Carbon Tetrachloride
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Toxicological Profile for Carbon Tetrachloride
CARBON TETRACHLORIDE 1 1. PUBLIC HEALTH STATEMENT This public health statement tells you about carbon tetrachloride and the effects of exposure to it. The Environmental Protection Agency (EPA) identifies the most serious hazardous waste sites in the nation. These sites are then placed on the National Priorities List (NPL) and are targeted for long-term federal clean-up activities. Carbon tetrachloride has been found in at least 430 of the 1,662 current or former NPL sites. Although the total number of NPL sites evaluated for this substance is not known, the possibility exists that the number of sites at which carbon tetrachloride is found may increase in the future as more sites are evaluated. This information is important because these sites may be sources of exposure and exposure to this substance may harm you. When a substance is released either from a large area, such as an industrial plant, or from a container, such as a drum or bottle, it enters the environment. Such a release does not always lead to exposure. You can be exposed to a substance only when you come in contact with it. You may be exposed by breathing, eating, or drinking the substance, or by skin contact. If you are exposed to carbon tetrachloride, many factors will determine whether you will be harmed. These factors include the dose (how much), the duration (how long), and how you come in contact with it. You must also consider any other chemicals you are exposed to and your age, sex, diet, family traits, lifestyle, and state of health. -
THIALULUMUNIUUS009752019B2 (12 ) United States Patent ( 10 ) Patent No
THIALULUMUNIUUS009752019B2 (12 ) United States Patent ( 10 ) Patent No. : US 9 , 752, 019 B2 Loya Enríquez et al. (45 ) Date of Patent: Sep . 5 , 2017 ( 54 ) COMPOSITE MATERIALS BASED ON 17 /00 ; CO8L 19 / 003; CO8L 75 / 04 ; CO8L RUBBERS , ELASTOMERS , AND THEIR 75 /06 ; CO8L 75 / 08 ; CO8L 75 / 10 ; CO8L RECYCLED 75/ 12 ; CO8L 75 / 14 ; CO8L 75 / 16 ; CO8L 67 / 06 ( 71) Applicants: KAUTEC TECHNOLOGIES, S . A . P . I . DE C . V . , Chihuahua (MX ) ; Centro de USPC 525 / 123 Investigación en Materiales See application file for complete search history . Avanzados , S . C . , Chihuahua (MX ) (72 ) Inventors : René Loya Enríquez, Chihuahua (56 ) References Cited (MX ) ; Grecia Andrea Bueno Herrera , U . S . PATENT DOCUMENTS Chihuahua (MX ) ; Sergio Gabriel Flores Gallardo , Chihuahua (MX ) ; 2 ,879 , 245 A 3 / 1959 Green Erasto Armando Zaragoza Contreras , 2 ,947 , 736 A * 8 / 1960 Lundberg . .. .. .. .. .. .. C08F 16 / 24 526 / 201 Chihuahua (MX ) ; Alejandro Vega 3 ,383 ,351 A * 5 / 1968 Stamberger . .. CO8F 8 / 30 Ríos , Chihuahua (MX ) ; Mónica Elvira 521/ 137 Mendoza Duarte , Chihuahua (MX ) ; 3 ,652 ,467 A 3 / 1972 Bunk et al. Erika Ivonne López Martínez , 3 ,681 , 267 A 8 / 1972 Mayne et al . Chihuahua (MX ) 3 , 801 ,421 A 4 / 1974 Allen et al. 4 ,038 , 341 A * 7 / 1977 Schwartz , Jr . .. .. C08F 299 /04 ( 73 ) Assignees : Kautec Technologies , S . A . P .I De C . V ., 523 /527 Chihuahua (MX ) ; Centro de 4 ,053 , 537 A * 10 / 1977 Ruprecht . .. .. B29D 99/ 0057 521/ 42 Investigacion en Materiales 4 ,244 , 841 A 1/ 1981 Frankland Avanzados, S . C , Chihuahua (MX ) 4 , 327 , 145 A * 4 / 1982 Mitani . -
A Facile Procedure for the Generation of Dichlorocarbene from the Reaction of Carbon Tetrachloride and Magnesium Using Ultrasonic Irradiation
Molecules 2003, 8, 608-613 molecules ISSN 1420-3049 http://www.mdpi.org A Facile Procedure for the Generation of Dichlorocarbene from the Reaction of Carbon Tetrachloride and Magnesium using Ultrasonic Irradiation Haixia Lin *, Mingfa Yang, Peigang Huang and Weiguo Cao Department of Chemistry, Shanghai University, Shanghai, 200436, P.R. China *Author to whom correspondence should be addressed: e-mail [email protected] Received: 7 April 2003; in revised form: 7 July 2003 / Accepted: 20 July 2003 / Published: 31 July 2003 Abstract: An improved method for the generation of dichlorocarbene was developed that utilizes ultrasound in the reaction of carbon tetrachloride with magnesium. High yields of gem-dichlorocyclopropane derivatives can be obtained in the presence of