Subduction Zone Backarcs, Mobile Belts, and Orogenic Heat Roy D

Total Page:16

File Type:pdf, Size:1020Kb

Subduction Zone Backarcs, Mobile Belts, and Orogenic Heat Roy D Subduction zone backarcs, mobile belts, and orogenic heat Roy D. Hyndman, Pacific Geoscience Centre, Geological Survey of Canada, P.O. Box 6000, Sidney, British Columbia V8L4B2, Canada, and School of Earth and Ocean Sciences, University of Victoria, Victoria, British Columbia V8W3P6, Canada, [email protected]; Claire A. Currie, School of Earth and Ocean Sciences, University of Victoria, Victoria, British Columbia V8W3P6, Canada; and Stephane P. Mazzotti, Pacific Geoscience Centre, Geological Survey of Canada, P.O. Box 6000, Sidney, British Columbia V8L4B2, Canada ABSTRACT hot backarc lithosphere, not from the Two important problems of continental orogenic deformation process itself. tectonics may be resolved by recogniz- INTRODUCTION ing that most subduction zone backarcs The model of plate tectonics with have hot, thin, and weak lithospheres narrow plate boundaries provides an Figure 1. The North America Cordillera mobile over considerable widths. These are (1) excellent first-order description of global the origin of long-lived active “mobile belt. The high elevation and complex current tectonics. Plate tectonics also provides tectonics illustrate the hot, weak, backarc belts” contrasted to the stability of cra- an elegant explanation for orogenic lithosphere deformed by variable margin forces. tons and platforms, and (2) the origin crustal shortening and thickening in of the heat of continental collision orog- terms of continental or terrane colli- eny. At many continental margin plate sion. However, a number of large-scale deformation over long geological peri- boundaries, there are broad belts with tectonic problems are not explained by ods. They have some characteristic that a long history of distributed deforma- the simple rigid plate and continental allows them to maintain an especially tion. These regions are mobile because collision models. In this article, we pre- thick, strong lithosphere, such as a more the lithosphere is sufficiently weak to sent explanations for two such tectonic refractory mantle composition (Jordan, be deformed by the forces developed problems: the origin of long-lived active 1978; Forte and Perry, 2000). The rea- at plate boundaries. We conclude that “mobile belts” that lie along a number son for the long histories of tectonic mobile belts are weak because they are of continental margin plate boundaries, activity in the mobile belts has not been hot, and they are hot as a consequence contrasted to the stability of cratons and clear. Also, most continental mobile of their position in present or recent platforms, and the origin of the heat of belts have high elevation; they are backarcs. Most continental backarcs continental collision orogeny. Current mountain belts. Surprisingly, however, have thin and hot lithospheres, not just mobile belts are up to 1000 km wide there is commonly no crustal thicken- those with active extension or rifting. and cover nearly a quarter of the conti- ing. In this article, we emphasize the Moho temperatures are 800–900 °C and nents (e.g., Stein and Freymueller, 2002; important distinction between long-lived lithosphere thicknesses are 50–60 km, Thatcher, 2003). For example, the North mobile mountain belts where the eleva- compared to 400–500 °C and 150–300 American Cordillera has been tectoni- tion is mainly thermally supported and km for cratons and other regions with a cally active for >180 m.y., with evidence short-lived continent or terrane collision thermotectonic age greater than ca. 300 for older tectonic events extending this orogenies where there is major crustal Ma. The temperature differences result history to >350 m.y. (e.g., Burchfiel et shortening and thickening. in backarc lithospheres that are weaker al., 1992) (Fig. 1). Rates of deformation Plate tectonics provides an elegant than cratons by more than a factor of in current mobile belts are commonly explanation for orogenic