to a Circle 119 6.5 Derivation of the Madhava–Gregory Series 120 6.6 Steps in the Derivation of the Madhava– 122 Gregory Series Derivation 7.1 The Derivation of Sine and Cosine 147 7.2 The Derivation of Sine and Cosine Series 149 8.1 Early Indian Numerals 167 8.2 Indian Numerals around the 11th Century 168 ix Acknowledgements Like any book, this could not have been written without the help of many people. However, a special acknowledgement should be made for those who were members of the Arts and Humanities Research Board (AHRB) Research Project on Medieval Kerala Mathematics. In particular, I would like to acknowledge the help of Dr V. Madhukar Mallayya who was the Research Associate and whose expertise and insights were crucial to the successful outcome of the project, especially the comprehensive survey that he carried out for the project entitled ‘Trigonometric Sines and Sine Tables in India’ (unpublished). This was an important source for Chapter 5 of this book. I would also like to acknowledge the valuable inputs of Mr Dennis Almeida (Member of the research team), Dr M. Vijayalekshmy (Research Assistant), Dr J.M. DeLire (Research Assistant) and Dr C. Goncalves (Research Assistant). Their specifi c contributions are referred to in various parts of this book. Note: No mathematical signifi cance should be drawn from the use of lower case and upper case fi rst letters (for example, Sine [sine] or Cosine [cosine]) throughout the book unless specifi cally pointed out. 1 Introduction Objectives and Original Features of This Book The genesis of this book may be traced to an earlier book, The Crest of the Peacock: Non-European Roots of Mathematics, fi rst published in 1991. On page 20 of that book I wrote: One of the conjectures posed in Chapter 9 (p. 249) is the possibility that mathematics from medieval India, particularly from the southern state of Kerala may have had an impact on European mathematics of the sixteenth and seventeenth centuries. (Joseph 2000) This single sentence aroused more interest and controversy than other issues raised in the book. At a meeting soon after the book came out, the author was asked whether he was in the business of dethroning Newton and Leibniz! It was also interpreted by some as suggesting that the Indians invented calculus and transmitted the knowledge to Europe. In the course of talks and presentations in conferences presentations in 1990s the author had conjectured that the conduit for such a transmission were the Jesuits whose presence in Kerala from the middle of the sixteenth century was well attested in historical records of the period. To understand the passions unleashed, we need to stand back and look at the beginnings of modern mathematics. Two powerful tools contributed to its creation in the seventeenth century: the discovery of the general algorithms of calculus and the development and application of infi nite series techniques. These two streams of discovery seemed in the A Passage to Infi nity early stages to reinforce one another in their simultaneous development by extending the range and application of the other. The origin of the analysis and derivations of certain infi nite series, notably those relating to the arctangent, sine and cosine, was not in Europe, but in an area in South India that now falls within the state of Kerala. From a region covering less than a thousand square kilometres north of Cochin, during the period between the fourteenth and sixteenth centuries there emerged discoveries that anticipate similar works of European mathematicians such as Wallis, James Gregory, Taylor, Newton and Leibniz by about 200 years.1 There are several questions relating to the activities of this group (henceforth referred to as the Kerala School2), apart from technical ones relating to the mathematical motivation and content of their work. This book proposes to examine both the technical aspects of these mathematical discoveries as well as temporal and socio-economic context of the rise and decline of the Kerala School of Mathematics and Astronomy.3 Such a study is timely given the growing interest in recent years in issues such as: 1. the comparative epistemology of Indian Mathematics as distinguished from Western (including Greek) mathematics4 and 2. the nature of the socio-economic processes that led to the development of scientifi c knowledge in pre-modern India. The broad overlapping objectives of the earlier part of this book are: 1. to examine the mathematical genesis of the Kerala School from the earlier history of Indian mathematics in general and the Aryabhatan School in particular; 2. to explore the practices of mathematics/astronomy identifi able as those pursued by the Kerala School; 3. to outline the mathematical content of work done by individual members of the school; 4. to offer possible reasons for the neglect of the work of the Kerala School in standard accounts of the history of modern mathematics; 5. to examine the social origins of the Kerala School through a study of the structure and composition of contemporary society; 2 Introduction 6. to explore traditional modes of generating knowledge prevalent in Kerala at the time and in particular how such knowledge was disseminated across space and time and 7. to re-examine the widely-held though mistaken view that Indian mathematics was mainly utilitarian, neglectful of proof and stagnant after the twelfth century in the light of what is now known about Kerala and other medieval Indian mathematics. The overall objective of the later part of this book is to examine the conjecture of the transmission of Kerala mathematics to Europe, with a view to informing the wider history of mathematics. More specifi cally, it will examine the following questions:5 1. Given the current evidence, what is the extent of the transmission of knowledge through Jesuits from Kerala to Europe during the sixteenth and seventeenth centuries? Was Kerala mathematics and astronomy part of this transmission? 2. What was the mode of diffusion of this transmitted knowledge within Europe? As far as the second part of the book is concerned, there has been little substantive literature on the issue of transmission of mathematics from India to Europe after the twelfth century. Hence, this study will be of deep historical and cultural signifi cance.
