Discoverers in Alphabeticalorder

Total Page:16

File Type:pdf, Size:1020Kb

Discoverers in Alphabeticalorder Appendix 1 833 Discoverers in AlphabeticalOrder Akiyama, M. 7 (7) 1989-1993 Albitskij, V. A. 10 1923-1925 Alikoski, H. 13 1938-1953 Alu, J. 8 (3) 1988-1993 Andrews, A. D. 1 1965 Antal, M. 6 1971-1986 Arai, M. 18 (18) 1988-1991 Arend, s. 51 1929-1961 Augustesen, K. 24 (24) 1982-1987 Baade, W. 9 1920-1949 Bailey, S. I. 1 1902 Balam, D. D. 2 1987-1995 Balonek, T. J. 1 1991 Bancilhon, O. 1 1934 Banno, Y. 1 (1) 1983 Barr, E. 4 1983 Barros, S. 2 (1) 1975-1977 Barucci, M. A. 2 (2) 1984-1985 Baur, J. M. 6 1987-1990 Beatty, D. 1 (1) 1980 Behymer, B. 1 (1) 1983 Belyaev, Y. 2 (2) 1968 Belyavskij, S. I. 36 (3) 1912-1927 Bigourdan, G. 1 1894 Birkle, K. 1 (1) 1992 Boattini, A. 1 (1) 1994 Bohrmann, A. 9 1936-1938 Börngen, F. 86 (11) 1961-1992 Borrelly, A. 19 1866-1894 Bourgeois, P. 1 1929 Bowell, E. 390 (1) 1977-1988 Boyer, L. 40 1930-1952 Brady, J. L. 1 1952 Brown, J. A. 1 (1) 1990 Brozek, L. 19 1979-1982 Bruwer, J. A. 4 1953-1970 Buchar, E. 1 1925 Burnasheva, B. A. 12 1969-1971 Burnham, R. A. 1 (1) 1964 Bus, E. S. 1 1977 Bus, S. J. 212 (61) 1975-1989 Cameron, R. C. 1 1950 Candy, M. P. 2 (2) 1984 Candy, V. M. 2 (2) 1984 Carnera, L. 16 (3) 1901-1902 Carrasco, R. 1 1935 Casulli, V. S. 4 (1) 1993-1994 Cerulli, V. 1 1910 Cesco, C. u. 17 (11) 1965-1971 834 Appendix 1 Cesco, M. R. 2 1976 Chacornac, J. 6 1853-1860 Chang, C.-H. 1 1957 Chang, Y. C. 2 1928-1957 Charlois, A. 99 1887-1904 Chernykh, L. I. 186 (7) 1966-1990 Chernykh, N. S. 386 (6) 1966-1986 Child, J. B. 2 (1) 1992-1993 Christensen, P. R. 1 (1) 1985 Churms, J. 2 1953 Coddington, E. F. 3 1898-1899 Cofre, S. 2 (2) 1968 Coggia, J. 5 1868-1899 Coker, R. 2 (2) 1988 Comas Sola, J. 11 1915-1930 Cottenot, P. 1 1878 Courty, F. 2 1894 Cowell, P. H. 1 1909 Cunningham, L. E. 2 1951-1952 Cwach, K. F. J. 1 1989 d' Arrest, H. 1 1862 de Ball, L. 1 1882 Debehogne, H. 188 (27) 1965-1992 de Gasparis, A. 9 1849-1865 Delporte, E. 65 1925-1942 DeSanctis, G. 20 (20) 1981-1983 Deutsch, A. N. 1 1929 Dieckvoss, W. 2 1938 Djurkovic, P. 2 1936-1940 Dobrzycki, J. 1 (1) 1949 Dossin, F. 4 1981-1984 Dugan, R. S. 16 1902-1904 Dunbar, R. S. 5 (4) 1981-1987 EIst, E. W. 101 (6) 1986-1994 Endate, K. 112 (112) 1987-1995 Ernst, E. 1 1910 Faul, K. L. 1 1977 Ferguson, J. 3 1854-1860 Ferreri, W. 11 (4) 1984-1988 Ferrero, M. 2 (2) 1930 Fisch, G. 1 (1) 1992 Foerster, W. 1 (1) 1860 Fogh Olsen, H. J. 7 (7) 1984-1986 Fric, T. F. 1 (1) 1985 Frost, R. H. 1 1902 Fujii, T. 14 (14) 1988-1992 Furuta, T. 37 (33) 1981-1993 Garradd, G. J. 2 1993-1994 Geffert, M. 2 1989 GehreIs, T. 6 1971-1973 Appendix 1 835 Georgieva, A. 1 (1) 1983 Gessner, H. 1 1953 Gibson, J. 11 (3) 1971-1985 Giclas, H. L. 13 (2) 1934-1978 Gilbrech, R. J. 1 (1) 1985 Gilmore, A. C. 24 (24) 1981-1993 Giuliani, V. 1 (1) 1995 Goldschmidt, H. 14 1852-1861 Goldstein, D. B. 1 1985 Gonnessiat, F. 2 1918-1920 Gonzalez, L. E. 2 1981-1982 Götz, P. 20 (2) 1903-1905 Graham, A. 1 1848 Groeneveld, 1. * 2 (1) 1955-1956 Grossman, A. 1 1984 GyJlenberg, K. 1 1916 Hansen, L. 1 (1) 1985 Harding, K. 1 1804 H arl an , E. A. 1 (1) 1984 Hartmann, J. 3 1921-1932 Hayakawa, S. 14 (14) 1989-1993 Helffrich, J. 13 1909-1911 Helin, E. F. 265 (75) 1973-1994 Hencke, K. L. 2 1845-1847 Henry, P. M. 7 1872-1878 Henry, P. P. 7 1872-1882 Hergenrother, C. W. 2 1994-1995 Herkenhoff, K. 2 (2) 1983 Hertzsprung, E. 2 1924-1929 Hind, J. R. 10 1847-1854 Hioki, T. 20 (20) 1988-1993 Hirasawa, M. 4 (4) 1992-1993 Hoffmeister, C. 5 (1) 1938-1963 Holt, H. E. 97 (7) 1988-1992 Hoppe, K. 1 (1) 1992 Houziaux, L. 2 (2) 1980 Hubble, E. 1 1935 Huchra, J. P. 1 (1) 1975 Hunaerts, J. 2 1936 Hurukawa, K. 33 (33) 1976-1986 Inkeri, K. 1 1937 Inoda, S. 12 (12) 1986-1992 Inoue, M. 6 (6) 1986-1990 Ito, K. 1 1994 Itzigsohn, M. 15 1948-1954 Ivanov, N. 3 (3) 1927 Ivanova, V. G. 7 (7) 1983-1987 Iwamoto, M. 4 (4) 1988-1989 Izumikawa, S. 1 (1) 1990 * See also van Houten-Groeneveld 836 Appendix 1 Jackisch, G. 1 (1) 1959 Jackson, C. 71 (1) 1929-1939 Jekabsons, P. 2 1978 Jekhovsky, B. 12 1921-1927 Jensen, K. S. 1 (1) 1982 Jensen, P. 49 (23) 1984-1988 Johnson, E. L. 18 1946-1951 Kaiser, F. 21 1911-1914 Kakei, W. 7 (7) 1987-1989 Kamper, K. W. 2 1963-1978 Kaneda, H. 165 (165) 1987-1995 Karachkina, L. G. 68 (4) 1980-1989 Kastei', G. R. 2 (2) 1990 Kawanishi, K. 9 (9) 1989-1991 Kawasato, N. 15 (7) 1988-1992 Keeler, J. E. 1 1899 Kilmartin, P. M. 24 (24) 1981-1993 Kirk, R. 1 (1) 1983 Kizawa, M. 12 (11) 1986-1991 Klemola, A. R. 14 (8) 1965-1984 Knezevic, Z. 1 1980 Knorre, V. 4 1876-1887 Kobayashi, T. 29 1991-1996 Kohoutek, L. 54 (1) 1967-1981 Koishikawa, M. 11 1988-1995 Kojima, T. 23 1987-1989 König, A. 1 (1) 1959 Kopff, A. 67 (1) 1904-1909 Kosai, H. 34 (34) 1976-1986 Kowal, C. T. 16 (1) 1970-1981 Kriete, A. 1 (1) 1967 Kryachko, T. V. 1 1995 Kubokawa, K. 1 (1) 1929 Kulin, G. 19 1936-1941 Kurochkin, N. E. 2 (1) 1972-1983 Kushida, R. 1 (1) 1991 Kushida, Y. 21 (21) 1988-1994 Kveton, J. 1 1979 Kwiek, A. 1 (1) 1949 Lagerkvist, C.