The Prothoracic Gland of the Chrysopidae (Neuropteroidea: Planipennia)

Total Page:16

File Type:pdf, Size:1020Kb

The Prothoracic Gland of the Chrysopidae (Neuropteroidea: Planipennia) Proceedings of the 4th ECE/Xll/. SIEEC, Godol/61991 The Prothoracic Gland of the Chrysopidae (Neuropteroidea: Planipennia) R. Giisten and K. Dettner Key words: green lacewings, defensive secretions, SEM, GC/MS, evolution, phylogeny Introduction Some species of green lacewings (Planipennia: Chrysopidae) produce a distinc- tive scent during molestation, usually described as allylic or faecal-like. As the source of the secretion causing the odour, paired prothoracic glands were deter- mined (McDunnough 1909), but later investigations were restricted to a detailed morphological and anatomical description of the glands in Chrysopa per/a by Sulc (1914). An analysis of secretion chemistry in Chrysopa oculata by Blum et al. (1973) revealed the presence of skatole (3-methylindole) as a gland content, which is responsible for the odour. Up to now, all references to the prothoracic glands assume their existence in the strong-smelling species only; a statement by Sulc (1914, p. 3) that they also occur in Chrysoperla carnea, which is inodorous/ was obviously overlooked. In order to record the actual distribution of these glands within the family, we examined 20 European chrysopid species for the occurrence of these organs. Besides 18 species of the tribe Chrysopini (Chrysopinae), ltalochrysa italica (Chry- sopinae: Belonopterygini) and Nothochrysa fulviceps (Nothochrysinae) were also included in the study. We present the results of investigations of gland morphology and secretion chemistry, and we discuss the probable function of the prothoracic secretion, the morphological, chemical and functional evolution of the gland, and its possible significance for phylogeny and systematics of the family. Methods Morphological investigations of the prothoracic gland were carried out by scanning electron microscopy (SEM) of macerated halves of prothoraces, showing the gland reservoir as well as properties of the reservoir opening and fine structure of glandular units. For chemical analysis, we used a gas chromatography/mass spectrometry coup- ling (GC/MS), which provides separation of secretion compounds and gives spe- cific mass spectra which help identify individual substances. Morphological and chemical characters of the prothoracic gland evaluated in this study were entered 60 into a numerical phenetic analysis, creating a phenetic tree of the investigated species. For this operation, we used the program NTSYS-pc 1.50 (Rohlf 1988) on a personal computer. Results The prothoracic gland proved to be present in all the 20 species studied. The three suprageneric taxa showed a number of differences in gland morphology. The most significant of these was the shape of the reservoir (Fig. 1): it is divided into two lobes in all 18 species of Chrysopini, into three less clearly separated lobes in Italochrysa (Belonopterygini), but undivided in Nothochrysa (Nothochrysinae). Another difference shown in Fig. 1 is the position of the gland opening, which .is partly concealed by the pronotum in Chrysopini, situated just below it in Italochry- sa and much more ventrally so in Nothochrysa. The reservoirs of the investigated species of Chrysopini, while very similar in shape, differ considerably in size. In Peyerimhoffina, Chrysoperla and most species of Chrysopa, they nearly fill out the prothorax, while they are nearly 4 times smaller (relative to body size) in the species of Nineta. Chrysopidia, Mallada, Cunctochrysa and Chrysopa viridana are intermediate. Fig. 1. Position of gland opening slit and reservoir shape in three species of Chrysopidae: Nothoch,ysa fulviceps (top), ltalochrysa italica (middle), Chrysopa per/a (bottom). (The three species are not drawn to scale. Abbreviations: gr - glandular reservoir; go- gland opening; ps - pleural sclerites · 61 The chitinous elements of the glandular units - functional units of a gland cell and accessory cells, which create a cuticular ductule - are observable in macerated SEM-preparations (for detailed discussion of glandular units, see Noirot and Quennedey 