Download Download

Total Page:16

File Type:pdf, Size:1020Kb

Download Download The Journal of Threatened Taxa (JoTT) is dedicated to building evidence for conservaton globally by publishing peer-reviewed artcles OPEN ACCESS online every month at a reasonably rapid rate at www.threatenedtaxa.org. All artcles published in JoTT are registered under Creatve Commons Atributon 4.0 Internatonal License unless otherwise mentoned. JoTT allows unrestricted use, reproducton, and distributon of artcles in any medium by providing adequate credit to the author(s) and the source of publicaton. Journal of Threatened Taxa Building evidence for conservaton globally www.threatenedtaxa.org ISSN 0974-7907 (Online) | ISSN 0974-7893 (Print) Review Termites (Blattodea: Isoptera) of southern India: current knowledge on distribution and systematic checklist M. Ranjith & C.M. Kalleshwaraswamy 26 May 2021 | Vol. 13 | No. 6 | Pages: 18598–18613 DOI: 10.11609/jot.5781.13.6.18598-18613 For Focus, Scope, Aims, and Policies, visit htps://threatenedtaxa.org/index.php/JoTT/aims_scope For Artcle Submission Guidelines, visit htps://threatenedtaxa.org/index.php/JoTT/about/submissions For Policies against Scientfc Misconduct, visit htps://threatenedtaxa.org/index.php/JoTT/policies_various For reprints, contact <[email protected]> The opinions expressed by the authors do not refect the views of the Journal of Threatened Taxa, Wildlife Informaton Liaison Development Society, Zoo Outreach Organizaton, or any of the partners. The journal, the publisher, the host, and the part- Publisher & Host ners are not responsible for the accuracy of the politcal boundaries shown in the maps by the authors. Member Threatened Taxa Journal of Threatened Taxa | www.threatenedtaxa.org | 26 May 2021 | 13(6): 18598–18613 ISSN 0974-7907 (Online) | ISSN 0974-7893 (Print) OPEN ACCESS htps://doi.org/10.11609/jot.5781.13.6.18598-18613 #5781 | Received 17 February 2020 | Final received 17 November 2020 | Finally accepted 09 April 2021 REVIEW Termites (Blatodea: Isoptera) of southern India: current knowledge on distributon and systematc checklist M. Ranjith 1 & C.M. Kalleshwaraswamy 2 1,2 Department of Entomology, College of Agriculture, University of Agricultural and Hortcultural Sciences, Shivamogga, Karnataka 577204, India. 1 [email protected] (corresponding author), 2 [email protected] Abstract: A checklist of termites (Blatodea: Isoptera) of southern India with their distributon is presented in this paper. In total, 132 species from fve families are listed, of which Termitdae Latreille, 1802 is the dominant family comprising 101 species from 27 genera and four subfamilies. The recent additons of species to the regional termite diversity are Krishnacapritermes dineshan Amina & Rajmohana, 2020, K. manikandan Amina & Rajmohana, 2020, and Pseudocapritermes kunjepu Mathew, 2020. Out of 132 species recorded from southern India, 60 species and fve genera are endemic to the region, and the subfamily Termitnae Latreille, 1802 accounts for maximum endemism. Keywords: Endemism, taxonomy, Termitdae, white ants. Editor: Anonymity requested. Date of publicaton: 26 May 2021 (online & print) Citaton: Ranjith, M. & C.M. Kalleshwaraswamy (2021). Termites (Blatodea: Isoptera) of southern India: current knowledge on distributon and systematc checklist. Journal of Threatened Taxa 13(6): 18598–18613. htps://doi.org/10.11609/jot.5781.13.6.18598-18613 Copyright: © Ranjith & Kalleshwaraswamy 2021. Creatve Commons Atributon 4.0 Internatonal License. JoTT allows unrestricted use, reproducton, and distribu- ton of this artcle in any medium by providing adequate credit to the author(s) and the source of publicaton. Funding: Ministry of Environment, Forest & Climate Change, New Delhi (F. No. 22018-28/2019CS (Tax)); ICAR junior/senior