crustal short- 10. Backarcs may be hot because shal- 5–15 mm/yr; i.e., 10%–20% of the main ening and thickening in terms of con- low asthenosphere convection results plate boundary rates as indicated by tinental or terrane collision when an from the reduction in viscosity due distributed seismicity, precision global ocean closes. However, an important to water rising from the underlying positioning system (GPS) measure- question remains unresolved that we subducting plate. Hot, weak, former ments, and geological studies. attempt to address: What is the origin backarcs are expected to be the locus The long geological histories of defor- of the heat of orogeny? Significant heat of most deformation during continent mation suggest that these mobile belts from frictional deformation processes or terrane collision orogeny. The heat exhibit long-term lithosphere weak- has been discounted through studies by indicated by orogenic plutonism, high ness compared to cratons. In contrast, a number of authors, and most other grade metamorphism, and ductile defor- the Precambrian cratons and stable orogenic processes should absorb rather mation may come from the preexisting platforms have exhibited little internal than generate heat. GSA Today: v. 15, no. 2, doi: 10:1130/1052-5173(2005)015<4:SZBMBA>2.0.CO;2 4 FEBRUARY 2005, GSA TODAY In this study, we examine the hypoth- 2004). It is well recognized that exten- eses that (1) most mobile belts are sional backarcs are hot (e.g., Wiens located in backarcs or recent backarcs and Smith, 2003), including the Basin that are characterized by hot, thin, and and Range and extensional west Pacific weak lithospheres; and (2) most conti- backarc basins. In these regions, rifting nent or terrane collision orogenic belts and spreading are obvious sources of involve shortening of former hot back- heat. We therefore focus on nine back- arc mobile belts. We do not discuss less arcs where we conclude that there is no common weakening mechanisms that current or recent thermally significant subsequently may be reactivated in col- extension in the region, as indicated lision, such as localized extension and by GPS, seismicity, or geological stud- hotspots. ies (Fig. 3). Our areas are all more than BACKARC THERMAL STRUCTURE 100 km from such extension; Morgan (1983) showed that the thermal effects Why are mobile belt regions so weak Figure 2. Temperature vs. depth for the of rifts extend only a short distance. The and why are cratons so strong for long Cascadia backarc and adjacent craton (from geological periods? The primary reason Hyndman and Lewis, 1999). thermal effect of extension decays with appears to be that the mobile belts are a time constant of ~50 m.y., so we have hot, whereas cratons are cold (e.g., Q), effective elastic thickness, Te, ther- also excluded areas with significant Vitorello and Pollack, 1980; Chapman mally supported high elevations, seismic mid-late Cenozoic extension. and Furlong, 1992), and, below the estimates of lithosphere thickness, and We summarize the two principal indi- upper crust brittle zone, there is a strong upper mantle xenoliths. The high tem- cators of high temperatures in Figure decrease in strength with increasing peratures of current mobile belts are 4 (for details and references, see the 1 temperature. The systematic decrease also indicated by widespread sporadic GSA Data Repository ): (1) surface 2 in heat flow with age, or time since the Cenozoic basaltic volcanism, in con- heat flow greater than ~70 mW/m (for last “thermotectonic event,” has been trast to the almost complete absence of normal upper crust heat generation 3 well recognized. The greatest difference recent volcanism in cratons and stable of 1.0–1.5 μW/m ) (e.g., Lewis et al., is between the currently active mobile platforms. The same indicators of tem- 2003; Chapman and Furlong, 1992); and belts (70–90 mW/m2) compared to the perature show the lithospheres of cra- (2) low seismic velocities in the upper cratons (~40 mW/m2) (e.g., Chapman tons to be cold and >200 km thick. mantle (i.e., Pn velocities <7.9 km/s and Furlong, 1992; Vitorello and We have carried out a global survey compared to ~8.2 km/s for cratons) Pollack, 1980). Temperatures at the base of continental backarcs, and, in all (e.g., Black and Braile, 1982; Lewis et al., of the crust are ~400 °C lower for cold cases where there is sufficient data, we 2003) or seismic tomography veloci- cratons compared to young, hot mobile have found surprisingly high and uni- ties lower than the global average by at belts (i.e., 400–500 °C vs. 800–900 °C, form temperatures across wide zones, least 2% for P-waves or 4% for S-waves respectively). Although only the cool- indicated by heat flow and other deep (~4% and ~7% slower relative to cratons) est case of cratons is discussed here, temperature constraints (also see Currie, (e.g., Goes et al., 2000; Goes and van Paleozoic stable areas are only slightly warmer than Archean cratons and are estimated to be almost as strong. As an example, Figure 2 shows temperature estimates for the Canadian Cordillera mobile belt compared to the adjacent Canadian Shield (Hyndman and Lewis, 1999; Lewis et al., 2003). With these thermal estimates, the base of the mobile belt lithosphere (hot enough for vigorous convection, close to the solidus) is at a depth of only 50–60 km. The mobile belt high temperatures and thin lithospheres also are inferred from many other deep temperature indica- tors, including temperature-dependent uppermost mantle seismic properties (Moho refraction velocity, Pn, tomog- raphy compression and shear wave Figure 3. Examples of nonextensional backarcs with high heat flow and velocities, Vp and Vs, and attenuation, other high temperature indicators. 1GSA Data Repository item 2005030, Table DR1, notes, and references for Figure 4, is available on request from Documents Secretary, GSA, P.O. Box 9140, Boulder, CO 80301-9140, USA, [email protected], or at www.geosociety.org/pubs/ft2005.htm.
Recommended publications
  • Two Contrasting Phanerozoic Orogenic Systems Revealed by Hafnium Isotope Data William J
    ARTICLES PUBLISHED ONLINE: 17 APRIL 2011 | DOI: 10.1038/NGEO1127 Two contrasting Phanerozoic orogenic systems revealed by hafnium isotope data William J. Collins1*(, Elena A. Belousova2, Anthony I. S. Kemp1 and J. Brendan Murphy3 Two fundamentally different orogenic systems have existed on Earth throughout the Phanerozoic. Circum-Pacific accretionary orogens are the external orogenic system formed around the Pacific rim, where oceanic lithosphere semicontinuously subducts beneath continental lithosphere. In contrast, the internal orogenic system is found in Europe and Asia as the collage of collisional mountain belts, formed during the collision between continental crustal fragments. External orogenic systems form at the boundary of large underlying mantle convection cells, whereas internal orogens form within one supercell. Here we present a compilation of hafnium isotope data from zircon minerals collected from orogens worldwide. We find that the range of hafnium isotope signatures for the external orogenic system narrows and trends towards more radiogenic compositions since 550 Myr ago. By contrast, the range of signatures from the internal orogenic system broadens since 550 Myr ago. We suggest that for the external system, the lower crust and lithospheric mantle beneath the overriding continent is removed during subduction and replaced by newly formed crust, which generates the radiogenic hafnium signature when remelted. For the internal orogenic system, the lower crust and lithospheric mantle is instead eventually replaced by more continental lithosphere from a collided continental fragment. Our suggested model provides a simple basis for unravelling the global geodynamic evolution of the ancient Earth. resent-day orogens of contrasting character can be reduced to which probably began by the Early Ordovician12, and the Early two types on Earth, dominantly accretionary or dominantly Paleozoic accretionary orogens in the easternmost Altaids of Pcollisional, because only the latter are associated with Wilson Asia13.