Recommended publications
  • Particulars of Some Temples of Kerala Contents Particulars of Some
    Particulars of some temples of Kerala Contents Particulars of some temples of Kerala .............................................. 1 Introduction ............................................................................................... 9 Temples of Kerala ................................................................................. 10 Temples of Kerala- an over view .................................................... 16 1. Achan Koil Dharma Sastha ...................................................... 23 2. Alathiyur Perumthiri(Hanuman) koil ................................. 24 3. Randu Moorthi temple of Alathur......................................... 27 4. Ambalappuzha Krishnan temple ........................................... 28 5. Amedha Saptha Mathruka Temple ....................................... 31 6. Ananteswar temple of Manjeswar ........................................ 35 7. Anchumana temple , Padivattam, Edapalli....................... 36 8. Aranmula Parthasarathy Temple ......................................... 38 9. Arathil Bhagawathi temple ..................................................... 41 10. Arpuda Narayana temple, Thirukodithaanam ................. 45 11. Aryankavu Dharma Sastha ...................................................... 47 12. Athingal Bhairavi temple ......................................................... 48 13. Attukkal BHagawathy Kshethram, Trivandrum ............. 50 14. Ayilur Akhileswaran (Shiva) and Sri Krishna temples ...........................................................................................................
    [Show full text]
  • Mathematics INSA, New Delhi CLASS NO
    Mathematics INSA, New Delhi CLASS NO. WISE CHECK LIST Page : 1 ------------------------- Date : 5/06/2012 ------------------------------------------------------------------------- Accn No. T i t l e / A u t h o r Copies ------------------------------------------------------------------------- 18748 Physicalism in mathematics / Irvine, A.D. 340. 1 : Kluwer Academic, 1990 51.001.1 IRV 16606 Wittgenstein's philosophy of mathematics / Klenk, V.H. 1 : Martinus Nijhoff, 1976 51.001.1 KLE 18031 Mathematics in philosophy : Selected essay / Parsons, 1 Charles. : Cornell University Press, 1983 51.001.1 PAR HS 2259 Introduction to mathematical philosophy / Russell, Bertrand. : George Allen & Unwin, 1975 51.001.1 RUS 17664 Nature mathematized : Historical and philosophical 1 case studies in classical modern natural philosophy : Proceedings / Shea, William R. 340. : D. Reidel 51.001.1 SHE 18910 Mathematical intuition: phenomenology and mathematical 1 knowledge / Tieszen, Richard L. : Kluwer Academic Publishing, 1989 51.001.1 TIE 15502 Remarks on the foundations of mathematics 1 / Wittgenstein, Ludwig. : Basil Black Will, 1967 51.001.1 WIT 5607 Foundations of mathematics : Study in the philosophy 1 of science / Beth, Evert W. : North-Holland Publishing , 1959 51.001.3:16 BET 16621 Developing mathematics in third world countries : 1 Proceedings / Elton, M.E.A. 340. : North-Holland, 1979 51.001.6(061.3) ELT 15888 Optimal control theory / Berkovitz, L.D. : Springer- 1 Verlag, 1974 51:007 BER file:///C|/Documents%20and%20Settings/Abhishek%20Sinha/Desktop/Mathematics.txt[7/20/2012 5:09:31 PM] 29 Mathematics as a cultural clue : And other essays 1 / Keyser, Cassius Jackson. : Yeshiva University, 1947 51:008 KEY 9914 Foundations of mathematical logic / Curry, Haskell B.