research fellowship [ICAR-JRF/SRF (PGS)] (erstwhile SRF). Competng interests: The authors declare no competng interests. Author details: M. Ranjith, PhD scholar (ICAR-JRF/SRF), Department of Entomology, College of Agriculture, University of Agricultural and Hortcultural Sciences. Presently working on morphological and molecular taxonomy of termites of southern India as part of PhD research. Dr. C.M. Kalleshwaraswamy, Assistant Professor, Department of Entomology, College of Agriculture, University of Agricultural and Hortcultural Sciences. Area of specializaton are insect taxonomy (especially termites) and virus vector relatonship in plant diseases Author contributons: Both authors contributed equally to the manuscript. Acknowledgements: The authors thankfully acknowledge the Indian Council of Agricultural Research for the fnancial support by means of ICAR junior/senior research fellowship [ICAR-JRF/SRF (PGS)] (erstwhile SRF), Ministry of Environment, Forest & Climate Change, New Delhi for fnancial assistance for the research project (F. No. 22018-28/2019CS (Tax)) and the director of research, UAHS, Shivamogga for encouragement. 18598 Termites of southern India Ranjith & Kalleshwaraswamy J TT INTRODUCTION are provided here. Among the reported, Termitdae Latreille, 1802 is the dominant family comprising of 101 Termites, also called “white ants” are considered soil species from four subfamilies. The family Termitdae engineers and structural pests. Interestngly, they are accounts maximum generic diversity also (27 genera) known as eusocial cockroaches in the order Blatodea followed by Kalotermitdae Froggat, 1897 (fve genera), Brunner von Watenwyl, 1882. Molecular phylogenetc and Rhinotermitdae Froggat, 1897 (three genera). The data obtained from termites revealed that, Isoptera genus Odontotermes Holmgren, 1910b (25 species) is not a separate order, and can be considered under in the family Termitdae have high species diversity Blatodea along with cockroaches (Inward et al. 2007). followed by genus Neotermes Holmgren, 1911b from Krishna et al. (2013) estmated about 2,933 species of family Kalotermitdae with 10 species. extant termites in the world. India has a high diversity Endemism of termites to the region is high, out of termites, but the Indian termite fauna shares a very of the 132 species, 60 species (45.45%) (denoted by small porton of the global fauna, i.e., approximately *) and fve genera (denoted by **) are endemic to 295 species, 52 genera, and six families (Krishna et al. southern India. Subfamily Termitnae Latreille, 1802 2013; Rajmohana et al. 2019). The frst ever taxonomic of family Temitdae accounts for maximum endemism work on Indian termites was carried out in southern with 20 species out of 43 endemic species of the India by König (1779) and the last comprehensive work family. Three genera of subfamily Termitnae, viz., was by Bose (1984) who reported 95 species from the Indocapritermes Chhotani, 1997, Krishnacapritermes region. This comprehensive taxonomic work is made to Chhotani, 1997, and Labiocapritermes Krishna, 1968 list all the termites recorded so far from the southern and two genera of subfamily Nasuttermitnae Hare, Indian region, which should serve as a base for further 1937, viz., Ampoulitermes Mathur & Thapa, 1962a taxonomic research. and Emersonitermes Mathur & Sen-Sarma, 1959 are endemic to southern India. MATERIALS AND METHODS Check list of termites of southern India Family Hodotermitdae Desneux, 1904 Southern India comprises fve states of India—Kerala, Subfamily Hodotermitnae Desneux, 1904 Tamil Nadu, Karnataka, Andhra Pradesh, and Telangana. Genus Anacanthotermes Jacobson, 1905 This region is composed of various climatc conditons 1. Anacanthotermes viarum (König, 1779) ranging from tropical to sub-tropical