olefins by this method. Keywords: Dichlorocarbene; gem-dichlorocyclopropanes; ultrasonic irradiation; olefin addition; magnesium Introduction Gem-dichlorocyclopropanes are valuable intermediates in organic synthesis [1,2]. They are typically prepared by the addition of dichlorocarbene to olefins under phase-transfer catalysis conditions [3-5]. Sonochemical generation of dichlorocarbene has also been reported [6-8]. The reactions of dichlorocarbene with olefins in solid-liquid two-phase systems using ultrasonication usually afford high yields of double-bond addition products. In addition, excellent yields of diadducts have been obtained from dienes and dichlorocarbene under ultrasonication and phase-transfer catalyst [9]. Molecules 2003, 8 609 Previously, we reported a novel route for the generation of dichlorocarbene by the reaction of carbon tetrachloride with magnesium in a neutral medium and hypothesized that the mechanism of these reactions might involve a single electron transfer [10]. However, these reactions suffered from several experimental drawbacks: some of the major ones being the sudden exotherm that occurs after an unpredictable induction period, foaming, and in some cases, the use of iodine as the activating agent. -
PUBLIC HEALTH STATEMENT Hexachlorobutadiene CAS#: 87-68-3
PUBLIC HEALTH STATEMENT Hexachlorobutadiene CAS#: 87-68-3 Division of Toxicology May 1994 This Public Health Statement is the summary be exposed to a substance only when you come in chapter from the Toxicological Profile for contact with it. You may be exposed by breathing, Hexachlorobutadiene. It is one in a series of Public eating, or drinking substances containing the Health Statements about hazardous substances and substance or by skin contact with it. their health effects. A shorter version, the ToxFAQsTM is also available. This information is If you are exposed to a substance such as important because this substance may harm you. hexachlorobutadiene, many factors will determine The effects of exposure to any hazardous substance whether harmful health effects will occur and what depend on the dose, the duration, how you are the type and severity of those health effects will be. exposed, personal traits and habits, and whether These factors include the dose (how much), the other chemicals are present. For more information, duration (how long), the route or pathway by which call the ATSDR Information Center at 1-888-422- you are exposed (breathing, eating, drinking, or skin 8737. contact), the other chemicals to which you are _____________________________________ exposed, and your individual characteristics such as age, gender, nutritional status, family traits, life- This Statement was prepared to give you style, and state of health. information about hexachlorobutadiene and to emphasize the human health effects that may result 1.1 WHAT IS HEXACHLOROBUTADIENE? from exposure to it. The Environmental Protection Agency (EPA) has identified 1,350 hazardous waste Hexachlorobutadiene, also known as HCBD, sites as the most serious in the nation. -
Dichlorodifluoromethane Dcf
DICHLORODIFLUOROMETHANE DCF CAUTIONARY RESPONSE INFORMATION 4. FIRE HAZARDS 7. SHIPPING INFORMATION 4.1 Flash Point: 7.1 Grades of Purity: 99.5% (vol.) Common Synonyms Gas Colorless Faint odor Not flammable 7.2 Storage Temperature: Ambient Arcton 6 4.2 Flammable Limits in Air: Not flammable Eskimon 12 7.3 Inert Atmosphere: No requirement 4.3 Fire Extinguishing Agents: Not F-12 Visible vapor cloud is produced. 7.4 Venting: Safety relief flammable Freon 12 7.5 IMO Pollution Category: Currently not available Frigen 12 4.4 Fire Extinguishing Agents Not to Be Genetron 12 Used: Not flammable 7.6 Ship Type: Currently not available Halon 122 4.5 Special Hazards of Combustion 7.7 Barge Hull Type: 3 Isotron 12 Products: Although nonflammable, Ucon 12 dissociation products generated in a fire may be irritating or toxic. 8. HAZARD CLASSIFICATIONS Notify local health and pollution control agencies. 4.6 Behavior in Fire: Helps extinguish fire. 8.1 49 CFR Category: Nonflammable gas Avoid inhalation. 4.7 Auto Ignition Temperature: Not 8.2 49 CFR Class: 2.2 flammable 8.3 49 CFR Package Group: Not pertinent. Not flammable. 4.8 Electrical Hazards: Not pertinent Fire Cool exposed containers with water. 8.4 Marine Pollutant: No 4.9 Burning Rate: Not flammable 8.5 NFPA Hazard Classification: Not listed 4.10 Adiabatic Flame Temperature: Currently 8.6 EPA Reportable Quantity: 5000 pounds CALL FOR MEDICAL AID. not available Exposure 8.7 EPA Pollution Category: D 4.11 Stoichometric Air to Fuel Ratio: Not VAPOR 8.8 RCRA Waste Number: U075 Not irritating to eyes, nose or throat. -
