Complete Mitochondrial Genomes Throw Light on Budding Speciation in Three Biston Species (Lepidoptera, Geometridae)

Total Page:16

File Type:pdf, Size:1020Kb

Complete Mitochondrial Genomes Throw Light on Budding Speciation in Three Biston Species (Lepidoptera, Geometridae) Zoologica Scripta Complete mitochondrial genomes throw light on budding speciation in three Biston species (Lepidoptera, Geometridae) RUI CHENG,DAYONG XUE,ANTHONY GALSWORTHY &HONGXIANG HAN Submitted: 22 December 2015 Cheng, R., Xue, D., Galsworthy, A. & Han, H. (2017). Complete mitochondrial genomes Accepted: 13 March 2016 throw light on budding speciation in three Biston species (Lepidoptera, Geometridae). — doi:10.1111/zsc.12184 Zoologica Scripta, 46,73–84. Biston panterinaria, Biston thibetaria and Biston perclara are very closely related species in the genus Biston, judged on the basis of both morphological and molecular evidence. The distri- bution area and altitudes, and host plants of these three species also show both consistency and differences. However, the exact relationship between the three species is unclear. In this study, we used the ‘distance-based method’, the ‘tree-based method’ and Bayesian phyloge- netics and phylogeography to elucidate the relationship between the three species. Phyloge- netic trees based on mitogenomes, COI+CYTB+16S and three nuDNA genes were constructed. The results of the phylogenetic trees revealed that B. thibetaria and B. perclara were derived from B. panterinaria and render the latter paraphyletic. The budding process of speciation is therefore presumed to be the main factor causing a phylogenetic relationship of this pattern. A host shift from broad-leaved plants living at low altitudes to gymnosperms living at relatively high altitudes provides evidence of budding speciation in these three spe- cies. The divergence time suggests that the budding speciation occurred at approximately 1.38 Ma, which is consistent with the Kunlun-Yellow River Movement. Tectonic move- ments occurring around the Qinghai–Tibet Plateau may be the driver of the budding speci- ation. Corresponding author: Hongxiang Han, Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, No. 1 Beichen West Road, Chaoyang District, Beijing 100101, China. E-mail: [email protected] Rui Cheng, Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, No. 1 Beichen West Road, Chaoyang District, Beijing 100101, China and University of Chinese Academy of Sciences, 19 Yuquan Road, Shijingshan District, Beijing 100049, China. E-mail: [email protected] Dayong Xue, Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, No. 1 Beichen West Road, Chaoyang District, Beijing 100101, China. E-mail: [email protected] Anthony Galsworthy, The Natural History Museum, Cromwell Road, London SW7 5BD, UK. E-mail: [email protected] Hongxiang Han, Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, No. 1 Beichen West Road, Chaoyang District, Beijing 100101, China. E-mail: [email protected] Introduction 1970; White 1978; Futuyma & Mayer 1980; Coyne & Orr The origin of species is a fundamental issue in evolution 2004; Nosil 2012). Budding speciation is one specific type biology. Most biologists agree that speciation should be of peripatric speciation, which, as a concept, was first pro- seen as the evolution of reproductive isolation between posed by Mayr (1954): he envisaged an initially small colo- populations (Coyne 1994; Coyne & Orr 1998, 2004; Noor nizing population becoming reproductively isolated from 2002). Many kinds of speciation have been described, the wider-ranging parental species. However, the proposal including allopatric speciation, parapatric speciation, peri- of this type of speciation did not at first draw attention. patric speciation and sympatric speciation (Mayr 1942, Later, Wiley & Mayden (1985), Harrison (1991, 1998), ª 2016 Royal Swedish Academy of Sciences, 46, 1, January 2017, pp 73–84 73 Budding speciation in three Biston species R. Cheng et al. Frey (1993) and Rieseberg & Brouillet (1994) elaborated (nuDNA) loci, to test the paraphyly of B. panterinaria and the concept of peripheral isolates. In particular, Harrison its consistency with the hypothesis of budding speciation. If (1991) identified peripheral isolates based on molecular evi- this result is deemed authentic, these three species will dence, with species A embedding within paraphyletic spe- form a good case study for studying budding speciation in cies B. In 2003, Funk & Omland improved the concept of Lepidoptera. budding speciation and listed much evidence and interpre- tation, following which the concept of budding speciation Material