zones and lies Synonyms: Termes viarum König, 1779; Hodotermes between 8-20°N and 74-85°E. Most of these regions (Anacanthotermes) koenigi Holmgren & Holmgren, lie between the Western Ghats and Eastern Ghats and 1917; Anacanthotermes rugifrons Mathur & Sen-Sarma, the coastal region. The Western Ghats is the hotspot 1958. of diversity; climate is hot and arid in some regions Type locality: India: Tamil Nadu: Coimbatore. whereas in other parts it is hot and humid, or cold with Distributon: Tamil Nadu (König 1779; Bose 1984; 25–32 °C temperature during hot season and 23–30 °C Roonwal & Chhotani 1989; Krishna et al. 2013). in the cool season. The checklist has been mainly based on available Family Kalotermitdae Froggat, 1897 literature rather than extensive taxonomic work. The Genus Cryptotermes Banks, 1906 classifcaton is based on Krishna et al. (2013). This 2. Cryptotermes bengalensis (Snyder, 1934) list has been compiled based on Roonwal & Chhotani Synonyms: Kalotermes (Cryptotermes) bengalensis (1989), Chhotani (1997), Krishna et al. (2013), and Snyder, 1934; Calotermes (Cryptotermes) brachygnathus original descriptons. The literature published untl date Jepson, 1931; Calotermes (Cryptotermes) ceylonicus is considered for making the checklist of termites and Jepson, 1931; Cryptotermes angulatus Pinto, 1941. their distributon in southern India. Type locality: India: West Bengal: Sunderbans. Distributon: Andhra Pradesh; Karnataka (Roonwal & Chhotani 1989; Krishna et al. 2013; Shanbhag & RESULTS AND DISCUSSION Sundararaj 2013). The checklist for the fve families and 132 species 3. Cryptotermes domestcus (Haviland, 1898) reported from southern India along with their distributon Synonyms: Calotermes domestcus Haviland, 1898; Journal of Threatened Taxa | www.threatenedtaxa.org | 26 May 2021 | 13(6): 18598–18613 18599 J TT Termites of southern India Ranjith & Kalleshwaraswamy Calotermes (Cryptotermes) ogasawaraensis Oshima, Genus Neotermes Holmgren, 1911 1913; Calotermes (Cryptotermes) dentatus Oshima, 8. Neotermes
Recommended publications
  • New Termites and Hitherto Unknown Castes from the Canal Zone, Panama 1
    NEW TERMITES AND HITHERTO UNKNOWN CASTES FROM THE CANAL ZONE, PANAMA 1 By THOS. E. SNYDER Entomologist, Forest Insect Investigations, Bureau of Entomology, United States Department of Agriculture INTRODUCTION lis Banks (fig. 1) and C. longicollis Banks convinced the writer that they The agricultural development of the should be included in Holmgren's sub- -Canal Zone and the clearing of the genus Lobitermes. C. dudleyi, on the dense growth of tropical jungle for other hand, is a Cryptotermes and sup- banana, pineapple, avocado, and cacao presses thompsonae Snyder. Neither plantations will result in the killing of Banks's figures nor his description of many termite colonies of species that C. dudleyi indicates require a moist habitat. The intense that the soldier has Tieat of the tropical sun will render the the anterior margin ■decaying logs, stumps, and branches of the pronotum ser- on the ground and even the soil too rate, the distinctive dry and unsuitable for them. Large character of C.thomp- areas of the Zone already have been sonae, but the writer cleared of termites by the formation of has since examined Banks's type. Gatun Lake, which flooded the land, FIG. l.—Kalotermes thereby drowning the termite colonies Interesting bio- (Lobitermes)brevicollis: in the soil. Nevertheless, termites will logical notes were ob- Mandibles of soldier, tained on the habits showing marginal always constitute a serious problem in teeth. (From draw- Panama, and damage to the woodwork of Cylindrotermes ing made by camera and contents of buildings as well as andRhynchotermes; lucida) to living vegetation must be carefully Cylindrotermes (PI.