Hexachlorobutadiene in Drinking-Water
WHO/SDE/WSH/03.04/101 English only Hexachlorobutadiene in Drinking-water Background document for development of WHO Guidelines for Drinking-water Quality © World Health Organization 2004 Requests for permission to reproduce or translate WHO publications - whether for sale of for non- commercial distribution - should be addressed to Publications (Fax: +41 22 791 4806; e-mail: [email protected]. The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or of certain manufacturers' products does not imply that they are endorsed or recommended by the World Health Organization in preference to others of a similar nature that are not mentioned. Errors and omissions excepted, the names of proprietary products are distinguished by initial capital letters. The World Health Organization does not warrant that the information contained in this publication is complete and correct and shall not be liable for any damage incurred as a results of its use. Preface One of the primary goals of WHO and its member states is that “all people, whatever their stage of development and their social and economic conditions, have the right to have access to an adequate supply of safe drinking water.” A major WHO function to achieve such goals is the responsibility “to propose ... regulations, and to make recommendations with respect to international health matters ....” The first WHO document dealing specifically with public drinking-water quality was published in 1958 as International Standards for Drinking-water. -
Chloroform 18.08.2020.Pdf
Chloroform Chloroform, or trichloromethane, is an organic compound with formula CHCl3. It is a colorless, sweet-smelling, dense liquid that is produced on a large scale as a precursor to PTFE. It is also a precursor to various refrigerants. It is one of the four chloromethanes and a trihalomethane. It is a powerful anesthetic, euphoriant, anxiolytic and sedative when inhaled or ingested. Formula: CHCl₃ IUPAC ID: Trichloromethane Molar mass: 119.38 g/mol Boiling point: 61.2 °C Density: 1.49 g/cm³ Melting point: -63.5 °C The molecule adopts a tetrahedral molecular geometry with C3v symmetry. Chloroform volatilizes readily from soil and surface water and undergoes degradation in air to produce phosgene, dichloromethane, formyl chloride, carbon monoxide, carbon dioxide, and hydrogen chloride. Its half-life in air ranges from 55 to 620 days. Biodegradation in water and soil is slow. Chloroform does not significantly bioaccumulate in aquatic organisms. Production:- In industry production, chloroform is produced by heating a mixture of chlorine and either chloromethane (CH3Cl) or methane (CH4). At 400–500 °C, a free radical halogenation occurs, converting these precursors to progressively more chlorinated compounds: CH4 + Cl2 → CH3Cl + HCl CH3Cl + Cl2 → CH2Cl2 + HCl CH2Cl2 + Cl2 → CHCl3 + HCl Chloroform undergoes further chlorination to yield carbon tetrachloride (CCl4): CHCl3 + Cl2 → CCl4 + HCl The output of this process is a mixture of the four chloromethanes (chloromethane, dichloromethane, chloroform, and carbon tetrachloride), which can then be separated by distillation. Chloroform may also be produced on a small scale via the haloform reaction between acetone and sodium hypochlorite: 3 NaClO + (CH3)2CO → CHCl3 + 2 NaOH + CH3COONa Deuterochloroform[ Deuterated chloroform is an isotopologue of chloroform with a single deuterium atom. -
TOXICOLOGICAL PROFILE for HEPTACHLOR and HEPTACHLOR EPOXIDE