and methods began to be widely accepted. Funk & Omland defined bud- Specimen sampling and DNA extraction ding speciation, or peripatric and peripheral isolates, as The sampling sites of B. panterinaria, B. thibetaria and always implying a geographically restricted and mono- B. perclara are shown in Fig. 1. Samples for DNA extrac- phyletic daughter species being embedded within a widely tion were preserved in 100% ethanol and stored at distributed and paraphyletic parental species. Subsequently, À20 °C. DNA was extracted using the DNeasy Tissue kit many examples of budding speciation were discovered, (Qiagen, Beijing, China), and vouchers were deposited at involving liverworts, kelps, flowers, insects, snails, frogs and the Museum of IZCAS (the Institute of Zoology, Chinese shrews (Morse & Farrell 2005; Vanderpoorten & Long Academy of Sciences, Beijing, China). Ten mitogenomes 2006; Chen et al. 2009, 2012; Tellier et al. 2009; Grossen- from four lineages of B. panterinaria (Cheng et al. 2015), bacher et al. 2014; Kruckenhauser et al. 2014). three mitogenomes from B. thibetaria and one mitogenome Biston panterinaria (Bremer & Grey, 1853), Biston thi- from B. perclara were obtained. The mitogenomes were betaria (Oberthur,€ 1886) and Biston perclara (Warren, 1899) amplified as described in Yang et al. (2013). Three mito- have since their original description been regarded as chondrial genes and three nuclear genes were obtained specifically valid members of the genus Biston of the family from total specimens from the above-mentioned three spe- Geometridae, Lepidoptera, and are distributed in east Asia, cies and from ten other Biston species, including the cyto- south China and Taiwan, respectively. Importantly, these chrome c oxidase subunit I (COI), cytochrome b (CYTB), three species are closely related species forming Group III lrRNA (16S), elongation factor 1a (EF-1a), wingless (wg) of the genus based on morphological characters (Jiang et al. and glyceraldehyde-3-phosphate dehydrogenase (GADPH), 2011). In addition, the distributional areas and altitudes, through polymerase chain reaction (PCR) amplification. and host plants of these three species show both consis- PCR conditions were as follows: denaturation at 94 °C for tency and differences. The host plants of B. panterinaria 2 min, followed by 40 cycles at 93 °C for 1 min, annealing are mainly broad-leaved arbours (Yu 2001; Zhang & Li temperature (51 °C for COI,47°C for CYTB,56°C for 2001; Cui 2004; Li et al. 2008) below 1500 m, while the EF-1a,58°C for wg and 55 °C for GAPDH) for 45 s, and host plants of B. thibetaria are mainly conifers belonging to 72 °C for 1 min, and a final 10 min at 72 °C. PCR condi- the gymnosperms (Chen et al. 1982; Zheng & Yang 1991) tions for 16S was as follows: denaturation at 94 °C for from 1000 to 3000 m. However, the precise relationship 3 min, followed by 15 cycles at 94 °C for 30 s, annealing between the three species is unclear. temperature at 55–60 °C for 30 s, 72 °C for 1 min, fol- During our work of phylogeographic analysis of B. pan- lowed by 25 cycles at 94 °C for 35 s, annealing tempera- terinaria, we found that the relationships between B. pan- ture at 50 °C for 30 s, 72 °C for 1 min, and a final 10 min terinaria, B. thibetaria and B. perclara were unusual and that at 72 °C. Multiple alignments were generated using B. panterinaria seemed paraphyletic. However, we were not CLUSTALX (Thompson et al. 1997). Sequences of all pri- sure whether this phenomenon was authentic, because the mers used in this study are listed in Appendix S1. sampling numbers were small. So, in this study, we used Sequences were deposited in GenBank; the accession num- more samples, more data sets and more methods to explore bers are provided in Appendix S2. the relationships of the three species in detail. Nowadays, complete mitochondrial genomes (mitogenomes) can pro- Calculating interspecific sequence divergence and duce more robust and stable phylogenetic reconstructions constructing the NJ tree than those which rely on only part of the mtDNA, and ‘Distance-based method’ and ‘tree-based method’ were have been increasingly applied to a variety of phylogenetic used to ascertain the relationship of the three Biston spe- and phylogeographic studies in invertebrates (Ingman et al. cies. All COI sequences of the three species were used to 2001; Ma et al. 2012; Cameron 2014; Liu et al. 2015; Yang calculate the interspecific sequence divergence and con- et al. 2015). So the phylogenetic relationships of B. panteri- struct the neighbour-join (NJ) tree by MEGA 5.05 (Tamura naria, B. thibetaria and B. perclara were reconstructed based et al. 2011) based on Kimura-2-parameter (K2P) distances. on three data sets, involving mitogenomes, three mitochon- NJ analysis (Saitou & Nei 1987) was used to examine drial DNA (mtDNA) loci and three nuclear DNA whether these three species were effective and authentic. 