-I. 29 (2) 1975-1986 Lagrula, J. 1 1914 Landgraf, W. 3 1987-1989 Lauer, T. 1 (1) 1977 Laugier, M. 19 1932-1955 Laurent, A. 1 1858 Lawrence, K. 6 (3) 1990-1993 Le Morvan, C. 1 1913 Leonard, G. J. 2 1992 Lesser, O. 1 (1) 1860 Levy, D. H. 7 (7) 1990-1992 Liller, W. 2 1978-1979 Lohnert, K. 4 1906-1907 Appendix 1 837 Lokalov, A. 1 (1) 1970 Lopez G, A. 1 (1) 1992 Lorenz, W. 4 1908-1909 Lovas, M. 2 1977-1982 Lowell, P. 1 1907 Luther, R. 24 1852-1890 Mahrova, M. 4 1981-1985 Manning, B. G. W. 4 1989-1991 Marley, M. 1 (1) 1983 Marth, A. 1 1854 Massinger, A. 7 1912-1914 Matsuyama, M. 10 (10) 1990-1991 Maury, A. 5 (1) 1986-1988 McLeish, D. 1 1964 McNaught, R. H. 74 1986-1993 McNay, A. 1 1980 Melotte, P. J. 1 1909 Metcalf, J. H. 41 1905-1914 Metlova, N. V. 1 (1) 1983 Mikolajczak, C. 2 (2) 1988 Millosevich, E. 2 1891 Minkowski, R. 1 (1) 1951 Mitani, T. 1 1953 Mizuno, Y. 21 (21) 1989-1993 Moravec, Z. 1 1995 Mori, H. 18 (18) 1988-1991 Mrkos, A. 151 1978-1990 Mueller, J. 3 (1) 1987-1993 Mukai, M. 6 (6) 1988-1990 Mulholland, J. D. 1 1975 Muramatsu, O. 32 (32) 1986-1994 Muzzio, J. C. 1 1979 Nakamura, A. 3 1994-1995 Nassir, M. 1 1993 Natori, A. 13 (13) 1990-1993 Netto, E. R. 4 (4) 1979 Neujmin, G. N. 74 1913-1939 Nicholson, S. B. 2 1916-1957 Niijima, T. 14 (14) 1986-1991 Nolan, M. 1 1984 Nomura, T. 9 (9) 1989-1992 Norgaard-Nielsen, H. U. 1 (1) 1985 Noymer, A. J. 4 1988 Oikawa, O. 8 (1) 1927-1929 Ojakangas, G. 2 (2) 1983 Okuni, T. 1 1996 Olbers, H. W. 2 1802-1807 Olmstead, C. M. 2 1978 Oshima, Y. 18 1987-1989 Oterma, L. 52 1938-1953 Otomo, S. 29 (9) 1991-1994 838 Appendix 1 Palisa, J. 121 1874-1923 Parchomenko, P. 2 1929-1930 Paroubek, A. 1 (1) 1955 Passey, Q. R. 2 (2) 1982 Patry, A. 9 1936-1940 Pereyra, Z. M. 1 1966 Perrotin, J. 6 1874-1885 Peters, C. H. F. 48 1861-1889 Peters, G. H. 3 1904-1921 Petit, J. 2 (2) 1971 Phinney, J. 1 1988 Piazzi, G. 1 1801 Pizarro, G. 1 (1) 1979 Pizarro, O. 1 (1) 1979 Platt, J. 2 1984 Plougin, G. 2 (2) 1968 Podstanicka, R. 1 (1) 1955 Pogson, N. R. 8 1856-1885 Polit, I. 1 1941 Pollas, C. 3 1984-1989 Potter, H. 1 (1) 1970 Pratt, C. 1 (1) 1978 Protitch, M. B. 7 1936-1952 Quadri, U. 3 (2) 1991-1993 Rajamohan, R. 3 1988-1989 Reinmuth, K. 385 (1) 1914-1957 Reiss, G. 5 1931-1935 Rheden, J. 3 1913-1916 Rickman, H. 2 (2) 1976 Rigaux, F. 7 1933-1941 Rodriquez, T. 1 1988 Roemer, E. 2 1964-1975 Roman, B. 6 (3) 1988-1990 Rose, P. 1 1991 Rudnyk, M. 1 1986 Rudy, D. 1 (1) 1983 Salyards, S. 1 1983 Samuel, A. G. 1 (1) 1968 Sandig, H.-U. 1 1937 Sasaki, G. 1 (1) 1979 Sato, N. 1 (1) 1995 Sause, G. 1 (1) 1988 Schaldach, R.