TOXICOLOGICAL PROFILE FOR HEPTACHLOR and HEPTACHLOR EPOXIDE Prepared by: Syracuse Research Corporation Under Contract No. 200-2004-09793 Prepared for: U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES Public Health Service Agency for Toxic Substances and Disease Registry November 2007 HEPTACHLOR AND HEPTACHLOR EPOXIDE ii DISCLAIMER The use of company or product name(s) is for identification only and does not imply endorsement by the Agency for Toxic Substances and Disease Registry. HEPTACHLOR AND HEPTACHLOR EPOXIDE iii UPDATE STATEMENT A Toxicological Profile for Heptachlor/Heptachlor Epoxide, Draft for Public Comment was released in September 2005. This edition supersedes any previously released draft or final profile. Toxicological profiles are revised and republished as necessary. For information regarding the update status of previously released profiles, contact ATSDR at: Agency for Toxic Substances and Disease Registry Division of Toxicology and Environmental Medicine/Applied Toxicology Branch 1600 Clifton Road NE Mailstop F-32 Atlanta, Georgia 30333 HEPTACHLOR AND HEPTACHLOR EPOXIDE iv This page is intentionally blank. v FOREWORD This toxicological profile is prepared in accordance with guidelines developed by the Agency for Toxic Substances and Disease Registry (ATSDR) and the Environmental Protection Agency (EPA). The original guidelines were published in the Federal Register on April 17, 1987. Each profile will be revised and republished as necessary. The ATSDR toxicological profile succinctly characterizes the toxicologic and adverse health effects information for the hazardous substance described therein. Each peer-reviewed profile identifies and reviews the key literature that describes a hazardous substance's toxicologic properties. Other pertinent literature is also presented, but is described in less detail than the key studies. -
Trade Names and Manufacturers
Appendix I Trade names and manufacturers In this appendix, some trade names of various polymeric materials are listed. The list is intended to cover the better known names but it is by no means exhaustive. It should be noted that the names given may or may not be registered. Trade name Polymer Manufacturer Abson ABS polymers B.F. Goodrich Chemical Co. Acrilan Polyacrylonitrile Chemstrand Corp. Acrylite Poly(methyl methacrylate) American Cyanamid Co. Adiprene Polyurethanes E.I. du Pont de Nemours & Co. Afcoryl ABS polymers Pechiney-Saint-Gobain Alathon Polyethylene E.I. du Pont de Nemours & Co. Alkathene Polyethylene Imperial Chemical Industries Ltd. Alloprene Chlorinated natural rubber Imperial Chemical Industries Ltd. Ameripol cis-1 ,4-Polyisoprene B.F. Goodrich Chemical Co. Araldite Epoxy resins Ciba (A.R.L.) Ltd. Arnel Cellulose triacetate Celanese Corp. Arnite Poly(ethylene terephthalate) Algemene Kunstzijde Unie N.Y. Baypren Polychloroprene Farbenfabriken Bayer AG Beetle Urea-formaldehyde resins British Industrial Plastics Ltd. Ben vic Poly(vinyl chloride) Solvay & Cie S.A. Bexphane Polypropylene Bakelite Xylonite Ltd. Butacite Poly( vinyl butyral) E.I. du Pont de Nemours & Co. Butakon Butadiene copolymers Imperial Chemical Industries Ltd. Butaprene Styrene-butadiene copolymers Firestone Tire and Rubber Co. Butvar Poly(vinyl butyral) Shawinigan Resins Corp. Cap ran Nylon 6 Allied Chemical Corp. Carbowax Poly(ethylene oxide) Union Carbide Corp. Cariflex I cis-1 ,4-Polyisoprene Shell Chemical Co. Ltd. Carina Poly(vinyl chloride) Shell Chemical Co. Ltd. TRADE NAMES AND MANUFACTURERS 457 Trade name Polymer Manufacturer Carin ex Polystyrene Shell Chemical Co. Ltd. Celcon Formaldehyde copolymer Celanese Plastics Co. Cellosize Hydroxyethylcellulose Union Carbide Corp. -
UNITED NATIONS Stockholm Convention on Persistent Organic
UNITED NATIONS SC UNEP/POPS/POPRC.12/INF/12 Distr.: General 25 July 2016 English only Stockholm Convention on Persistent Organic Pollutants Persistent Organic Pollutants Review Committee Twelfth meeting Rome, 1923 September 2016 Item 4 (c) (ii) of the provisional agenda* Technical work: consideration of recommendations to the Conference of the Parties: unintentional releases of hexachlorobutadiene Draft evaluation of new information in relation to listing of hexachlorobutadiene in Annex C to the Stockholm Convention Note by the Secretariat As referred to in the note by the Secretariat on new information in relation to the listing of hexachlorobutadiene in Annex C to the Stockholm Convention (UNEP/POPS/POPRC.12/6), the annex to the present note sets out the draft evaluation of new information in relation to listing of hexachlorobutadiene in Annex C to the Stockholm Convention. The present note, including its annex, has not been formally edited. * UNEP/POPS/POPRC.12/1. 