    [Show full text]
  • Treatise on the Isoptera of the World Kumar
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by American Museum of Natural History Scientific Publications KRISHNA ET AL.: ISOPTERA OF THE WORLD: 7. REFERENCES AND INDEX7. TREATISE ON THE ISOPTERA OF THE WORLD 7. REFERENCES AND INDEX KUMAR KRISHNA, DAVID A. GRIMALDI, VALERIE KRISHNA, AND MICHAEL S. ENGEL A MNH BULLETIN (7) 377 2 013 BULLETIN OF THE AMERICAN MUSEUM OF NATURAL HISTORY TREATISE ON THE ISOPTERA OF THE WORLD VolUME 7 REFERENCES AND INDEX KUMAR KRISHNA, DAVID A. GRIMALDI, VALERIE KRISHNA Division of Invertebrate Zoology, American Museum of Natural History Central Park West at 79th Street, New York, New York 10024-5192 AND MICHAEL S. ENGEL Division of Invertebrate Zoology, American Museum of Natural History Central Park West at 79th Street, New York, New York 10024-5192; Division of Entomology (Paleoentomology), Natural History Museum and Department of Ecology and Evolutionary Biology 1501 Crestline Drive, Suite 140 University of Kansas, Lawrence, Kansas 66045 BULLETIN OF THE AMERICAN MUSEUM OF NATURAL HISTORY Number 377, 2704 pp., 70 figures, 14 tables Issued April 25, 2013 Copyright © American Museum of Natural History 2013 ISSN 0003-0090 2013 Krishna ET AL.: ISOPtera 2435 CS ONTENT VOLUME 1 Abstract...................................................................... 5 Introduction.................................................................. 7 Acknowledgments . 9 A Brief History of Termite Systematics ........................................... 11 Morphology . 44 Key to the
    [Show full text]
  • Diversity and Abundance of Subterranean Termites in South India
    Srinivasa Murthy, K. Available Ind. J. Pure online App. Biosci.at www.ijpab.com (2020) 8(5), 141 -149 ISSN: 2582 – 2845 DOI: http://dx.doi.org/10.18782/2582-2845.8193 ISSN: 2582 – 2845 Ind. J. Pure App. Biosci. (2020) 8(5), 141-149 Research Article Peer-Reviewed, Refereed, Open Access Journal Diversity and abundance of Subterranean Termites in South India K. Srinivasa Murthy* National Bureau of Agricultural Insect Resources, P B No. 2491, H A Farm Post, Bellary Road Bangalore - 560 024, Karnataka, India *Corresponding Author E-mail: [email protected] Received: 7.07.2020 | Revised: 12.08.2020 | Accepted: 20.08.2020 ABSTRACT The abundance and diversity of subterranean termites was studied in the states of Andhra Pradesh, Keralae, Karnataka and Tamilnadu. Fifteen species of termites belonging to subfamilies Apicotermitinae, Kalotermitidae, Macrotermitinae and Nasutitermitinae, were recorded. The fungus growing termites (Macrotermitinae) accounted for 66.66% abundance, across the states. The Apicotermitinae (soil feeders) and Kalotermitidae (dry wood termites) registered 6.62% each and the dry wood termites (Nasutitermitinae) recorded 20.1% abundance. Among the different species of termites, Odontermes obesus, was more predominant (15.62%) than others. The cropping pattern, soil type and topography predisposed the abundance and diversity of termites. Keywords: Abundance, Cropping pattern, Diversity, Macrotermitinae. INTRODUCTION Ali, et al., 2013) as they play a vital role in Termites (Isoptera) are considered as the most recycling of plant materials and wood, abundant invertebrates and represent up to modifying and improving the soil condition 95% of soil insect biomass show an elaborated and composition, and providing food for other morphology and complex behaviour (Wang, et animals (Ackerman et al.