    [Show full text]
  • Part 3: Normal Faults and Extensional Tectonics
    12.113 Structural Geology Part 3: Normal faults and extensional tectonics Fall 2005 Contents 1 Reading assignment 1 2 Growth strata 1 3 Models of extensional faults 2 3.1 Listric faults . 2 3.2 Planar, rotating fault arrays . 2 3.3 Stratigraphic signature of normal faults and extension . 2 3.4 Core complexes . 6 4 Slides 7 1 Reading assignment Read Chapter 5. 2 Growth strata Although not particular to normal faults, relative uplift and subsidence on either side of a surface breaking fault leads to predictable patterns of erosion and sedi­ mentation. Sediments will fill the available space created by slip on a fault. Not only do the characteristic patterns of stratal thickening or thinning tell you about the 1 Figure 1: Model for a simple, planar fault style of faulting, but by dating the sediments, you can tell the age of the fault (since sediments were deposited during faulting) as well as the slip rates on the fault. 3 Models of extensional faults The simplest model of a normal fault is a planar fault that does not change its dip with depth. Such a fault does not accommodate much extension. (Figure 1) 3.1 Listric faults A listric fault is a fault which shallows with depth. Compared to a simple planar model, such a fault accommodates a considerably greater amount of extension for the same amount of slip. Characteristics of listric faults are that, in order to maintain geometric compatibility, beds in the hanging wall have to rotate and dip towards the fault. Commonly, listric faults involve a number of en echelon faults that sole into a low­angle master detachment.
    [Show full text]
  • Tectonics of the Musandam Peninsula and Northern Oman Mountains: from Ophiolite Obduction to Continental Collision
    GeoArabia, 2014, v. 19, no. 2, p. 135-174 Gulf PetroLink, Bahrain Tectonics of the Musandam Peninsula and northern Oman Mountains: From ophiolite obduction to continental collision Michael P. Searle, Alan G. Cherry, Mohammed Y. Ali and David J.W. Cooper ABSTRACT The tectonics of the Musandam Peninsula in northern Oman shows a transition between the Late Cretaceous ophiolite emplacement related tectonics recorded along the Oman Mountains and Dibba Zone to the SE and the Late Cenozoic continent-continent collision tectonics along the Zagros Mountains in Iran to the northwest. Three stages in the continental collision process have been recognized. Stage one involves the emplacement of the Semail Ophiolite from NE to SW onto the Mid-Permian–Mesozoic passive continental margin of Arabia. The Semail Ophiolite shows a lower ocean ridge axis suite of gabbros, tonalites, trondhjemites and lavas (Geotimes V1 unit) dated by U-Pb zircon between 96.4–95.4 Ma overlain by a post-ridge suite including island-arc related volcanics including boninites formed between 95.4–94.7 Ma (Lasail, V2 unit). The ophiolite obduction process began at 96 Ma with subduction of Triassic–Jurassic oceanic crust to depths of > 40 km to form the amphibolite/granulite facies metamorphic sole along an ENE- dipping subduction zone. U-Pb ages of partial melts in the sole amphibolites (95.6– 94.5 Ma) overlap precisely in age with the ophiolite crustal sequence, implying that subduction was occurring at the same time as the ophiolite was forming. The ophiolite, together with the underlying Haybi and Hawasina thrust sheets, were thrust southwest on top of the Permian–Mesozoic shelf carbonate sequence during the Late Cenomanian–Campanian.
    [Show full text]
  • Plate Tectonics
    Plate Tectonics Plate Tectonics is a unifying theory that states that the Earth is composed of lithospheric crustal plates that move slowly, change size, and interact with one another. This theory was amalgamated from a variety of studies that began in the early 20th century and culminated in the 1960s. Early Players: Richard Oldham (1858-1936): discovered P Wave Shadow Zones Inge Lehmann (1888-1993): discovered the S Wave Shadow Zone, including the fact that the outer core is liquid Eduard Suess (1831-1914): published internal structure of the Earth, utilizing some of Oldham’s data Andrija Mohorovicic (1857-1936): discovered the seismic discontinuity between the crust and the mantle Beno Gutenberg (1889-1960): found the CMB to be at 2900 km The Great Synthesizer: Alfred Wagener (1880-1930) Book: The Origin of Continents and Oceans (1915) Found six major pieces of evidence the continents move, hence his theory is known as Continental Drift. (Figures 19.2-1911) 1) The shape of the continents: they fit together 2) Paleontological Evidence: found matching fossils on several continents a) Glossopteris: found in rocks of the same age on South America, South Africa, Australia, India and Antarctica b) Lystrosaurus: found in rocks of the same age on Africa, India, also some in Asia and Antarctica c) Mesosaurus: found in rocks of the same age on South America, South Africa d) Cynognathus: found in rocks of the same age on South America, South Africa 3) Glacial Evidence: the glaciers appear to originate from the modern-day oceans (which is impossible) 4) Structure and Rock Type: geologic features end on one continent and reappear on the other (South America and Africa) 5) Paleoclimate Zones: like today, the old Earth had climate zones.