    [Show full text]
  • Book of Abstracts
    IIT Gandhinagar, 16-17 March 2013 Workshop on Promoting History of Science in India ABSTRACTS Prof. Roddam Narasimha Barbarous Algebra, Inferred Axioms: Eastern Modes in the Rise of Western Science A proper assessment of classical Indic science demands greater understanding of the roots of the European scientific miracle that occurred between the late 16th and early 18th centuries. It is here proposed that, in the exact sciences, this European miracle can be traced to the advent of ‘barbarous’ (i.e. foreign) algebra, as Descartes called it, and to a new epistemology based on ‘inferred’ axioms as advocated by Francis Bacon and brilliantly implemented by Isaac Newton. Both of these developments can be seen as representing a calculated European departure from Hellenist philosophies, accompanied by a creative Europeanization of Indic modes of scientific thinking. Prof. Roddam Narasimha, an eminent scientist and the chairman of Engineering Mechanics Unit at the Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, has made contributions to the epistemology of Indian science. He was awarded Padma Vishushan this year. Email: [email protected] Prof. R.N. Iyengar Astronomy in Vedic Times: Indian Astronomy before the Common Era Astronomy popularly means knowledge about stars, planets, sun, moon, eclipses, comets and the recent news makers namely, asteroids and meteorites. Ancient people certainly knew something about all of the above though not in the same form or detail as we know now. The question remains what did they know and when. To a large extent for the Siddhāntic period (roughly starting with the Common Era CE) the above questions have been well investigated.
    [Show full text]
  • Roman Numerals
    History of Numbers 1c. I can distinguish between an additive and positional system, and convert between Roman and Hindu-Arabic numbers. Roman Numerals The numeric system represented by Roman numerals originated in ancient Rome (753 BC–476 AD) and remained the usual way of writing numbers throughout Europe well into the Late Middle Ages. By the 11th century, the more efJicient Hindu–Arabic numerals had been introduced into Europe by way of Arab traders. Roman numerals, however, remained in commo use well into the 14th and 15th centuries, even in accounting and other business records (where the actual calculations would have been made using an abacus). Roman numerals are still used today, in certain contexts. See: Modern Uses of Roman Numerals Numbers in this system are represented by combinations of letters from the Latin alphabet. Roman numerals, as used today, are based on seven symbols: The numbers 1 to 10 are expressed in Roman numerals as: I, II, III, IV, V, VI, VII, VIII, IX, X. This an additive system. Numbers are formed by combining symbols and adding together their values. For example, III is three (three ones) and XIII is thirteen (a ten plus three ones). Because each symbol (I, V, X ...) has a Jixed value rather than representing multiples of ten, one hundred and so on (according to the numeral's position) there is no need for “place holding” zeros, as in numbers like 207 or 1066. Using Roman numerals, those numbers are written as CCVII (two hundreds, plus a ive and two ones) and MLXVI (a thousand plus a ifty plus a ten, a ive and a one).
    [Show full text]
  • Mathematicians
    MATHEMATICIANS [MATHEMATICIANS] Authors: Oliver Knill: 2000 Literature: Started from a list of names with birthdates grabbed from mactutor in 2000. Abbe [Abbe] Abbe Ernst (1840-1909) Abel [Abel] Abel Niels Henrik (1802-1829) Norwegian mathematician. Significant contributions to algebra and anal- ysis, in particular the study of groups and series. Famous for proving the insolubility of the quintic equation at the age of 19. AbrahamMax [AbrahamMax] Abraham Max (1875-1922) Ackermann [Ackermann] Ackermann Wilhelm (1896-1962) AdamsFrank [AdamsFrank] Adams J Frank (1930-1989) Adams [Adams] Adams John Couch (1819-1892) Adelard [Adelard] Adelard of Bath (1075-1160) Adler [Adler] Adler August (1863-1923) Adrain [Adrain] Adrain Robert (1775-1843) Aepinus [Aepinus] Aepinus Franz (1724-1802) Agnesi [Agnesi] Agnesi Maria (1718-1799) Ahlfors [Ahlfors] Ahlfors Lars (1907-1996) Finnish