    [Show full text]
  • Termiticidal Activity of Bifenthrin and Fipronil Against Mound Building Termite Odontotermes Redemanni Wasmann
    Annals of Sri Lanka Department of Agriculture 2017. 19: 104 - 111 TERMITICIDAL ACTIVITY OF BIFENTHRIN AND FIPRONIL AGAINST MOUND BUILDING TERMITE ODONTOTERMES REDEMANNI WASMANN N.K. HAPUKOTUWA1 AND S. PERERA2 1 Plant Protection Service, Gannoruwa, Sri Lanka 2 Plant Protection Service Subunit, Bombuwala, Sri Lanka ABSTRACT Bifenthrin 10% SC (Maxxthor) and Fipronil 25% EC (Premise) obtained from two new sources were tested during 2014 to determine their termiticidal activity against the mound building termite Odontotermes redemanni Wasmann. Termitariaat open landscape in School of Agriculture, Kundasale, Kandy was randomly as the source of termite. Two new chemicals (Maxxthor and Premise), two reference chemicals (Biflex® and Agenda®) and water (control) were used as treatments with three replicates. Tendried sticks (60 cm long and three cm diameter) of Kapok (Ceibapentandra) were treated and inserted into each termitarium allowing the termites to feed on. Sticks were removed at two time intervals: four and eight weeks and weighed separately to measure the wood consumption. Analysis of variance showed highly significant differences (p=0.0001) in wood consumption among the treatments: chemicals and water treated termitaria. Maximum wood consumption (88.4g/8 weeks) was recorded in water treated termitaria. However no significant difference in wood consumption was observed between chemically treated termitaria. Both chemicals irrespective of their active ingredients, formulation or country of origin, performed equally against O. Redemanni revealing that they are appropriate termiticides to control mound building termite problem in Sri Lanka. Key words: Chemical control, Termites, Termitaria, Termiticide, wood consumption. INTRODUCTION Termites are abundant and diverse throughout the world (Donald and Dweight, 1970; Maayiem et al., 2012).
    [Show full text]
  • Smithsonian Miscellaneous Collections
    Ubr.C-ff. SMITHSONIAN MISCELLANEOUS COLLECTIONS VOLUME 143, NO. 3 SUPPLEMENT TO THE ANNOTATED, SUBJECT-HEADING BIBLIOGRAPHY OF TERMITES 1955 TO I960 By THOMAS E. SNYDER Honorary Research Associate Smithsonian Institution (Publication 4463) CITY OF WASHINGTON PUBLISHED BY THE SMITHSONIAN INSTITUTION DECEMBER 29, 1961 SMITHSONIAN MISCELLANEOUS COLLECTIONS VOLUME 143, NO. 3 SUPPLEMENT TO THE ANNOTATED, SUBJECT-HEADING BIBLIOGRAPHY OF TERMITES 1955 TO 1960 By THOMAS E. SNYDER Honorary Research Associate Smithsonian Institution ><%<* Q (Publication 4463) CITY OF WASHINGTON PUBLISHED BY THE SMITHSONIAN INSTITUTION DECEMBER 29, 1961 PORT CITY PRESS, INC. BALTIMORE, NID., U. S. A. CONTENTS Pagre Introduction i Acknowledgments i List of subject headings 2 Subject headings 3 List of authors and titles 72 Index 115 m SUPPLEMENT TO THE ANNOTATED, SUBJECT-HEADING BIBLIOGRAPHY OF TERMITES 1955 TO 1960 By THOMAS E. SNYDER Honorary Research Associate Smithsonian Institution INTRODUCTION On September 25, 1956, an "Annotated, Subject-Heading Bibliography of Ter- mites 1350 B.C. to A.D. 1954," by Thomas E. Snyder, was published as volume 130 of the Smithsonian Miscellaneous Collections. A few 1955 papers were included. The present supplement covers publications from 1955 through i960; some 1961, as well as some earlier, overlooked papers, are included. A total of 1,150 references are listed under authors and tides, and 2,597 references are listed under subject headings, the greater number being due to cross references to publications covering more than one subject. New subject headings are Radiation and Toxicology. ACKNOWLEDGMENTS The publication of this bibliography was made possible by a grant from the National Science Foundation, Washington, D.C.
    [Show full text]
  • Termites (Isoptera) in the Azores: an Overview of the Four Invasive Species Currently Present in the Archipelago
    Arquipelago - Life and Marine Sciences ISSN: 0873-4704 Termites (Isoptera) in the Azores: an overview of the four invasive species currently present in the archipelago MARIA TERESA FERREIRA ET AL. Ferreira, M.T., P.A.V. Borges, L. Nunes, T.G. Myles, O. Guerreiro & R.H. Schef- frahn 2013. Termites (Isoptera) in the Azores: an overview of the four invasive species currently present in the archipelago. Arquipelago. Life and Marine Sciences 30: 39-55. In this contribution we summarize the current status of the known termites of the Azores (North Atlantic; 37-40° N, 25-31° W). Since 2000, four species of termites have been iden- tified in the Azorean archipelago. These are spreading throughout the islands and becoming common structural and agricultural pests. Two termites of the Kalotermitidae family, Cryp- totermes brevis (Walker) and Kalotermes flavicollis (Fabricius) are found on six and three of the islands, respectively. The other two species, the subterranean termites Reticulitermes grassei Clemént and R. flavipes (Kollar) of the Rhinotermitidae family are found only in confined areas of the cities of Horta (Faial) and Praia da Vitória (Terceira) respectively. Due to its location and weather conditions the Azorean archipelago is vulnerable to coloni- zation by invasive species. The fact that there are four different species of termites in the Azores, all of them considered pests, is a matter of concern. Here we present a comparative description of these species, their known distribution in the archipelago, which control measures are being used against them, and what can be done in the future to eradicate and control these pests in the Azores.