74 ª 2016 Royal Swedish Academy of Sciences, 46, 1, January 2017, pp 73–84 o C R. Cheng et al. Budding speciation in three Biston species Fig. 1 Sampling sites of B. perclara, B. thibetaria and B. panterinaria. Colours represent different species. Species tree estimation three species to obtain important characters. Morphological A species tree of the three species was constructed using taxonomic methods were used to examine external features Bayesian phylogenetics and phylogeography (BPP v.2.0; and genitalia preparations. The terminology of the genitalia Yang & Rannala 2010) with the full phased data set for the follows that of Pierce (1914, reprint 1976), Klots (1970) and three mitochondrial loci.
Recommended publications
  • Molecular Basis of Pheromonogenesis Regulation in Moths
    Chapter 8 Molecular Basis of Pheromonogenesis Regulation in Moths J. Joe Hull and Adrien Fónagy Abstract Sexual communication among the vast majority of moths typically involves the synthesis and release of species-specifc, multicomponent blends of sex pheromones (types of insect semiochemicals) by females. These compounds are then interpreted by conspecifc males as olfactory cues regarding female reproduc- tive readiness and assist in pinpointing the spatial location of emitting females. Studies by multiple groups using different model systems have shown that most sex pheromones are synthesized de novo from acetyl-CoA by functionally specialized cells that comprise the pheromone gland. Although signifcant progress was made in identifying pheromone components and elucidating their biosynthetic pathways, it wasn’t until the advent of modern molecular approaches and the increased avail- ability of genetic resources that a more complete understanding of the molecular basis underlying pheromonogenesis was developed. Pheromonogenesis is regulated by a neuropeptide termed Pheromone Biosynthesis Activating Neuropeptide (PBAN) that acts on a G protein-coupled receptor expressed at the surface of phero- mone gland cells. Activation of the PBAN receptor (PBANR) triggers a signal trans- duction cascade that utilizes an infux of extracellular Ca2+ to drive the concerted action of multiple enzymatic steps (i.e. chain-shortening, desaturation, and fatty acyl reduction) that generate the multicomponent pheromone blends specifc to each species. In this chapter, we provide a brief overview of moth sex pheromones before expanding on the molecular mechanisms regulating pheromonogenesis, and con- clude by highlighting recent developments in the literature that disrupt/exploit this critical pathway. J. J. Hull (*) USDA-ARS, US Arid Land Agricultural Research Center, Maricopa, AZ, USA e-mail: [email protected] A.
    [Show full text]
  • 1 General Introduction
    1 General Introduction If the karate-ka (student) shall walk the true path, first he will cast aside all preference. Tatsuo Shimabuku, Grand Master of Isshin-ryu Karate 1.1 The Importance of Insects ~30% of the plants we grow for food and materials. Because of their great numbers and diversity, insects Insects transmit some of these pathogens. While have a considerable impact on human life and indus- weeds can often reduce pest attack, they can also try, particularly away from cities and in the tropics. harbour the pest’s enemies or provide alternative On the positive side they form a large and irreplace- resources for the pest itself. Then in storage, insects, able part of the ecosystem, especially as pollinators mites, rodents and fungi cause a further 30% loss. of fruit and vegetable crops and, of course, many Apart from such biotic damage, severe physical con- wild plants (Section 8.2.1). They also have a place ditions such as drought, storms and flooding cause in soil formation (Section 8.2.4) and are being used additional losses. For example, under ideal field increasingly in ‘greener’ methods of pest control. conditions new wheat varieties (e.g. Agnote and Biological control using insects as predators and Humber) would give yields of ~16 tonnes/ha, but parasites of pest insects has been developed in the produce typically about half this under good hus- West for over a century, and much longer in China. bandry. Pre-harvest destruction due only to insects More recently integrated pest management (IPM) is 10–13% (Pimentel et al., 1984; Thacker, 2002).