    [Show full text]
  • THE JOURNAL of GEOLOGY March 1990
    VOLUME 98 NUMBER 2 THE JOURNAL OF GEOLOGY March 1990 QUANTITATIVE FILLING MODEL FOR CONTINENTAL EXTENSIONAL BASINS WITH APPLICATIONS TO EARLY MESOZOIC RIFTS OF EASTERN NORTH AMERICA' ROY W. SCHLISCHE AND PAUL E. OLSEN Department of Geological Sciences and Lamont-Doherty Geological Observatory of Columbia University, Palisades, New York 10964 ABSTRACT In many half-graben, strata progressively onlap the hanging wall block of the basins, indicating that both the basins and their depositional surface areas were growing in size through time. Based on these con- straints, we have constructed a quantitative model for the stratigraphic evolution of extensional basins with the simplifying assumptions of constant volume input of sediments and water per unit time, as well as a uniform subsidence rate and a fixed outlet level. The model predicts (1) a transition from fluvial to lacustrine deposition, (2) systematically decreasing accumulation rates in lacustrine strata, and (3) a rapid increase in lake depth after the onset of lacustrine deposition, followed by a systematic decrease. When parameterized for the early Mesozoic basins of eastern North America, the model's predictions match trends observed in late Triassic-age rocks. Significant deviations from the model's predictions occur in Early Jurassic-age strata, in which markedly higher accumulation rates and greater lake depths point to an increased extension rate that led to increased asymmetry in these half-graben. The model makes it possible to extract from the sedimentary record those events in the history of an extensional basin that are due solely to the filling of a basin growing in size through time and those that are due to changes in tectonics, climate, or sediment and water budgets.
    [Show full text]
  • Geotectonic Model of the Alpine Development of Lakavica Graben in the Eastern Part of the Vardar Zone in the Republic of Macedonia
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by UGD Academic Repository Geologica Macedonica, Vol. 27, No. 1, pp. 87–93 (2013) GEOME 2 ISSN 0352 – 1206 Manuscript received: May 17, 2013 UDC: 551.245.03(497.71/.73) Accepted: October 25, 2013 Original scientific paper GEOTECTONIC MODEL OF THE ALPINE DEVELOPMENT OF LAKAVICA GRABEN IN THE EASTERN PART OF THE VARDAR ZONE IN THE REPUBLIC OF MACEDONIA Goše Petrov, Violeta Stojanova, Gorgi Dimov Faculty of Natural and Technical Sciences, “Goce Delčev” University, P.O.Box 201, MK 2000 Štip, Republic of Macedonia [email protected]//[email protected] A b s t r a c t: Lakavica graben is located in the eastern subzone of the Vardar zone, which during the Alpine orogenesis was covered with very complex processes of tectogenesis. On the area of about 200 km2, in the Lakavica graben, are present geological units from the oldest geological periods (Precam- brian) to the youngest (Neogene and Quaternary). Tectonic structure, or rupture tectonic, is very intense developed and gives possibility for analysis of the geotectonic processes in the Alpine orogen phase. This paper presents the possible model for geotectonic processes in the Lakavica graben, according to which can be generalized geotectonic processes in the Vardar zone during the Alpine orogeny. Key words: Lakavica graben; geotectonic model; Alpine orogeny; Vardar zone INTRODUCTION Vardar zone as a tectonic unit, for the first niki Gulf (Greece), than bent eastward and crosses time, is separated and showed on the "Geological- the ophiolite zone Izmir–Ankara (Turkey).