Recommended publications
  • Occultation Evidence for a Satellite of the Trojan Asteroid (911) Agamemnon Bradley Timerson1, John Brooks2, Steven Conard3, David W
    Occultation Evidence for a Satellite of the Trojan Asteroid (911) Agamemnon Bradley Timerson1, John Brooks2, Steven Conard3, David W. Dunham4, David Herald5, Alin Tolea6, Franck Marchis7 1. International Occultation Timing Association (IOTA), 623 Bell Rd., Newark, NY, USA, [email protected] 2. IOTA, Stephens City, VA, USA, [email protected] 3. IOTA, Gamber, MD, USA, [email protected] 4. IOTA, KinetX, Inc., and Moscow Institute of Electronics and Mathematics of Higher School of Economics, per. Trekhsvyatitelskiy B., dom 3, 109028, Moscow, Russia, [email protected] 5. IOTA, Murrumbateman, NSW, Australia, [email protected] 6. IOTA, Forest Glen, MD, USA, [email protected] 7. Carl Sagan Center at the SETI Institute, 189 Bernardo Av, Mountain View CA 94043, USA, [email protected] Corresponding author Franck Marchis Carl Sagan Center at the SETI Institute 189 Bernardo Av Mountain View CA 94043 USA [email protected] 1 Keywords: Asteroids, Binary Asteroids, Trojan Asteroids, Occultation Abstract: On 2012 January 19, observers in the northeastern United States of America observed an occultation of 8.0-mag HIP 41337 star by the Jupiter-Trojan (911) Agamemnon, including one video recorded with a 36cm telescope that shows a deep brief secondary occultation that is likely due to a satellite, of about 5 km (most likely 3 to 10 km) across, at 278 km ±5 km (0.0931″) from the asteroid’s center as projected in the plane of the sky. A satellite this small and this close to the asteroid could not be resolved in the available VLT adaptive optics observations of Agamemnon recorded in 2003.
    [Show full text]
  • Thermal-IR Spectral Analysis of Jupiter's Trojan Asteroids
    50th Lunar and Planetary Science Conference 2019 (LPI Contrib. No. 2132) 1238.pdf THERMAL-IR SPECTRAL ANALYSIS OF JUPITER’S TROJAN ASTEROIDS: DETECTING SILICATES. A. C. Martin1, J. P. Emery1, S. S. Lindsay2, 1The University of Tennessee Earth and Planetary Science Department, 1621 Cumberland Avenue, 602 Strong Hall, Knoxville TN, 37996, 2The University of Tennessee, De- partment of Physics, 1408 Circle Drive, Knoxville TN, 37996.. Introduction: Jupiter’s Trojan asteroids (hereafter (e.g., [11],[8]). Had Trojans and JFCs formed in the Trojans) populate Jupiter’s L4 and L5 Lagrange points. same region, Trojans should have fine-grained silicates The L4 and L5 points are dynamically stable over the in primarily amorphous phases. lifetime of the Solar System, and, therefore, Trojans Analysis of TIR spectra by [12] shows that the sur- could have resided in the L4 and L5 regions for nearly faces of three Trojans (624 Hektor, 1172 Aneas, and 911 4.5 Gyr [1]. However, it is still uncertain where the Tro- Agamemnon) have emissivity features similar to fine- jans formed and when they were captured. Asteroid or- grained silicates in comet comae. The TIR wavelength igins provide an effective means of constraining the region is beneficial for silicate mineralogy detection be- events that dynamically shaped the solar system. Tro- cause it contains fundamental Si-O molecular vibrations jans may help in determining the extent of radial mixing (stretching at 9 –12 µm and bending at 14 – 25 µm; that occurred during giant planet migration. [13]). Comets produce optically thin comae that result Trojans are thought to have formed in one of two in strong 10-µm emission features when comprised of locations: (1) in their current position (~5.2 AU), or (2) fine-grained (≤10 to 20 µm) dispersed silicates.