    [Show full text]
  • Annual Report
    CONTENTS SL. NO. CHAPTERS PAGE NO. NORTH BENGAL WILD ANIMALS PARK: AT A GLANCE 1 CHAPTER I 1.1 INTRODUCTION 3 1.2 MISSION 4 1.3 OBJECTIVE 4 1.4 STRATEGY 4 CHAPTER II 2.1 ADMINISTRATIVE SECTION 5 2.2 ACCOUNTS 5 2.3 ANIMAL SECTION 6 2.4 VETERINARY SECTION 12 2.4.1 DIS-INFECTION PROGRAMME 12 2.4.2 CAMPS ORGANIZED 13 2.5 COMMISSARY SECTION 13 2.6 EDUCATION 13 2.7 RESEARCH 16 2.8 GARDEN SECTION 17 2.9 SANITATION SECTION 17 2.10 SECURITY SECTION 17 2.11 MAINTENANCE SECTION 17 CHAPTER III 3.1 VISITOR STATISTICS 17 3.2 PARKING REVENUE COLLECTED 18 3.3 WHAT THE DIGNITARIES HAD TO SAY 19 EVENTS WORTH SPECIAL MENTION DURING 3.4 THE YEAR 2016-17 20 INAUGURATION OF TIGER SAFARI AND 3.4.1 DIFFERENT OTHER PROJECTS 20 3.4.2 EVENT ORGANISED BY THE RED CROSS SOCIETY 20 3.4.3 YEARLY MEET OF STATE POLLUTION CONTROL BOARD 20 3.4.4 BENGAL TRAVEL MART 20 CHAPTER III 3.4.5 CELEBRATION OF WORLD FORESTRY DAY 20 3.4.6 HUMAN HEALTH CHECK UP CAMP AT TORIBARI 20 3.4.7 ANIMAL HEALTH CHECK UP CAMP AT TORIBARI 21 3.4.8 INDEPENDENCE DAY CELEBRATION 21 3.4.9 RAKSHA BANDHAN CELEBRATION 21 3.4.10 VISIT OF PCCF (HOFF), W.B. 21 VISIT OF MIC (FOREST), PRINCIPAL SECRETARY, PCCF 3.4.11 (HOFF), PCCF (GENERAL) AND OTHER FOREST OFFICIALS 21 3.4.12 FISH RELEASE INSIDE THE HERBIVORE SAFARI 21 3.4.13 VISIT OF MEMBER SECRETARY, CENTRAL ZOO AUTHORITY 21 3.4.14 ZOOLOGICAL INFORMATION MANAGEMENT SOFTWARE TRAINING 21 3.4.15 INAUGURATION OF GHARIAL QUARANTINE ENCLOSURE 21 3.4.16 CHILDREN'S DAY CELEBRATION 22 3.4.17 MORTER SHELL DISCOVERED INSIDE PARK PREMISES 22 PHOTO PLATE I 23 PHOTO PLATE II 24 CHAPTER IV 4.1 BIODIVERSITY OF NORTH BENGAL WILD ANIMALS PARK 25 4.1.1 PRELIMINARY CHECKLIST OF FLORA 25 4.1.2 PRELIMINARY CHECKLIST OF FAUNA 29 ANNEXURE 35 NORTH BENGAL WILD ANIMALS PARK, SILIGURI AT A GLANCE Year of Establishment 2015 Area 297 Hectares Category of Zoo Medium Altitude 80- 100 m Temperature Upto 35ºC highest and 2ºC lowe st Mailing Address North Bengal Wild Animals Park, 5 th Mile, Sevoke Road, Salugara, Siliguri-734008 E-Mail [email protected] Web www.northbengalwildanimalspark.in Zoo Timings 9:00 a.m.