mathematician working in complex analysis, was also professor at Harvard from 1946, retiring in 1977. Ahlfors won both the Fields medal in 1936 and the Wolf prize in 1981. Ahmes [Ahmes] Ahmes (1680BC-1620BC) Aida [Aida] Aida Yasuaki (1747-1817) Aiken [Aiken] Aiken Howard (1900-1973) Airy [Airy] Airy George (1801-1892) Aitken [Aitken] Aitken Alec (1895-1967) Ajima [Ajima] Ajima Naonobu (1732-1798) Akhiezer [Akhiezer] Akhiezer Naum Ilich (1901-1980) Albanese [Albanese] Albanese Giacomo (1890-1948) Albert [Albert] Albert of Saxony (1316-1390) AlbertAbraham [AlbertAbraham] Albert A Adrian (1905-1972) Alberti [Alberti] Alberti Leone (1404-1472) Albertus [Albertus] Albertus Magnus
    [Show full text]
  • Brahmagupta, Mathematician Par Excellence
    GENERAL ARTICLE Brahmagupta, Mathematician Par Excellence C R Pranesachar Brahmagupta holds a unique position in the his- tory of Ancient Indian Mathematics. He con- tributed such elegant results to Geometry and Number Theory that today's mathematicians still marvel at their originality. His theorems leading to the calculation of the circumradius of a trian- gle and the lengths of the diagonals of a cyclic quadrilateral, construction of a rational cyclic C R Pranesachar is involved in training Indian quadrilateral and integer solutions to a single sec- teams for the International ond degree equation are certainly the hallmarks Mathematical Olympiads. of a genius. He also takes interest in solving problems for the After the Greeks' ascendancy to supremacy in mathe- American Mathematical matics (especially geometry) during the period 7th cen- Monthly and Crux tury BC to 2nd century AD, there was a sudden lull in Mathematicorum. mathematical and scienti¯c activity for the next millen- nium until the Renaissance in Europe. But mathematics and astronomy °ourished in the Asian continent partic- ularly in India and the Arab world. There was a contin- uous exchange of information between the two regions and later between Europe and the Arab world. The dec- imal representation of positive integers along with zero, a unique contribution of the Indian mind, travelled even- tually to the West, although there was some resistance and reluctance to accept it at the beginning. Brahmagupta, a most accomplished mathematician, liv- ed during this medieval period and was responsible for creating good mathematics in the form of geometrical theorems and number-theoretic results.
    [Show full text]
  • General Index
    General Index Italic page numbers refer to illustrations. Authors are listed in ical Index. Manuscripts, maps, and charts are usually listed by this index only when their ideas or works are discussed; full title and author; occasionally they are listed under the city and listings of works as cited in this volume are in the Bibliograph- institution in which they are held. CAbbas I, Shah, 47, 63, 65, 67, 409 on South Asian world maps, 393 and Kacba, 191 "Jahangir Embracing Shah (Abbas" Abywn (Abiyun) al-Batriq (Apion the in Kitab-i balJriye, 232-33, 278-79 (painting), 408, 410, 515 Patriarch), 26 in Kitab ~urat ai-arc!, 169 cAbd ai-Karim al-Mi~ri, 54, 65 Accuracy in Nuzhat al-mushtaq, 169 cAbd al-Rabman Efendi, 68 of Arabic measurements of length of on Piri Re)is's world map, 270, 271 cAbd al-Rabman ibn Burhan al-Maw~ili, 54 degree, 181 in Ptolemy's Geography, 169 cAbdolazlz ibn CAbdolgani el-Erzincani, 225 of Bharat Kala Bhavan globe, 397 al-Qazwlni's world maps, 144 Abdur Rahim, map by, 411, 412, 413 of al-BlrunI's calculation of Ghazna's on South Asian world maps, 393, 394, 400 Abraham ben Meir ibn Ezra, 60 longitude, 188 in view of world landmass as bird, 90-91 Abu, Mount, Rajasthan of al-BlrunI's celestial mapping, 37 in Walters Deniz atlast, pl.23 on Jain triptych, 460 of globes in paintings, 409 n.36 Agapius (Mabbub) religious map of, 482-83 of al-Idrisi's sectional maps, 163 Kitab al- ~nwan, 17 Abo al-cAbbas Abmad ibn Abi cAbdallah of Islamic celestial globes, 46-47 Agnese, Battista, 279, 280, 282, 282-83 Mu\:lammad of Kitab-i ba/Jriye, 231, 233 Agnicayana, 308-9, 309 Kitab al-durar wa-al-yawaqft fi 11m of map of north-central India, 421, 422 Agra, 378 n.145, 403, 436, 448, 476-77 al-ra~d wa-al-mawaqft (Book of of maps in Gentil's atlas of Mughal Agrawala, V.