    [Show full text]
  • Insect Pests Bilaspur
    Annexure III Pests and diseases of Crops District: Bilaspur 1 2 3 4 5 6 7 8 9 10 Host Insect/ animal Scientific name Local name Habitat Time/ Management Associate Other Community season of mechanism d TK detail knowledge attack s holder Maize Black cutworm Agrotis ipsilon Katua Keet/ Found during day April-June Hand picking and - - - Toka time hiding in soil & Oct-Nov destruction of close to stems. larvae. Larva cut the Apply seedling plants and chlorpyriphos 20 feed. EC @ 2 litres/ ha. Termites Microtermes obesi Deemak Build tall (2-4 m), Regular Locating and - - - Odontotermes obesus cylindrical mounds destroying termite or termitarium. nests. workers damage Use well roots. decomposed FYM. Applying chlorpyriphos 20 EC @ 2 litres/ ha after mixing with 20-25 kg of sand. Maize Stem Chilo partellus Tane ki sundi larvae first feed on July Remove the dead- - - - Borer the leaves, making hearts and infested a few shot holes. plants. Central shoot Apply 2 g phorate withers and (Thimmet 10G) leading to dead per meter of row heart. length. Corn leaf aphid Rhopalosiphum Tela Aphids infest September Foliar spray of - - - maidis leaves, leaf sheaths imidacloprid and inflorescences. 200SL or Most severe thiamethoxam 25 damage occurs to WDG @ 0.005%. the tassel. Paddy Grasshopper Hieroglyphus spp., Tidda Damage germinating Regular Clean cultivation Dusting of Local Chrotogonus spp. crop by cutting the by removing weeds wood ash people plants Bunds must be in nursery and in the cleared off grasses fields. The adults are and weeds often serious and Spray 1250 ml attack the periphery of Chloropyriphos 20 the panicles.
    [Show full text]
  • Biotoxicity Analysis of Different Doses of Beauveria Bassiana (Balsamo) Vuillemin Against Nymph of Odontotermes Obesus (R.)
    Eco. Env. & Cons. 26 (November Suppl. Issue) : 2020; pp. (S156-S161) Copyright@ EM International ISSN 0971–765X Biotoxicity analysis of different doses of Beauveria bassiana (Balsamo) Vuillemin against Nymph of Odontotermes obesus (R.) Anjana Intodia1*, Arti Prasad2 and Bharati Veerwal3 1*Govt. Meera Girls College, Udaipur, Rajasthan, India 2Department of Zoology, Mohan Lal Sukhadia University, Udaipur, Rajasthan, India 3Maharana Pratap Govt. P.G.College, Chittorgarh, Rajasthan, India (Received 31 March, 2020; Accepted 14 May, 2020) ABSTRACT Termites are soil-dwellers and carry out various activities in hidden-quarters without being detected. They pose a serious threat to agricultural, horticultural crops, forestry trees, and wooden structures. Use of entomopathogenic fungus can be a ecofriendly approach as comparable to chemical insecticides for control of various castes of termites. Entomopathogenic fungi are important natural enemies of arthropods and can be used as biological control agents. Bio efficacy of different concentrations of entomopathogenic fungus Beauveria bassiana (Balsamo) Vuillemin were evaluated against nymphs of termite Odontotermes obesus (R.) in laboratory conditions. The treatment results clearly revealed that the rate of mortality was increased with concentration and exposure period of treated dose of Beauveria bassiana on nymph of termite. Key words : Biotoxicity, Beauveria bassiana, Nymphs, Odontotermes obesus Introduction cultural crops, agroforestry, stored timbers, books and records, woodworks in buildings and stored Termites are well organized social insects present in products containing cellulose (Rashmi and terrestrial environments that feed on cellulose. Sev- Sundararaj, 2013). Worldwide, the anticipated loss eral termite species play a great ecological role in due to termite damage is about 50 billion US$ yearly contributing appreciably to most of the ecosystems (Subekti et al., 2015), although estimates vary con- (Roonwal, 1978a).