    [Show full text]
  • Tectonic Features of the Precambrian Belt Basin and Their Influence on Post-Belt Structures
    ... Tectonic Features of the .., Precambrian Belt Basin and Their Influence on Post-Belt Structures GEOLOGICAL SURVEY PROFESSIONAL PAPER 866 · Tectonic Features of the · Precambrian Belt Basin and Their Influence on Post-Belt Structures By JACK E. HARRISON, ALLAN B. GRIGGS, and JOHN D. WELLS GEOLOGICAL SURVEY PROFESSIONAL PAPER X66 U N IT ED STATES G 0 V ERN M EN T P R I NT I N G 0 F F I C E, \VAS H I N G T 0 N 19 7 4 UNITED STATES DEPARTMENT OF THE INTERIOR ROGERS C. B. MORTON, Secretary GEOLOGICAL SURVEY V. E. McKelvey, Director Library of Congress catalog-card No. 74-600111 ) For sale by the Superintendent of Documents, U.S. GO\·ernment Printing Office 'Vashington, D.C. 20402 - Price 65 cents (paper cO\·er) Stock Number 2401-02554 CONTENTS Page Page Abstract................................................. 1 Phanerozoic events-Continued Introduction . 1 Late Mesozoic through early Tertiary-Continued Genesis and filling of the Belt basin . 1 Idaho batholith ................................. 7 Is the Belt basin an aulacogen? . 5 Boulder batholith ............................... 8 Precambrian Z events . 5 Northern Montana disturbed belt ................. 8 Phanerozoic events . 5 Tectonics along the Lewis and Clark line .............. 9 Paleozoic through early Mesozoic . 6 Late Cenozoic block faults ........................... 13 Late Mesozoic through early Tertiary . 6 Conclusions ............................................. 13 Kootenay arc and mobile belt . 6 References cited ......................................... 14 ILLUSTRATIONS Page FIGURES 1-4. Maps: 1. Principal basins of sedimentation along the U.S.-Canadian Cordillera during Precambrian Y time (1,600-800 m.y. ago) ............................................................................................... 2 2. Principal tectonic elements of the Belt basin reentrant as inferred from the sedimentation record ............
    [Show full text]
  • Post-Collisional Formation of the Alpine Foreland Rifts
    Annales Societatis Geologorum Poloniae (1991) vol. 61:37 - 59 PL ISSN 0208-9068 POST-COLLISIONAL FORMATION OF THE ALPINE FORELAND RIFTS E. Craig Jowett Department of Earth Sciences, University of Waterloo, Waterloo, Ontario Canada N2L 3G1 Jowett, E. C., 1991. Post-collisional formation of the Alpine foreland rifts. Ann. Soc. Geol. Polon., 6 1 :37-59. Abstract: A series of Cenozoic rift zones with bimodal volcanic rocks form a discontinuous arc parallel to the Alpine mountain chain in the foreland region of Europe from France to Czechos­ lovakia. The characteristics of these continental rifts include: crustal thinning to 70-90% of the regional thickness, in cases with corresponding lithospheric thinning; alkali basalt or bimodal igneous suites; normal block faulting; high heat flow and hydrothermal activity; regional uplift; and immature continental to marine sedimentary rocks in hydrologically closed basins. Preceding the rifting was the complex Alpine continental collision orogeny which is characterized by: crustal shortening; thrusting and folding; limited calc-alkaline igneous activity; high pressure metamorphism; and marine flysch and continental molasse deposits in the foreland region. Evidence for the direction of subduction in the central area is inconclusive, although northerly subduction likely occurred in the eastern and western Tethys. The rift events distinctly post-date the thrusthing and shortening periods of the orogeny, making “impactogen” models of formation untenable. However, the succession of tectonic and igneous events, the geophysical characteristics, and the timing and location of these rifts are very similar to those of the Late Cenozoic Basin and Range province in the western USA and the Early Permian Rotliegendes troughs in Central Europe.