    [Show full text]
  • Looper Caterpillar- a Threat to Tea and Its Management
    Circular No. 132 September 2010 Looper Caterpillar- a Threat to Tea and its Management By Dr. Mainuddin Ahmed Chief Scientific Officer Department of Pest Management & Mohammad Shameem Al Mamun Scientific Officer Entomology Division BANGLADESH TEA RESEARCH INSTITUTE SRIMANGAL-3210, MOULVIBAZAR An Organ of BANGLADESH TEA BOARD 171-172, BAIZID BOSTAMI ROAD NASIRABAD, CHITTAGONG Foreword Tea plant is subjected to the attack of pests and diseases. Tea pests are localized in tea growing area. In tea, today one is a minor and tomorrow it may be a major pest. Generally Looper caterpillar is a minor pest of tea. Actually it is a major shade tree pest. But now-a-days it is a major pest of tea in some areas. Already some of the tea estates faced the problem arising out of this pest. Under favourable environmental conditions it becomes a serious pest of tea and can cause substantial crop loss. The circular has covered almost all aspects of the pest ornately with significant information, which will be practically useful in managing the caterpillar. Particular emphasis has been given on Mechanical control option as a component of IPM strategies. With timely adoption and implementation of highlighted information in this circular, planters will be able to manage the caterpillar more efficiently in a cost-effective, environment friendly and sustainable way. September 2010 Mukul Jyoti Dutta Director in-charge Looper Caterpillar- a Threat to Tea and its Management Introduction The looper caterpillar, Biston suppressaria Guen. is one of the major defoliating pests of tea plantation in North-East India, causing heavy crop losses.
    [Show full text]
  • The Complete Mitochondrial Genome of Trabala Vishnou Guttata (Lepidoptera: Lasiocampidae) and the Related Phylogenetic Analyses
    The complete mitochondrial genome of Trabala vishnou guttata (Lepidoptera: Lasiocampidae) and the related phylogenetic analyses Liuyu Wu, Xiao Xiong, Xuming Wang, Tianrong Xin, Jing Wang, Zhiwen Zou & Bin Xia Genetica An International Journal of Genetics and Evolution ISSN 0016-6707 Volume 144 Number 6 Genetica (2016) 144:675-688 DOI 10.1007/s10709-016-9934-x 1 23 Your article is protected by copyright and all rights are held exclusively by Springer International Publishing Switzerland. This e- offprint is for personal use only and shall not be self-archived in electronic repositories. If you wish to self-archive your article, please use the accepted manuscript version for posting on your own website. You may further deposit the accepted manuscript version in any repository, provided it is only made publicly available 12 months after official publication or later and provided acknowledgement is given to the original source of publication and a link is inserted to the published article on Springer's website. The link must be accompanied by the following text: "The final publication is available at link.springer.com”. 1 23 Author's personal copy Genetica (2016) 144:675–688 DOI 10.1007/s10709-016-9934-x The complete mitochondrial genome of Trabala vishnou guttata (Lepidoptera: Lasiocampidae) and the related phylogenetic analyses 1 1 2 1 1 Liuyu Wu • Xiao Xiong • Xuming Wang • Tianrong Xin • Jing Wang • 1 1 Zhiwen Zou • Bin Xia Received: 20 May 2016 / Accepted: 17 October 2016 / Published online: 21 October 2016 Ó Springer International Publishing Switzerland 2016 Abstract The bluish yellow lappet moth, Trabala vishnou related species (Dendrolimus taxa) are clustered on Lasio- guttata is an extraordinarily important pest in China.