    [Show full text]
  • Miscellanea : Biological Notes on the Cryptotermes Species of Indonesia
    Miscellanea : Biological notes on the cryptotermes species of Indonesia Autor(en): Kalshoven, L.G.E. Objekttyp: Article Zeitschrift: Acta Tropica Band (Jahr): 17 (1960) Heft 3 PDF erstellt am: 05.10.2021 Persistenter Link: http://doi.org/10.5169/seals-310880 Nutzungsbedingungen Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern. Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden. Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber. Haftungsausschluss Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind. Ein Dienst der ETH-Bibliothek ETH Zürich, Rämistrasse 101, 8092 Zürich, Schweiz, www.library.ethz.ch http://www.e-periodica.ch N. Güralp. Schistosomiasis in Turkey 263 Acknowledgement. The author would like to extend his thanks to Prof. Dr. H. Ç. Oytun, the head of the Department of Parasitology, and Prof. Dr. B. T. Simms for their very valuable suggestions. Also, thanks are due to the Smithsonian Institute in Washington.
    [Show full text]
  • Estimating Molecular Phylogeny of Some Indian Termites Combining
    Journal of Entomology and Zoology Studies 2015; 3(6): 213-218 E-ISSN: 2320-7078 P-ISSN: 2349-6800 Estimating molecular phylogeny of some Indian JEZS 2015; 3(6): 213-218 © 2015 JEZS termites combining partial COI sequences Received: 02-10-2015 Accepted: 04-11-2015 Mandakini Singla, Neha Goyal, RC Sobti, VL Sharma Mandakini Singla Department of Zoology, Panjab Abstract University, Chandigarh-160014 To study the phylogenetic relationships of Indian termites (Insecta: Isoptera), mitochondrial DNA India. sequences of 334 bp of Cytochrome Oxidase subunit - I gene of nine species were subjected to MEGA 5.2. Phylogenetic trees were constructed using Neighbor-Joining and Maximum Likelihood methods. The Neha Goyal results revealed the phylogenetic status of Indian termites with other species from different geographical Department of Zoology, Panjab locations. The results were also confirmed with additional molecular parameter, nucleotide composition University, Chandigarh-160014 and pairwise genetic distance. India. Keywords: Cytochrome oxidase I, Termite, phylogeny. RC Sobti Emeritus Professor, Department of Biotechnology, Panjab 1. Introduction University, Chandigarh (India) The evolutionary origin of termites remains unresolved for more than half a century [1-3]. The and Vice Chancellor, BBAU, clear picture of termite ancestry is crucial for understanding as how these insects evolved Lucknow-226025 India. because they lack haplodiploid genetic system associated with eusocial evolution in bees, ants, [4, 5] VL Sharma wasps and thrips . Several studies took into account to study the phylogeny of termites Department of Zoology, Panjab using different molecular markers. Among the 13 protein-coding genes within the mt genome, University, Chandigarh-160014 cytochrome c oxidase I has gained particular popularity for estimating relationships among India.