    [Show full text]
  • Une Nouvelle Mention Du Dieu Mars Mullo : Un Graffite Sur Vase À Notre
    Revue archéologique de l'Ouest 25 | 2008 Varia Une nouvelle mention du dieu Mars Mullo : un graffite sur vase à Notre-Dame-du-Marillais (Le Marillais, Maine-et-Loire) A new record of the god Mars Mullo: a graffito on a vase from Notre-Dame-du- Marillais (Le Marillais, Maine-et-Loire) François Bérard, Olivier Gabory, Martial Monteil, Christian Le Boulaire et Yves Saget Édition électronique URL : http://journals.openedition.org/rao/5709 DOI : 10.4000/rao.5709 ISBN : 978-2-7535-1608-3 ISSN : 1775-3732 Éditeur Presses universitaires de Rennes Édition imprimée Date de publication : 20 décembre 2008 Pagination : 261-268 ISBN : 978-2-7535-0789-0 ISSN : 0767-709X Référence électronique François Bérard, Olivier Gabory, Martial Monteil, Christian Le Boulaire et Yves Saget, « Une nouvelle mention du dieu Mars Mullo : un graffite sur vase à Notre-Dame-du-Marillais (Le Marillais, Maine-et- Loire) », Revue archéologique de l'Ouest [En ligne], 25 | 2008, mis en ligne le 30 mars 2020, consulté le 04 décembre 2020. URL : http://journals.openedition.org/rao/5709 ; DOI : https://doi.org/10.4000/rao. 5709 Tous droits réservés Revue archéologique de l’Ouest, 25, 2008, p. 261-268. Une nouvelle mention du dieu Mars Mullo : un graffite sur vase à Notre-Dame-du-Marillais (Le Marillais, Maine-et-Loire) A new record of the god Mars Mullo: a graffito on a vase from Notre-Dame-du-Marillais (Le Marillais, Maine-et-Loire) François Bérard*, Olivier Gabory** et Martial Monteil*** avec la collaboration de Christian Le Boulaire**** et Yves Saget***** Résumé : Un bol en sigillée du Centre-Ouest, découvert fortuitement à Notre-Dame-du-Marillais (Maine-et-Loire), porte un graffite à caractère votif où sont mentionnés les puissances divines des Augustes et le dieu Mullo.
    [Show full text]
  • Occultation Newsletter Volume 8, Number 4
    Volume 12, Number 1 January 2005 $5.00 North Am./$6.25 Other International Occultation Timing Association, Inc. (IOTA) In this Issue Article Page The Largest Members Of Our Solar System – 2005 . 4 Resources Page What to Send to Whom . 3 Membership and Subscription Information . 3 IOTA Publications. 3 The Offices and Officers of IOTA . .11 IOTA European Section (IOTA/ES) . .11 IOTA on the World Wide Web. Back Cover ON THE COVER: Steve Preston posted a prediction for the occultation of a 10.8-magnitude star in Orion, about 3° from Betelgeuse, by the asteroid (238) Hypatia, which had an expected diameter of 148 km. The predicted path passed over the San Francisco Bay area, and that turned out to be quite accurate, with only a small shift towards the north, enough to leave Richard Nolthenius, observing visually from the coast northwest of Santa Cruz, to have a miss. But farther north, three other observers video recorded the occultation from their homes, and they were fortuitously located to define three well- spaced chords across the asteroid to accurately measure its shape and location relative to the star, as shown in the figure. The dashed lines show the axes of the fitted ellipse, produced by Dave Herald’s WinOccult program. This demonstrates the good results that can be obtained by a few dedicated observers with a relatively faint star; a bright star and/or many observers are not always necessary to obtain solid useful observations. – David Dunham Publication Date for this issue: July 2005 Please note: The date shown on the cover is for subscription purposes only and does not reflect the actual publication date.
    [Show full text]
  • On the Accuracy of Restricted Three-Body Models for the Trojan Motion
    DISCRETE AND CONTINUOUS Website: http://AIMsciences.org DYNAMICAL SYSTEMS Volume 11, Number 4, December 2004 pp. 843{854 ON THE ACCURACY OF RESTRICTED THREE-BODY MODELS FOR THE TROJAN MOTION Frederic Gabern1, Angel` Jorba1 and Philippe Robutel2 Departament de Matem`aticaAplicada i An`alisi Universitat de Barcelona Gran Via 585, 08007 Barcelona, Spain1 Astronomie et Syst`emesDynamiques IMCCE-Observatoire de Paris 77 Av. Denfert-Rochereau, 75014 Paris, France2 Abstract. In this note we compare the frequencies of the motion of the Trojan asteroids in the Restricted Three-Body Problem (RTBP), the Elliptic Restricted Three-Body Problem (ERTBP) and the Outer Solar System (OSS) model. The RTBP and ERTBP are well-known academic models for the motion of these asteroids, and the OSS is the standard model used for realistic simulations. Our results are based on a systematic frequency analysis of the motion of these asteroids. The main conclusion is that both the RTBP and ERTBP are not very accurate models for the long-term dynamics, although the level of accuracy strongly depends on the selected asteroid. 1. Introduction. The Restricted Three-Body Problem models the motion of a particle under the gravitational attraction of two point masses following a (Keple- rian) solution of the two-body problem (a general reference is [17]). The goal of this note is to discuss the degree of accuracy of such a model to study the real motion of an asteroid moving near the Lagrangian points of the Sun-Jupiter system. To this end, we have considered two restricted three-body problems, namely: i) the Circular RTBP, in which Sun and Jupiter describe a circular orbit around their centre of mass, and ii) the Elliptic RTBP, in which Sun and Jupiter move on an elliptic orbit.