    [Show full text]
  • Berita Negara Republik Indonesia
    BERITA NEGARA REPUBLIK INDONESIA No.518, 2014 KEMENTAN. Budidaya. Teh. Pedoman. PERATURAN MENTERI PERTANIAN REPUBLIK INDONESIA NOMOR 50/Permentan/OT.140/4/2014/___2014 TENTANG PEDOMAN TEKNIS BUDIDAYA TEH YANG BAIK (Good Agriculture Practices/GAP on Tea) DENGAN RAHMAT TUHAN YANG MAHA ESA MENTERI PERTANIAN REPUBLIK INDONESIA, Menimbang : a. bahwa tanaman teh merupakan salah satu komoditas unggulan perkebunan, untuk keberhasilan pengembangan teh diperlukan pembangunan perkebunan berkelanjutan; b. bahwa salah satu indikator penerapan pembangunan perkebunan berkelanjutan khususnya teh dengan penerapan teknik budidaya teh yang baik yang memperhatikan keamanan pangan, lingkungan, kesehatan, dan mutu; c. bahwa berdasarkan pertimbangan sebagaimana dimaksud dalam huruf a dan huruf b, dan agar pembangunan perkebunan teh dapat berhasil dengan baik, perlu menetapkan Peraturan Menteri Pertanian tentang Pedoman Teknis Budidaya Teh yang Baik (Good Agriculture Practices/GAP on Tea); Mengingat : 1. Undang-Undang Nomor 12 Tahun 1992 tentang Sistem Budidaya Tanaman (Lembaran Negara Tahun 2014, No.518 2 1992 Nomor 46, Tambahan Lembaran Negara Nomor 3478); 2. Undang-Undang Nomor 18 Tahun 2004 tentang Perkebunan (Lembaran Negara Tahun 2004 Nomor 85, Tambahan Lembaran Negara Nomor 4411); 3. Undang-Undang Nomor 17 Tahun 2007 tentang Rencana Pembangunan Jangka Panjang Nasional (RPJPN) (Lembaran Negara Tahun 2007 Nomor 33, Tambahan Lembaran Negara Nomor 4700); 4. Keputusan Presiden Nomor 84/P Tahun 2009 tentang Pembentukan Kabinet Indonesia Bersatu II; 5. Peraturan Presiden Nomor 47 Tahun 2009 tentang Pembentukan dan Organisasi Kementerian Negara; 6. Peraturan Presiden Nomor 24 Tahun 2010 tentang Kedudukan, Tugas, dan Fungsi Kementerian Negara serta Susunan Organisasi, Tugas, dan Fungsi Eselon I Kementerian Negara; 7. Keputusan Menteri Pertanian Nomor 511/Kpts/ PD.310/9/2006 tentang Jenis Komoditi Tanaman Binaan Direktorat Jenderal Perkebunan, Direktorat Jenderal Tanaman Pangan dan Direktorat Jenderal Hortikultura juncto Keputusan Menteri Pertanian Nomor 3599/Kpts/ PD.310/10/2009; 8.
    [Show full text]
  • Lepidoptera: Noctuoidea: Erebidae) and Its Phylogenetic Implications
    EUROPEAN JOURNAL OF ENTOMOLOGYENTOMOLOGY ISSN (online): 1802-8829 Eur. J. Entomol. 113: 558–570, 2016 http://www.eje.cz doi: 10.14411/eje.2016.076 ORIGINAL ARTICLE Characterization of the complete mitochondrial genome of Spilarctia robusta (Lepidoptera: Noctuoidea: Erebidae) and its phylogenetic implications YU SUN, SEN TIAN, CEN QIAN, YU-XUAN SUN, MUHAMMAD N. ABBAS, SAIMA KAUSAR, LEI WANG, GUOQING WEI, BAO-JIAN ZHU * and CHAO-LIANG LIU * College of Life Sciences, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, China; e-mails: [email protected] (Y. Sun), [email protected] (S. Tian), [email protected] (C. Qian), [email protected] (Y.-X. Sun), [email protected] (M.-N. Abbas), [email protected] (S. Kausar), [email protected] (L. Wang), [email protected] (G.-Q. Wei), [email protected] (B.-J. Zhu), [email protected] (C.-L. Liu) Key words. Lepidoptera, Noctuoidea, Erebidae, Spilarctia robusta, phylogenetic analyses, mitogenome, evolution, gene rearrangement Abstract. The complete mitochondrial genome (mitogenome) of Spilarctia robusta (Lepidoptera: Noctuoidea: Erebidae) was se- quenced and analyzed. The circular mitogenome is made up of 15,447 base pairs (bp). It contains a set of 37 genes, with the gene complement and order similar to that of other lepidopterans. The 12 protein coding genes (PCGs) have a typical mitochondrial start codon (ATN codons), whereas cytochrome c oxidase subunit 1 (cox1) gene utilizes unusually the CAG codon as documented for other lepidopteran mitogenomes. Four of the 13 PCGs have incomplete termination codons, the cox1, nad4 and nad6 with a single T, but cox2 has TA. It comprises six major intergenic spacers, with the exception of the A+T-rich region, spanning at least 10 bp in the mitogenome.