1974). We found that in Chrysopidae, glandular units associated with the prothoracic gland reservoir are extremely similar to dermal glandular units distributed over the integument. lnterspecific differences concerning shape and fine structure of glandular units could be shown only in the length of the cuticular duct. In this trait, species of Chrysopa (except Ch. viridana) are most divergent, having ducts of about 80 µm length, compared with 10-30 µm in other species. Secretion chemistry was analyzed in 13 species from 5 genera of the tribe Chrysopini. The 30 substances found can be arranged in 7 groups according to their chemical structure. A fraction of alkenes is found in all species and, remarkably, its composition is very similar in all. The main compound of this fraction is (Z)-4-tri- decene. The other compound groups show various chemical compositions and might be derived from quite different biogenetic pathways. They are usually spe- cific for certain genera, e.g. terpenoids (Chrysopidia), octanoic acid (Chrysoperla), long-chain hydrocarbons (Chrysoperla and Mallada), amides (Chrysopa) a!]d ska- tole (all Chrysopa except Ch. viridana). A special case is observed in Nineta, where no substances other than the alkene fraction are present. Discussion The idea that the strong-smelling secretion of Chrysopa species has defensive function is· quite straightfoiward and was first proposed by Melander and Brues (1906) and adopted by most later authors. In view of the great olfactory sensitivity of mammals to skatole (Laffort 1963), bats (Chiroptera) seem to be likely target organisms for the defence secretion, as they are potentially important predators of the night-flying Chrysopidae. Blum et al. (1973), however, found evidence for a repellent effect not only against mammals (mice) but also against arthropods (ants). For a number of reasons, we believe that the prothoracic secretion in the inodorous species serves as a defensive allomone as well, rather than representing some kind of pheromone. Firstly, it appears that these species, just as the odorous ones, discharge their gland contents when molested, even though this is difficult to observe in most cases. Also, it is unlikely that this secretion represents a phero- mone playing a role in sexual interactions, as there is no sexual dimorphism and as there are already other pheromone glands known in these insects (male abdominal glands; Wattebled and Canard 1981). Aggregation or alarm pheromones are not to be expected in the solitary green lacewings. The glands of Nineta show the most primitive situation among Chrysopini chemically as well as morphologically. If they are regarded as a model for the initial stage in the evolution of the pro thoracic gland, it must be asked which could be the defensive value of the alkene-containing secretion. A possible hypothesis is that these hydrocarbons act as a solvent and spreading agent for gut contents which are exuded in defence. Discharging faeces or gut contents is the simplest way of chemi- cal defence in arthropods (Dettner 1989). The effect of repellent substances con- tained in gut contents can be both more potent and more prolonged if solvent 62 substances from an exocrine gland are added. A comparable phenomenon has already been shown in Opiliones (Eisner et al. 1978); in these, however, the active substances are contained in the glandular secretion. The idea that a mixing of fluids for defence is found in Nineta and other chrysopids is supported by the obsetvation that gut contents are nearly always discharged together with the prothoracic secre- tion by all inodorous species, and also, less obviously, by the odorous species. Alkenes represent ideal solvents for active substances in defensive mixtures, but have little or no repellent or toxic effect on their own (Dettner 1991 ). Derived from this hypothetical initial stage, the defensive value of the secretion could have been more and more enhanced during evolution by adding different active substances, corresponding with a stepwise enlargement of the gland resetvoir. The different kinds of multicomponent secretions might also reflect an adaptation to different predators as target organisms, like the