    [Show full text]
  • Sedimentological Constraints on the Initial Uplift of the West Bogda Mountains in Mid-Permian
    www.nature.com/scientificreports OPEN Sedimentological constraints on the initial uplift of the West Bogda Mountains in Mid-Permian Received: 14 August 2017 Jian Wang1,2, Ying-chang Cao1,2, Xin-tong Wang1, Ke-yu Liu1,3, Zhu-kun Wang1 & Qi-song Xu1 Accepted: 9 January 2018 The Late Paleozoic is considered to be an important stage in the evolution of the Central Asian Orogenic Published: xx xx xxxx Belt (CAOB). The Bogda Mountains, a northeastern branch of the Tianshan Mountains, record the complete Paleozoic history of the Tianshan orogenic belt. The tectonic and sedimentary evolution of the west Bogda area and the timing of initial uplift of the West Bogda Mountains were investigated based on detailed sedimentological study of outcrops, including lithology, sedimentary structures, rock and isotopic compositions and paleocurrent directions. At the end of the Early Permian, the West Bogda Trough was closed and an island arc was formed. The sedimentary and subsidence center of the Middle Permian inherited that of the Early Permian. The west Bogda area became an inherited catchment area, and developed a widespread shallow, deep and then shallow lacustrine succession during the Mid- Permian. At the end of the Mid-Permian, strong intracontinental collision caused the initial uplift of the West Bogda Mountains. Sedimentological evidence further confrmed that the West Bogda Mountains was a rift basin in the Carboniferous-Early Permian, and subsequently entered the Late Paleozoic large- scale intracontinental orogeny in the region. The Central Asia Orogenic Belt (CAOB) is the largest accretionary orogen on Earth, which was formed by the amalgamation of multiple micro-continents, island arcs and accretionary wedges1–5.
    [Show full text]
  • From Orogeny to Rifting: When and How Does Rifting Begin? Insights from the Norwegian ‘Reactivation Phase’
    EGU21-469 https://doi.org/10.5194/egusphere-egu21-469 EGU General Assembly 2021 © Author(s) 2021. This work is distributed under the Creative Commons Attribution 4.0 License. From orogeny to rifting: when and how does rifting begin? Insights from the Norwegian ‘reactivation phase’. Gwenn Peron-Pinvidic1,2, Per Terje Osmundsen2, Loic Fourel1, and Susanne Buiter3 1NGU - Geological Survey of Norway, 7040 Trondheim, Norway 2NTNU - Norwegian University of Science and Technology, 7491 Trondheim, Norway 3Tectonics and Geodynamics, RWTH Aachen University, 52064 Aachen, Germany Following the Wilson Cycle theory, most rifts and rifted margins around the world developed on former orogenic suture zones (Wilson, 1966). This implies that the pre-rift lithospheric configuration is heterogeneous in most cases. However, for convenience and lack of robust information, most models envisage the onset of rifting based on a homogeneously layered lithosphere (e.g. Lavier and Manatschal, 2006). In the last decade this has seen a change, thanks to the increased academic access to high-resolution, deeply imaging seismic datasets, and numerous studies have focused on the impact of inheritance on the architecture of rifts and rifted margins. The pre-rift tectonic history has often been shown as strongly influencing the subsequent rift phases (e.g. the North Sea case - Phillips et al., 2016). In the case of rifts developing on former orogens, one important question relates to the distinction between extensional structures formed during the orogenic collapse and the ones related to the proper onset of rifting. The collapse deformation is generally associated with polarity reversal along orogenic thrusts, ductile to brittle deformation and important crustal thinning with exhumation of deeply buried rocks (Andersen et al., 1994; Fossen, 2000).