    [Show full text]
  • Biston Betularia (Geometridae)
    Journal of the Lepidopterists' Society 49(1), 1995, 88-91 MELANISM HAS NOT EVOLVED IN JAPANESE BISTON BETULARIA (GEOMETRIDAE) Additional key words: peppered moth, form "carbonaria." No example of natural selection in Lepidoptera is more widely recognized than in­ dustrial melanism in Biston betu/aria (L.) (Geometridae). In Britain, the common name for the species is the peppered moth because the typical, pale adult is covered with white scales mottled with black splotches. It was the only form known until 1848 when the first melanic variant was discovered near Manchester, England. By the turn of the century about 98% of Manchester B. betu/aria populations were melanic, or "carbonaria" as the jet-black morph came to be known. Similar changes were recorded in the vicinities of other industrial cities throughout Britain. The primary reason for the rise in frequency of the carbona ria form was its enhanced cry psis in polluted woodlands blackened by industrial soot. Against the darker backgrounds, paler morphs were more conspicuous to predators. Because the replacements of paler forms by melanic variants coincided with the industrialization of various regions, the phenomenon was dubbed industrial melanism. For the most comprehensive review of the early history of industrial melanism in Biston betu/aria and other lepidopteran species, see Kettlewell (1973). Just over a century after the first melanic B. betu/aria was reported, the British gov­ ernment legislated the Clean Air Acts to enforce smokeless zones. Since that time Sir Cyril Clarke has documented a dramatic decline in the frequency of carbonaria from 93% to 23% between 1959 through 1993 on the Wirral Peninsula, just south of Liverpool (Clarke et al.
    [Show full text]
  • Complete Mitochondrial Genome of Golden Silk Producer Antheraea Assamensis and Its Comparative Analysis with Other Lepidopteran Insects
    bioRxiv preprint doi: https://doi.org/10.1101/110031; this version posted February 20, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Complete mitochondrial genome of golden silk producer Antheraea assamensis and its comparative analysis with other lepidopteran insects Deepika Singh1,2, Debajyoti Kabiraj1, Hasnahana Chetia1, Pragya Sharma3, Kartik Neog4, Utpal Bora1,2,5* 1Bioengineering Research Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam-781039, India 2Centre for the Environment, Indian Institute of Technology Guwahati, Assam-781039, India 3Department of Bioengineering and Technology, Gauhati University Institute of Science and Technology (GUIST), Gauhati University, Guwahati-781014, Assam, India 4Biotechnology Section, Central Muga Eri Research & Training Institute (CMER&TI), Lahdoigarh-785700, Jorhat, Assam, India 5Mugagen Laboratories Pvt. Ltd., Technology Incubation Centre, Indian Institute of Technology Guwahati, Guwahati, Assam-781039, India *Corresponding Author Prof. Utpal Bora, Bioengineering Research Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam – 781039, India. Email: [email protected], [email protected] Phone: +913612582215/3204 1 bioRxiv preprint doi: https://doi.org/10.1101/110031; this version posted February 20, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract Muga (Antheraea assamensis) is an economically important silkmoth endemic to North-eastern part of India and is the producer of the strongest known commercial silk. However, there is a scarcity of -omics data for understanding the organism at a molecular level.