    [Show full text]
  • The Classification of Lower Organisms
    The Classification of Lower Organisms Ernst Hkinrich Haickei, in 1874 From Rolschc (1906). By permission of Macrae Smith Company. C f3 The Classification of LOWER ORGANISMS By HERBERT FAULKNER COPELAND \ PACIFIC ^.,^,kfi^..^ BOOKS PALO ALTO, CALIFORNIA Copyright 1956 by Herbert F. Copeland Library of Congress Catalog Card Number 56-7944 Published by PACIFIC BOOKS Palo Alto, California Printed and bound in the United States of America CONTENTS Chapter Page I. Introduction 1 II. An Essay on Nomenclature 6 III. Kingdom Mychota 12 Phylum Archezoa 17 Class 1. Schizophyta 18 Order 1. Schizosporea 18 Order 2. Actinomycetalea 24 Order 3. Caulobacterialea 25 Class 2. Myxoschizomycetes 27 Order 1. Myxobactralea 27 Order 2. Spirochaetalea 28 Class 3. Archiplastidea 29 Order 1. Rhodobacteria 31 Order 2. Sphaerotilalea 33 Order 3. Coccogonea 33 Order 4. Gloiophycea 33 IV. Kingdom Protoctista 37 V. Phylum Rhodophyta 40 Class 1. Bangialea 41 Order Bangiacea 41 Class 2. Heterocarpea 44 Order 1. Cryptospermea 47 Order 2. Sphaerococcoidea 47 Order 3. Gelidialea 49 Order 4. Furccllariea 50 Order 5. Coeloblastea 51 Order 6. Floridea 51 VI. Phylum Phaeophyta 53 Class 1. Heterokonta 55 Order 1. Ochromonadalea 57 Order 2. Silicoflagellata 61 Order 3. Vaucheriacea 63 Order 4. Choanoflagellata 67 Order 5. Hyphochytrialea 69 Class 2. Bacillariacea 69 Order 1. Disciformia 73 Order 2. Diatomea 74 Class 3. Oomycetes 76 Order 1. Saprolegnina 77 Order 2. Peronosporina 80 Order 3. Lagenidialea 81 Class 4. Melanophycea 82 Order 1 . Phaeozoosporea 86 Order 2. Sphacelarialea 86 Order 3. Dictyotea 86 Order 4. Sporochnoidea 87 V ly Chapter Page Orders. Cutlerialea 88 Order 6.
    [Show full text]
  • Termite Alates (Odontotermes Obesus) Used As Food for Koya Tribes in Pakhal Wildlife Sanctuary, Warangal, Telangana
    IMPACT: International Journal of Research in Humanities, Arts and Literature (IMPACT: IJRHAL) ISSN (P): 2347-4564; ISSN (E): 2321-8878 Vol. 7, Issue 3, Mar 2019, 491-496 © Impact Journals TERMITE ALATES (ODONTOTERMES OBESUS) USED AS FOOD FOR KOYA TRIBES IN PAKHAL WILDLIFE SANCTUARY, WARANGAL, TELANGANA 1 2 3 4 Thirupathi. K , Mamatha. G , Narayana E & Venkaiah. Y 1,4 Animal Physiological Research Lab, Department of Zoology, Kakatiya University, Warangal, Telangana, India 2,3 Environmental Biology Research Lab, Department of Zoology, Kakatiya University, Warangal, Telangana, India Received: 27 Feb 2019 Accepted: 21 Mar 2019 Published: 31 Mar 2019 ABSTRACT Termites, especially Odontotermes sp. were playing an important role in ecology, entomophagy and other contexts such as Zootherapy around the world including Indian ethnic people. By food, value termites have a rich source of proteins, lipids, carbohydrates, enzymes, and minerals. The termites Odontotermes obesus had high levels of biochemical constituents such as proteins 66mg/ 100mg; carbohydrates 35mg/100mg; lipids 6.80mg/100mg and other enzymes. The results that Odontotermes obesus have more proteins followed by carbohydrates, lipids, and enzymes. In addition to their ecological importance, termites are a source of food and medicinal resources to ethnic people of Koya tribes from Pakhal Wildlife sanctuary, Telangana state. Therefore, there is an urgent need to focus on entomological research to the documentation of the utility of insects. KEYWORDS: Odontotermes Obesus, Biochemical Constituents, Carbohydrates, Proteins, Entomophagy, Zootherapy, Koya Tribes, Pakhal Wild Life Sanctuary INTRODUCTION India is a tropical country, the diversity of insects is greater. So, a potential land for insect resource to be utilized their vast potential.
    [Show full text]