    [Show full text]
  • Development of the Rocky Mountain Foreland Basin: Combined Structural
    University of Montana ScholarWorks at University of Montana Graduate Student Theses, Dissertations, & Professional Papers Graduate School 2007 DEVELOPMENT OF THE ROCKY MOUNTAIN FORELAND BASIN: COMBINED STRUCTURAL, MINERALOGICAL, AND GEOCHEMICAL ANALYSIS OF BASIN EVOLUTION, ROCKY MOUNTAIN THRUST FRONT, NORTHWEST MONTANA Emily Geraghty Ward The University of Montana Follow this and additional works at: https://scholarworks.umt.edu/etd Let us know how access to this document benefits ou.y Recommended Citation Ward, Emily Geraghty, "DEVELOPMENT OF THE ROCKY MOUNTAIN FORELAND BASIN: COMBINED STRUCTURAL, MINERALOGICAL, AND GEOCHEMICAL ANALYSIS OF BASIN EVOLUTION, ROCKY MOUNTAIN THRUST FRONT, NORTHWEST MONTANA" (2007). Graduate Student Theses, Dissertations, & Professional Papers. 1234. https://scholarworks.umt.edu/etd/1234 This Dissertation is brought to you for free and open access by the Graduate School at ScholarWorks at University of Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact [email protected]. DEVELOPMENT OF THE ROCKY MOUNTAIN FORELAND BASIN: COMBINED STRUCTURAL, MINERALOGICAL, AND GEOCHEMICAL ANALYSIS OF BASIN EVOLUTION ROCKY MOUNTAIN THRUST FRONT, NORTHWEST MONTANA By Emily M. Geraghty Ward B.A., Whitman College, Walla Walla, WA, 1999 M.S., Washington State University, Pullman, WA, 2002 Dissertation presented in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Geology The University of Montana Missoula, MT Spring 2007 Approved by: Dr. David A. Strobel, Dean Graduate School James W. Sears, Chair Department of Geosciences Julia A. Baldwin Department of Geosciences Marc S. Hendrix Department of Geosciences Steven D.
    [Show full text]
  • Pan-African Orogeny 1
    Encyclopedia 0f Geology (2004), vol. 1, Elsevier, Amsterdam AFRICA/Pan-African Orogeny 1 Contents Pan-African Orogeny North African Phanerozoic Rift Valley Within the Pan-African domains, two broad types of Pan-African Orogeny orogenic or mobile belts can be distinguished. One type consists predominantly of Neoproterozoic supracrustal and magmatic assemblages, many of juvenile (mantle- A Kröner, Universität Mainz, Mainz, Germany R J Stern, University of Texas-Dallas, Richardson derived) origin, with structural and metamorphic his- TX, USA tories that are similar to those in Phanerozoic collision and accretion belts. These belts expose upper to middle O 2005, Elsevier Ltd. All Rights Reserved. crustal levels and contain diagnostic features such as ophiolites, subduction- or collision-related granitoids, lntroduction island-arc or passive continental margin assemblages as well as exotic terranes that permit reconstruction of The term 'Pan-African' was coined by WQ Kennedy in their evolution in Phanerozoic-style plate tectonic scen- 1964 on the basis of an assessment of available Rb-Sr arios. Such belts include the Arabian-Nubian shield of and K-Ar ages in Africa. The Pan-African was inter- Arabia and north-east Africa (Figure 2), the Damara- preted as a tectono-thermal event, some 500 Ma ago, Kaoko-Gariep Belt and Lufilian Arc of south-central during which a number of mobile belts formed, sur- and south-western Africa, the West Congo Belt of rounding older cratons. The concept was then extended Angola and Congo Republic, the Trans-Sahara Belt of to the Gondwana continents (Figure 1) although West Africa, and the Rokelide and Mauretanian belts regional names were proposed such as Brasiliano along the western Part of the West African Craton for South America, Adelaidean for Australia, and (Figure 1).
    [Show full text]