    [Show full text]
  • Structure and Composition of the Surfaces of Trojan Asteroids from Reflection and Emission Spectroscopy
    Lunar and Planetary Science XXXVII (2006) 2075.pdf STRUCTURE AND COMPOSITION OF THE SURFACES OF TROJAN ASTEROIDS FROM REFLECTION AND EMISSION SPECTROSCOPY. Joshua. P. Emery,1 Dale. P. Cruikshank,2 and Jeffrey Van Cleve3 1NASA Ames / SETI Institute ([email protected]), 2NASA Ames Research Center ([email protected]), 3 Ball Aerospace ([email protected]). Introduction: The orbits of Trojan asteroids (~5.2 AU – beyond the Main Belt) place them in the transi- 1.0 tion region between the rocky inner and icy outer Solar 0.9 1172 Aneas System. Most Trojans were traditionally thought to 0.8 have originated in this region [3], although other loca- 1.0 tions of origin are possible [e.g., 4,5,6]. Possible con- 0.9 nections between Trojans and other groups of objects 911 Agamemnon 0.8 (Jupiter family comets, irregular satellites, Centaurs, Emissivity KBOs) are also important, but only poorly understood 1.0 [4,6,7,9]. The compositions of Trojans thereby hold 0.9 624 Hektor important clues concerning conditions in this critical 0.8 transition region, and the solar nebula as a whole. We discuss emission and reflection spectra of three Trojans 10 15 20 25 30 35 Wavelength (µm) (624 Hektor, 911 Agamemnon, and 1172 Aneas) and implications for surface structure and composition. Figure 2. Mid-IR emissivity spectra of Trojans. Vis-NIR Reflectance Spectroscopy: Reflectance studies of Trojans in the visible and NIR (0.8 – 4.0 Analysis: The Trojans have a similar spectral shape µm) reveal dark surfaces with mild to very red spectral to some carbonaceous meteorites and fine-grained sili- slopes, but no distinct absorption features (Fig.
    [Show full text]
  • Astrocladistics of the Jovian Trojan Swarms
    MNRAS 000,1–26 (2020) Preprint 23 March 2021 Compiled using MNRAS LATEX style file v3.0 Astrocladistics of the Jovian Trojan Swarms Timothy R. Holt,1,2¢ Jonathan Horner,1 David Nesvorný,2 Rachel King,1 Marcel Popescu,3 Brad D. Carter,1 and Christopher C. E. Tylor,1 1Centre for Astrophysics, University of Southern Queensland, Toowoomba, QLD, Australia 2Department of Space Studies, Southwest Research Institute, Boulder, CO. USA. 3Astronomical Institute of the Romanian Academy, Bucharest, Romania. Accepted XXX. Received YYY; in original form ZZZ ABSTRACT The Jovian Trojans are two swarms of small objects that share Jupiter’s orbit, clustered around the leading and trailing Lagrange points, L4 and L5. In this work, we investigate the Jovian Trojan population using the technique of astrocladistics, an adaptation of the ‘tree of life’ approach used in biology. We combine colour data from WISE, SDSS, Gaia DR2 and MOVIS surveys with knowledge of the physical and orbital characteristics of the Trojans, to generate a classification tree composed of clans with distinctive characteristics. We identify 48 clans, indicating groups of objects that possibly share a common origin. Amongst these are several that contain members of the known collisional families, though our work identifies subtleties in that classification that bear future investigation. Our clans are often broken into subclans, and most can be grouped into 10 superclans, reflecting the hierarchical nature of the population. Outcomes from this project include the identification of several high priority objects for additional observations and as well as providing context for the objects to be visited by the forthcoming Lucy mission.