skatole-containing secretion possibly di- rected against bats. As the prothoracic gland is obviously a groundplan character in Chrysopidae, it can be used as a valuable tool in phylogeny and systematics, and this can be done on different taxonomic levels. The subfamilies Nothochrysinae and Chrysopinae, and also the two investi- gated tribes of Chrysopinae (Belonopterygini, Chrysopini) clearly showed structu- ral differences in overall gland morphology, indicating that even a superficial examination of this character might help clarifying the relationships of supra- generic taxa within the family. For future studies, this could especially be promi- sing for the Ankylopterygini, Leucochrysini and the different lineages of Chrysopi- ni (which are probably not monophyletic), whose affinities still remain uncertain after the extensive investigation by Brooks and Barnard (1990). Chrysopidia ciliata Nineta pa/Iida ------ Ma/lada flavifrons ------------ Mal/ada picteti Mallada prasinus Mallada marianus Mal/ada zelleri I .Mallada ventrulis I ----Mallada clathratu.~ ---------------Chrysoperla camea ------------Cunctochrjsa baetica Chrysopa per/a --- Chrysopa walkeri ..---------1 ---Ch,ysopa f omwsa I ---- Chrysopa dorsalis I ..,__ _______ Clzrysopa pa/lens --------- Chrysopa abbreviata ---------- Chrysopa vin·dana
Recommended publications
  • The First Green Lacewings from the Late Eocene Baltic Amber
    The first green lacewings from the late Eocene Baltic amber VLADIMIR N. MAKARKIN, SONJA WEDMANN, and THOMAS WEITERSCHAN Makarkin, V.N., Wedmann, S., and Weiterschan, T. 2018. The first green lacewings from the late Eocene Baltic amber. Acta Palaeontologica Polonica 63 (3): 527–537. Pseudosencera baltica gen. et sp. nov. of Chrysopinae (Chrysopidae, Neuroptera) is described from Baltic amber. Additionally, another species, Nothochrysa? sp. (Nothochrysinae), is left in the open nomenclature. Pseudosencera bal- tica gen. et sp. nov. represents the oldest confident record of Chrysopinae. The new genus lacks the apparent forewing intramedian cell, and possesses three character states not found in other Chrysopinae: the simple AA1, the short basal crossvein between M and Cu, and 5‒6 rings of setae on the antennal flagellomeres. This genus is probably a special- ised form in a basal branch of Chrysopinae, that could not be attributed to any of the known tribes. The specimen of Nothochrysa? sp. consists only of fragments of the forewings. The late Eocene Baltic amber represents the oldest horizon where Chrysopinae and Nothochrysinae are found to coexist. It is highly likely that Chrysopidae were extremely rare in these forests. Key words: Neuroptera, Chrysopinae, Nothochrysinae, Cenozoic, Baltic amber. Vladimir N. Makarkin [[email protected]], Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok 690022, Russia. Sonja Wedmann [[email protected]], Senckenberg Forschungsstation Grube Messel, Markstrasse 35, D-64409 Messel, Germany. Thomas Weiterschan [[email protected]], Forsteler Strasse 1, 64739 Höchst Odw., Germany. Received 16 May 2018, accepted 5 July 2018, available online 23 July 2018.
    [Show full text]
  • Neuroptera: Chrysopidae)
    Zootaxa 3351: 1–14 (2012) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2012 · Magnolia Press ISSN 1175-5334 (online edition) A new genus of Neotropical Chrysopini (Neuroptera: Chrysopidae) FRANCISCO SOSA1 & SERGIO DE FREITAS2 1 Universidad Centroccidental “Lisandro Alvarado”, Museo Entomológico “Dr. José Manuel Osorio” (UCOB), Barquisimeto, Lara, . E-mail: [email protected] 2 Universidade Estadual Paulista, Jaboticabal, São Paulo, Brazil (deceased) Abstract Titanochrysa Sosa & Freitas is a new genus of Neotropical Chrysopini (Chrysopidae: Chrysopinae) recorded from Costa Rica, Venezuela and Brazil. Titanochrysa gen. nov. shares several external and genitalic characters with Ceraeochrysa Adams, 1982; Chrysopodes Navás, 1913; Cryptochrysa Freitas & Penny, 2000; Parachrysopiella Brooks & Barnard, 1990 and Ungla Navás 1914. It may be distinguished from those genera by its very long sternite 8+9, sternites 2–8 usually with microtholi, male geni- talia with the dorsal surface of the arcessus striated, gonosaccus well-developed, bearing elongate gonosetae and microsetae, and a spoon-like gonapsis. Herein, Titanochrysa circumfusa (Burmeister, 1939) [= Chrysopodes circumfusa (Burmeister)] comb. nov. and Titanochrysa pseudovaricosa (Penny) [= Ceraeochrysa pseudovaricosa Penny, 1998] comb. nov. were identi- fied; Titanochrysa ferreirai Sosa & Freitas sp. nov. and Titanochrysa trespuntensis Sosa & Freitas sp. nov. were described. The external morphology, and male and female genitalia of all these species