    [Show full text]
  • The Peppered Moth and Industrial Melanism: Evolution of a Natural Selection Case Study
    Heredity (2013) 110, 207–212 & 2013 Macmillan Publishers Limited All rights reserved 0018-067X/13 www.nature.com/hdy REVIEW The peppered moth and industrial melanism: evolution of a natural selection case study LM Cook1 and IJ Saccheri2 From the outset multiple causes have been suggested for changes in melanic gene frequency in the peppered moth Biston betularia and other industrial melanic moths. These have included higher intrinsic fitness of melanic forms and selective predation for camouflage. The possible existence and origin of heterozygote advantage has been debated. From the 1950s, as a result of experimental evidence, selective predation became the favoured explanation and is undoubtedly the major factor driving the frequency change. However, modelling and monitoring of declining melanic frequencies since the 1970s indicate either that migration rates are much higher than existing direct estimates suggested or else, or in addition, non-visual selection has a role. Recent molecular work on genetics has revealed that the melanic (carbonaria) allele had a single origin in Britain, and that the locus is orthologous to a major wing patterning locus in Heliconius butterflies. New methods of analysis should supply further information on the melanic system and on migration that will complete our understanding of this important example of rapid evolution. Heredity (2013) 110, 207–212; doi:10.1038/hdy.2012.92; published online 5 December 2012 Keywords: Biston betularia; carbonaria gene; mutation; predation; non-visual selection; migration INTRODUCTION EARLY EVIDENCE OF CHANGE The peppered moth Biston betularia (L.) and its melanic mutant will The peppered moth was the most diagrammatic example of the be familiar to readers of Heredity as an example of rapid evolutionary phenomenon of industrial melanism that came to be recognised in change brought about by natural selection in a changing environment, industrial and smoke-blackened parts of England in the mid-nine- evenifthedetailsofthestoryarenot.Infact,thedetailsarelesssimple teenth century.
    [Show full text]
  • Mitochondrial Genomes of Two Bombycoidea Insects and Implications for Their Phylogeny
    www.nature.com/scientificreports OPEN Mitochondrial Genomes of Two Bombycoidea Insects and Implications for Their Phylogeny Received: 20 February 2017 Zhao-Zhe Xin, Yu Liu, Xiao-Yu Zhu, Ying Wang, Hua-Bin Zhang, Dai-Zhen Zhang, Chun-Lin Accepted: 22 June 2017 Zhou, Bo-Ping Tang & Qiu-Ning Liu Published online: 26 July 2017 The mitochondrial genome (mt genome) provides important information for understanding molecular evolution and phylogenetics. As such, the two complete mt genomes of Ampelophaga rubiginosa and Rondotia menciana were sequenced and annotated. The two circular genomes of A. rubiginosa and R. menciana are 15,282 and 15,636 bp long, respectively, including 13 protein-coding genes (PCGs), two rRNA genes, 22 tRNA genes and an A + T-rich region. The nucleotide composition of the A. rubiginosa mt genome is A + T rich (81.5%) but is lower than that of R. menciana (82.2%). The AT skew is slightly positive and the GC skew is negative in these two mt genomes. Except for cox1, which started with CGA, all other 12PCGs started with ATN codons. The A + T-rich regions of A. rubiginosa and R. menciana were 399 bp and 604 bp long and consist of several features common to Bombycoidea insects. The order and orientation of A. rubiginosa and R. menciana mitogenomes with the order trnM-trnI-trnQ-nad2 is diferent from the ancestral insects in which trnM is located between trnQ and nad2 (trnI-trnQ-trnM- nad2). Phylogenetic analyses indicate that A. rubiginosa belongs in the Sphingidae family, and R. menciana belongs in the Bombycidae family.
    [Show full text]
  • EU Project Number 613678
    EU project number 613678 Strategies to develop effective, innovative and practical approaches to protect major European fruit crops from pests and pathogens Work package 1. Pathways of introduction of fruit pests and pathogens Deliverable 1.3. PART 7 - REPORT on Oranges and Mandarins – Fruit pathway and Alert List Partners involved: EPPO (Grousset F, Petter F, Suffert M) and JKI (Steffen K, Wilstermann A, Schrader G). This document should be cited as ‘Grousset F, Wistermann A, Steffen K, Petter F, Schrader G, Suffert M (2016) DROPSA Deliverable 1.3 Report for Oranges and Mandarins – Fruit pathway and Alert List’. An Excel file containing supporting information is available at https://upload.eppo.int/download/112o3f5b0c014 DROPSA is funded by the European Union’s Seventh Framework Programme for research, technological development and demonstration (grant agreement no. 613678). www.dropsaproject.eu [email protected] DROPSA DELIVERABLE REPORT on ORANGES AND MANDARINS – Fruit pathway and Alert List 1. Introduction ............................................................................................................................................... 2 1.1 Background on oranges and mandarins ..................................................................................................... 2 1.2 Data on production and trade of orange and mandarin fruit ........................................................................ 5 1.3 Characteristics of the pathway ‘orange and mandarin fruit’ .......................................................................
    [Show full text]