    [Show full text]
  • AN ACCOUNT of INDIAN ASTRONOMICAL HERITAGE from the 5Th CE to 12Th CE Astronomical Observation Is the Beginning of Scientific At
    Publications of the Korean Astronomical Society pISSN: 1225-1534 30: 705 ∼ 707, 2015 September eISSN: 2287-6936 c 2015. The Korean Astronomical Society. All rights reserved. http://dx.doi.org/10.5303/PKAS.2015.30.2.705 AN ACCOUNT OF INDIAN ASTRONOMICAL HERITAGE FROM THE 5th CE to 12th CE Somenath Chatterjee Sabitri Debi Institute of Technology (School of Astronomy) BANAPRASTHA, P.O. Khamargachi DT Hooghly PIN 712515 India E-mail: [email protected] (Received November 30, 2014; Reviced May 31, 2015; Aaccepted June 30, 2015) ABSTRACT Astronomical observation is the beginning of scientific attitudes in the history of mankind. According to Indian tradition, there existed 18 early astronomical texts (siddhantas) composed by Surya, Pitamaha and many others. Varahamihira compiled five astronomical texts in a book named panchasiddhantika, which is now the link between early and later siddhantas. Indian scholars had no practice of writing their own names in their works, so, it is very difficult to identify them. Aryabhata is the first name noticed, in the book Aryabhatiya. After this point most astronomers and astro-writers wrote their names in their works. In this paper I have tried to analyze the works of astronomers like Aryabhata, Varahamihira, Brah- magupta, Bhaskara I, Vateswara, Sripati and Bhaskaracharya in a modern context and to obtain an account of Indian astronomical knowledge. Aryabhata is the first Indian astronomer who stated that the rising and setting of the Sun, the Moon and other heavenly bodies was due to the relative motion of the Earth caused by the rotation of the Earth about its own axis.
    [Show full text]
  • Secondary Indian Culture and Heritage
    Culture: An Introduction MODULE - I Understanding Culture Notes 1 CULTURE: AN INTRODUCTION he English word ‘Culture’ is derived from the Latin term ‘cult or cultus’ meaning tilling, or cultivating or refining and worship. In sum it means cultivating and refining Ta thing to such an extent that its end product evokes our admiration and respect. This is practically the same as ‘Sanskriti’ of the Sanskrit language. The term ‘Sanskriti’ has been derived from the root ‘Kri (to do) of Sanskrit language. Three words came from this root ‘Kri; prakriti’ (basic matter or condition), ‘Sanskriti’ (refined matter or condition) and ‘vikriti’ (modified or decayed matter or condition) when ‘prakriti’ or a raw material is refined it becomes ‘Sanskriti’ and when broken or damaged it becomes ‘vikriti’. OBJECTIVES After studying this lesson you will be able to: understand the concept and meaning of culture; establish the relationship between culture and civilization; Establish the link between culture and heritage; discuss the role and impact of culture in human life. 1.1 CONCEPT OF CULTURE Culture is a way of life. The food you eat, the clothes you wear, the language you speak in and the God you worship all are aspects of culture. In very simple terms, we can say that culture is the embodiment of the way in which we think and do things. It is also the things Indian Culture and Heritage Secondary Course 1 MODULE - I Culture: An Introduction Understanding Culture that we have inherited as members of society. All the achievements of human beings as members of social groups can be called culture.
    [Show full text]
  • 1. Essent Vol. 1
    ESSENT Society for Collaborative Research and Innovation, IIT Mandi Editor: Athar Aamir Khan Editorial Support: Hemant Jalota Tejas Lunawat Advisory Committee: Dr Venkata Krishnan, Indian Institute of Technology Mandi Dr Varun Dutt, Indian Institute of Technology Mandi Dr Manu V. Devadevan, Indian Institute of Technology Mandi Dr Suman, Indian Institute of Technology Mandi AcknowledgementAcknowledgements: Prof. Arghya Taraphdar, Indian Institute of Technology Kharagpur Dr Shail Shankar, Indian Institute of Technology Mandi Dr Rajeshwari Dutt, Indian Institute of Technology Mandi SCRI Support teamteam:::: Abhishek Kumar, Nagarjun Narayan, Avinash K. Chaudhary, Ankit Verma, Sourabh Singh, Chinmay Krishna, Chandan Satyarthi, Rajat Raj, Hrudaya Rn. Sahoo, Sarvesh K. Gupta, Gautam Vij, Devang Bacharwar, Sehaj Duggal, Gaurav Panwar, Sandesh K. Singh, Himanshu Ranjan, Swarna Latha, Kajal Meena, Shreya Tangri. ©SOCIETY FOR COLLABORATIVE RESEARCH AND INNOVATION (SCRI), IIT MANDI [email protected] Published in April 2013 Disclaimer: The views expressed in ESSENT belong to the authors and not to the Editorial board or the publishers. The publication of these views does not constitute endorsement by the magazine. The editorial board of ‘ESSENT’ does not represent or warrant that the information contained herein is in every respect accurate or complete and in no case are they responsible for any errors or omissions or for the results obtained from the use of such material. Readers are strongly advised to confirm the information contained herein with other dependable sources. ESSENT|Issue1|V ol1 ESSENT Society for Collaborative Research and Innovation, IIT Mandi CONTENTS Editorial 333 Innovation for a Better India Timothy A. Gonsalves, Director, Indian Institute of Technology Mandi 555 Research, Innovation and IIT Mandi 111111 Subrata Ray, School of Engineering, Indian Institute of Technology Mandi INTERVIEW with Nobel laureate, Professor Richard R.