    [Show full text]
  • Redalyc.First Record of Chrysoperla Asoralis and C. Argentina
    Revista de la Sociedad Entomológica Argentina ISSN: 0373-5680 [email protected] Sociedad Entomológica Argentina Argentina HARAMBOURE, Marina; REGUILÓN, Carmen; ALZOGARAY, Raúl A.; SCHNEIDER, Marcela Inés First record of Chrysoperla asoralis and C. argentina (Neuroptera: Chrysopidae) in horticultural fields of La Plata associated with the sweet pepper (Capsicum annuum L.) Revista de la Sociedad Entomológica Argentina, vol. 73, núm. 3-4, diciembre, 2014, pp. 187-190 Sociedad Entomológica Argentina Buenos Aires, Argentina Available in: http://www.redalyc.org/articulo.oa?id=322032818013 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Nota Científica Scientific Note ISSN 0373-5680 (impresa), ISSN 1851-7471 (en línea) Revista de la Sociedad Entomológica Argentina 73 (3-4): 187-190, 2014 First record of Chrysoperla asoralis and C. argentina (Neuroptera: Chrysopidae) in horticultural fields of La Plata associated with the sweet pepper (Capsicum annuum L.) HARAMBOURE, Marina¹, Carmen REGUILÓN², Raúl A. ALZOGARAY³, 4 & Marcela Inés SCHNEIDER¹, 5 ¹ Laboratorio de Ecotoxicología: Plaguicidas y Control Biológico. Centro de Estudios Parasito- lógicos y de Vectores [CEPAVE (CONICET LA PLATA-UNLP)], Bv. 120 s/n e/61 y 62, La Plata CP 1900, Buenos Aires, Argentina. E-mail: [email protected] ² Instituto de Entomología, Fundación Miguel Lillo, Tucumán, Argentina. ³ Centro de Investigaciones de Plagas e Insecticidas (CIPEIN-UNIDEF/CONICET), Villa Mar- telli, Bs. As., Argentina. 4 Instituto de Investigación e Ingeniería Ambiental (3IA – UNSAM).
    [Show full text]
  • The Neotropical Genus Titanochrysa (Neuroptera, Chrysopidae): Larval Descriptions, Biological Notes, a New Species, and Taxonomic Changes
    Zootaxa 3514: 1–26 (2012) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ ZOOTAXA Copyright © 2012 · Magnolia Press Article ISSN 1175-5334 (online edition) urn:lsid:zoobank.org:pub:2ADED4C5-8F16-4AE4-989D-0F8688DBDC1D The Neotropical genus Titanochrysa (Neuroptera, Chrysopidae): larval descriptions, biological notes, a new species, and taxonomic changes CATHERINE A. TAUBER1, GILBERTO S. ALBUQUERQUE2 & MAURICE J. TAUBER1 1Department of Entomology, Comstock Hall, Cornell University, Ithaca, NY 14853-2601 & Department of Entomology, University of California, Davis, CA. E-mail: [email protected] 2Laboratório de Entomologia e Fitopatologia, CCTA, Universidade Estadual do Norte Fluminense, Campos dos Goytacazes, Rio de Janeiro, Brazil 28013-602. E-mail: [email protected] Abstract This report provides new information on three facets of a recently described Neotropical genus of chrysopine lacewings, Titanochrysa Sosa & Freitas 2012. First, because the current taxonomic understanding of the genus is based entirely on the adult stage, we describe the larvae and aspects of the biology of Titanochrysa trespuntensis Sosa & Freitas. We show that although T. trespuntensis larvae share many morphological and behavioral characteristics with other Neotropical gen- era of Chrysopini, they also differ significantly in many generic-level characters. Their unique suite of larval features pro- vides strong support for the designation of this group of lacewings as a genus. Second, Titanochrysa is known to contain four species; this report describes the adult of a fifth species—Titanochrysa simpliciala New Species, from Costa Rica. Third, the report presents new locality records for three of the original four Titanochrysa species and deals with several taxonomic issues. Specifically, (a) Chrysopa annotaria Banks is transferred to the genus; thus the valid name for the spe- cies becomes Titanochrysa annotaria (Banks), New Combination.