    [Show full text]
  • Rylant Ryle Rylen Rylend Rylent Ryles Ryley Rylind Rylint Rylyn
    Rylant Ryordint Ryvel Ryle Ryordon Ryvell Rylen Ryordyn Ryver Rylend Ryordynd Ryvers Rylent Rypon Ryves Ryles Rysby Ryvett Ryley Rysch Ryvette Rylind Rysdal Ryviere Rylint Rysdale Ryvière Rylyn Rysden Ryvieres Rylynd Rysdil Ryvières Rym Rysdile Ryvišre Rymer Rysdon Ryvišres Rymkiewicz Rysdul Ryvoire Rymor Rysdyle Ryvoires Rymour Ryse Ryvyere Ryn Ryseby Ryvyère Rynd Rysedal Ryvyeres Rynde Rysedale Ryvyères Ryndes Ryseden Ryvyšre Rynds Rysedil Ryzewski Ryzewsky Ryne Rysedile Ryngar Rysedon Rynger Rysedul Ryngerose Rysedyle Ryngrose Rysen Ryngwood Rysevski Rynkowski Rysevsky Rynne Ryshall Ryodan Ryshevski Ryodand Ryshevsky Ryodane Ryshford Ryodant Ryshworth Ryoden Rysin Ryodend Rysing Ryodent Rysinski Ryodind Rysley Ryodint Rysling Ryodyn Ryson Ryodynd Ryszeski Ryon Ryszesky Ryordan Ryszevski Ryordand Ryszevsky Ryordane Ryszewski Ryordant Ryszewsky Ryorden Ryther Ryordend Rytter Ryordent Rytterbusch Ryordin Ryvall Ryordind Ryve Hall of Names by Swyrich © 1999 Swyrich Corporation www.swyrich.com 1-888-468-7686 883 Sabbing Sacherrevall Sackseart Sacreiss Saenger Sabbink Sachet Sacksebly Sacreisst Saent Sabbint Sacheveral Sacksebrage Sacresst Saenz Sabbyn Sacheverale Sacksebrege Sacvyle Sáenz Sabbynd Sacheverall Sacksebrige Sacvylle Saesnes Saalmes Sabcott Sacheverel Sacksebrish Saddingtolm Saez Saan Sabcotts Sacheverell Sackser Saddingtom Sáez Saand Saben Sacheveril Sackserd Saddingtomb Safadge Saane Sabend Sacheverile Sacksers Saddingtome Safage Saant Sabent Sacheverral Sacksert Saddington Safal Saar Sabey Sacheverrall Sacksier Saddingtone
    [Show full text]
  • Trajectory Design of the Lucy Mission to Explore the Diversity of the Jupiter Trojans
    70th International Astronautical Congress, Washington, DC. This material is declared a work of the U.S. Government and is not subject to copyright protection in the United States. IAC–2019–C1.2.11 Trajectory Design of the Lucy Mission to Explore the Diversity of the Jupiter Trojans Jacob A. Englander Aerospace Engineer, Navigation and Mission Design Branch, NASA Goddard Space Flight Center Kevin Berry Lucy Flight Dynamics Lead, Navigation and Mission Design Branch, NASA Goddard Space Flight Center Brian Sutter Totally Awesome Trajectory Genius, Lockheed Martin Space Systems, Littleton, CO Dale Stanbridge Lucy Navigation Team Chief, KinetX Aerospace, Simi Valley, CA Donald H. Ellison Aerospace Engineer, Navigation and Mission Design Branch, NASA Goddard Space Flight Center Ken Williams Flight Director, Space Navigation and Flight Dynamics Practice, KinetX Aerospace, Simi Valley, California James McAdams Aerospace Engineer, Space Navigation and Flight Dynamics Practice, KinetX Aerospace, Simi Valley, California Jeremy M. Knittel Aerospace Engineer, Space Navigation and Flight Dynamics Practice, KinetX Aerospace, Simi Valley, California Chelsea Welch Fantastically Awesome Deputy Trajectory Genius, Lockheed Martin Space Systems, Littleton, CO Hal Levison Principle Investigator, Lucy mission, Southwest Research Institute, Boulder, CO Lucy, NASA’s next Discovery-class mission, will explore the diversity of the Jupiter Trojan asteroids. The Jupiter Trojans are thought to be remnants of the early solar system that were scattered inward when the gas giants migrated to their current positions as described in the Nice model. There are two stable subpopulations, or “swarms,” captured at the Sun-Jupiter L4 and L5 regions. These objects are the most accessible samples of what the outer solar system may have originally looked like.