    [Show full text]
  • Ancient Indian Mathematical Evolution Since Counting
    Journal of Statistics and Mathematical Engineering e-ISSN: 2581-7647 Volume 5 Issue 3 Ancient Indian Mathematical Evolution since Counting 1 2 Sankar Prasad Mukherjee , Sandip Ghanta* 1Research Guide, 2Research Scholar 1,2Department of Mathematics, Seacom Skills University, Kolkata, West Bengal, India Email: *[email protected] DOI: Abstract This paper is an endeavor how chronologically since inception and into growth of mathematics occurred in Ancient India with an effort of counting to establish the numeral system through different ages, i.e., Rigveda, Yajurvada, Buddhist, Indo-Bactrian, Bramhi, Gupta and Devanagari Periods. Ancient India’s such contribution was of immense value helped to accelerate the progress of Mathematical development up to modern age as we see today. Keywords: Brahmi numerals, centesimal scale, devanagari, rigveda, kharosthi numerals, yajurveda INTRODUCTION main striking feature being counting and This research paper is an endeavor to evolution of numeral system thereby. synchronize all the historical research with essence of pre-historic and post-historic Mathematical Evolution in Vedic Period respectively interwoven into a texture of Decimal Number System in the Rigveda evolution process of Mathematics. The first Numbers are represented in decimal system form of writing human race was not (i.e., base 10) in the Rigveda, in all other literature but Mathematics. Arithmetic Vedic treatises, and in all subsequent Indian what is today was felt as an essential need texts. No other base occurs in ancient for day to day necessity of human race. In Indian texts, except a few instances of base various countries at various point of time, 100 (or higher powers of 10).
    [Show full text]
  • Bhaskara's Approximation to and Madhava's Series for Sine
    Ursinus College Digital Commons @ Ursinus College Transforming Instruction in Undergraduate Calculus Mathematics via Primary Historical Sources (TRIUMPHS) Winter 2020 Bhaskara's Approximation to and Madhava's Series for Sine Kenneth M. Monks [email protected] Follow this and additional works at: https://digitalcommons.ursinus.edu/triumphs_calculus Click here to let us know how access to this document benefits ou.y Recommended Citation Monks, Kenneth M., "Bhaskara's Approximation to and Madhava's Series for Sine" (2020). Calculus. 15. https://digitalcommons.ursinus.edu/triumphs_calculus/15 This Course Materials is brought to you for free and open access by the Transforming Instruction in Undergraduate Mathematics via Primary Historical Sources (TRIUMPHS) at Digital Commons @ Ursinus College. It has been accepted for inclusion in Calculus by an authorized administrator of Digital Commons @ Ursinus College. For more information, please contact [email protected]. Bh¯askara's Approximation to and M¯adhava's Series for Sine Kenneth M Monks∗ May 20, 2021 A chord is a very natural construction in geometry; it is the line segment obtained by connecting two points on a circle. Chords were studied extensively in ancient Greek geometry. For example, Euclid's Elements [Euclid, c. 300 BCE] contains plenty of theorems relating the circle's arc AB to the line segment AB (shown below).1 A B Indian mathematicians, motivated by astronomy, were the first to specifically calculate values of half-chords instead [Gupta, 1967, p. 121]. This work led very directly to the function which we call sine today. Task 1 Half-chords and sine. Suppose the circle above has radius 1.
    [Show full text]