250716 UNEP/POPS/POPRC.12/INF/12 Annex Draft evaluation of new information in relation to the listing of hexachlorobutadiene in Annex C of the Stockholm Convention June 2016 2 UNEP/POPS/POPRC.12/INF/12 Table of Contents Executive summary .................................................................................................................................... 4 1. Introduction ..................................................................................................................................... 6 1.1 Overview ............................................................................................................................ -
Refrigerant Safety Refrigerant History
Refrigerant Safety The risks associated with the use of refrigerants in refrigeration and airconditioning equipment can include toxicity, flammability, asphyxiation, and physical hazards. Although refrigerants can pose one or more of these risks, system design, engineering controls, and other techniques mitigate this risk for the use of refrigerant in various types of equipment. Refrigerant History Nearly all of the historically used refrigerants were flammable, toxic, or both. Some were also highly reactive, resulting in accidents (e. g., leak, explosion) due to equipment failure, poor maintenance, or human error. The task of finding a nonflammable refrigerant with good stability was given to Thomas Midgley in 1926. With his associates Albert Leon Henne and Robert Reed McNary, Dr. Midgley observed that the refrigerants then in use comprised relatively few chemical elements, many of which were clustered in an intersecting row and column of the periodic table of elements. The element at the intersection was fluorine, known to be toxic by itself. Midgley and his collaborators felt, however, that compounds containing fluorine could be both nontoxic and nonflammable. The attention of Midgley and his associates was drawn to organic fluorides by an error in the literature that showed the boiling point for tetrafluoromethane (carbon tetrafluoride) to be high compared to those for other fluorinated compounds. The correct boiling temperature later was found to be much lower. Nevertheless, the incorrect value was in the range sought and led to evaluation of organic fluorides as candidates. The shorthand convention, later introduced to simplify identification of the organic fluorides for a systematic search, is used today as the numbering system for refrigerants. -
Annex XV Report
Annex XV report PROPOSAL FOR IDENTIFICATION OF A SUBSTANCE OF VERY HIGH CONCERN ON THE BASIS OF THE CRITERIA SET OUT IN REACH ARTICLE 57 Substance Name(s): 1,6,7,8,9,14,15,16,17,17,18,18- Dodecachloropentacyclo[12.2.1.16,9.02,13.05,10]octadeca-7,15-diene (“Dechlorane Plus”TM) [covering any of its individual anti- and syn-isomers or any combination thereof] EC Number(s): 236-948-9; -; - CAS Number(s): 13560-89-9; 135821-74-8; 135821-03-3 Submitted by: United Kingdom Date: 29 August 2017 ANNEX XV – IDENTIFICATION OF DECHLORANE PLUS AS SVHC CONTENTS PROPOSAL FOR IDENTIFICATION OF A SUBSTANCE OF VERY HIGH CONCERN ON THE BASIS OF THE CRITERIA SET OUT IN REACH ARTICLE 57..........................................................................................IV PART I ...............................................................................................................................................1 JUSTIFICATION ..................................................................................................................................1 1. IDENTITY OF THE SUBSTANCE AND PHYSICAL AND CHEMICAL PROPERTIES ...................................2 1.1 Name and other identifiers of the substance................................................................................2 1.2 Composition of the substance ........................................................................................................2 1.3 Identity and composition of degradation products/metabolites relevant for the SVHC assessment ....................................................................................................................................3