    [Show full text]
  • The Minor Planet Bulletin
    THE MINOR PLANET BULLETIN OF THE MINOR PLANETS SECTION OF THE BULLETIN ASSOCIATION OF LUNAR AND PLANETARY OBSERVERS VOLUME 38, NUMBER 2, A.D. 2011 APRIL-JUNE 71. LIGHTCURVES OF 10452 ZUEV, (14657) 1998 YU27, AND (15700) 1987 QD Gary A. Vander Haagen Stonegate Observatory, 825 Stonegate Road Ann Arbor, MI 48103 [email protected] (Received: 28 October) Lightcurve observations and analysis revealed the following periods and amplitudes for three asteroids: 10452 Zuev, 9.724 ± 0.002 h, 0.38 ± 0.03 mag; (14657) 1998 YU27, 15.43 ± 0.03 h, 0.21 ± 0.05 mag; and (15700) 1987 QD, 9.71 ± 0.02 h, 0.16 ± 0.05 mag. Photometric data of three asteroids were collected using a 0.43- meter PlaneWave f/6.8 corrected Dall-Kirkham astrograph, a SBIG ST-10XME camera, and V-filter at Stonegate Observatory. The camera was binned 2x2 with a resulting image scale of 0.95 arc- seconds per pixel. Image exposures were 120 seconds at –15C. Candidates for analysis were selected using the MPO2011 Asteroid Viewing Guide and all photometric data were obtained and analyzed using MPO Canopus (Bdw Publishing, 2010). Published asteroid lightcurve data were reviewed in the Asteroid Lightcurve Database (LCDB; Warner et al., 2009). The magnitudes in the plots (Y-axis) are not sky (catalog) values but differentials from the average sky magnitude of the set of comparisons. The value in the Y-axis label, “alpha”, is the solar phase angle at the time of the first set of observations. All data were corrected to this phase angle using G = 0.15, unless otherwise stated.
    [Show full text]
  • LYNCHBURG COLLEGE 2015-16 Annual Report the LC LOVE Sign That Graces the Dell Symbolizes More Than a Century of Love Stories
    LYNCHBURG COLLEGE 2015-16 Annual Report The LC LOVE sign that graces the Dell symbolizes more than a century of love stories. Josephus and Sarah Hopwood loved education. That’s what drove them, together with local businessmen and church members, to take a risk and open a new school. Their passion was not in financial returns, but in preparing students for an active, engaged life. Table of Contents Message from the President ........................................2 Countless people — students, alumni, faculty, staff, and friends — Message from the Chair ............................................3 loved this community and gave it a part of their hearts, some for Leadership Boards .................................................4 Honor Roll of Contributors: Gift Societies .............................6 four years, some for a career, and some for a lifetime. Each person Financials / Sources of Income .....................................10 gave back to the community in a personal, unique way that made Comprehensive Donors List for 2015-16 .............................12 Highlights 2015-16 ................................................36 Lynchburg College the place it is today. Matching Gift Organizations ........................................44 Endowed Funds ..................................................45 Gifts to Endowed Funds ...........................................46 In recent years, this love has led to many opportunities that make Tribute and Memorial Gifts .........................................47 To Make a Gift ....................................................49
    [Show full text]
  • Appendix 1 1311 Discoverers in Alphabetical Order
    Appendix 1 1311 Discoverers in Alphabetical Order Abe, H. 28 (8) 1993-1999 Bernstein, G. 1 1998 Abe, M. 1 (1) 1994 Bettelheim, E. 1 (1) 2000 Abraham, M. 3 (3) 1999 Bickel, W. 443 1995-2010 Aikman, G. C. L. 4 1994-1998 Biggs, J. 1 2001 Akiyama, M. 16 (10) 1989-1999 Bigourdan, G. 1 1894 Albitskij, V. A. 10 1923-1925 Billings, G. W. 6 1999 Aldering, G. 4 1982 Binzel, R. P. 3 1987-1990 Alikoski, H. 13 1938-1953 Birkle, K. 8 (8) 1989-1993 Allen, E. J. 1 2004 Birtwhistle, P. 56 2003-2009 Allen, L. 2 2004 Blasco, M. 5 (1) 1996-2000 Alu, J. 24 (13) 1987-1993 Block, A. 1 2000 Amburgey, L. L. 2 1997-2000 Boattini, A. 237 (224) 1977-2006 Andrews, A. D. 1 1965 Boehnhardt, H. 1 (1) 1993 Antal, M. 17 1971-1988 Boeker, A. 1 (1) 2002 Antolini, P. 4 (3) 1994-1996 Boeuf, M. 12 1998-2000 Antonini, P. 35 1997-1999 Boffin, H. M. J. 10 (2) 1999-2001 Aoki, M. 2 1996-1997 Bohrmann, A. 9 1936-1938 Apitzsch, R. 43 2004-2009 Boles, T. 1 2002 Arai, M. 45 (45) 1988-1991 Bonomi, R. 1 (1) 1995 Araki, H. 2 (2) 1994 Borgman, D. 1 (1) 2004 Arend, S. 51 1929-1961 B¨orngen, F. 535 (231) 1961-1995 Armstrong, C. 1 (1) 1997 Borrelly, A. 19 1866-1894 Armstrong, M. 2 (1) 1997-1998 Bourban, G. 1 (1) 2005 Asami, A. 7 1997-1999 Bourgeois, P. 1 1929 Asher, D.
    [Show full text]