    [Show full text]
  • Insecta, Neuroptera, Chrysopidae, Chrysopinae, Chrysopini) with Markedly Divergent Adult and Larval Features
    Bull. Natl. Mus. Nat. Sci., Ser. A, 44(2), pp. 69–85, May 22, 2018 Kuwayamachrysa, a New Genus of Lacewings (Insecta, Neuroptera, Chrysopidae, Chrysopinae, Chrysopini) with Markedly Divergent Adult and Larval Features Shigehiko Tsukaguchi1 and Toshihiro Tago2 1 10–10–203 Kanbara, Nishinomiya, Hyogo 662–0021, Japan E-mail: [email protected] 2 1–29–13–101 Motogou, Kawaguchi, Saitama 332–0011, Japan E-mail: [email protected] (Received 22 March 2018; accepted 28 March 2018) Abstract The authors describe Kuwayamachrysa gen. nov. from northeastern Asia–Japan, Korea and Russian Far East. This new genus is characterized by a number of extraordinary features in the male and female genitalia, and also in the pattern of larval setation. In the male genitalia, there is a uniquely asymmetrical and intersecting gonapsis; in the female genitalia, a bursa-vela connector, vaginal frame and laminate link are present; and in the first instar, secondary setae occur on both thoracic and abdominal segments. The type species of the monotypic genus is Chrysopa kichijoi Kuwayama, 1936. It is redescribed with emphasis on the adult abdominal hypodermal coloration, female terminalia, and larval morphology (first and third instars), all of which were previously unknown. Several features of the new genus are compared with those of other genera: (i) the mor- phology of the gonapsis in relation to the dorsal membrane of the 9th sternite (ii) the morphology of newly described features (bursa-vela connector, vaginal frame and laminate link), and (iii) the first and third instar patterns of setation. Key words: Chrysopini, genitalia, Japan, kichijoi, Korea, Kuwayamachrysa, larval setation, new combination, new genus, Russian Far East.
    [Show full text]
  • Fauna Europaea: Neuropterida (Raphidioptera, Megaloptera, Neuroptera)
    Biodiversity Data Journal 3: e4830 doi: 10.3897/BDJ.3.e4830 Data Paper Fauna Europaea: Neuropterida (Raphidioptera, Megaloptera, Neuroptera) Ulrike Aspöck‡§, Horst Aspöck , Agostino Letardi|, Yde de Jong ¶,# ‡ Natural History Museum Vienna, 2nd Zoological Department, Burgring 7, 1010, Vienna, Austria § Institute of Specific Prophylaxis and Tropical Medicine, Medical Parasitology, Medical University (MUW), Kinderspitalgasse 15, 1090, Vienna, Austria | ENEA, Technical Unit for Sustainable Development and Agro-industrial innovation, Sustainable Management of Agricultural Ecosystems Laboratory, Rome, Italy ¶ University of Amsterdam - Faculty of Science, Amsterdam, Netherlands # University of Eastern Finland, Joensuu, Finland Corresponding author: Ulrike Aspöck ([email protected]), Horst Aspöck (horst.aspoeck@meduni wien.ac.at), Agostino Letardi ([email protected]), Yde de Jong ([email protected]) Academic editor: Benjamin Price Received: 06 Mar 2015 | Accepted: 24 Mar 2015 | Published: 17 Apr 2015 Citation: Aspöck U, Aspöck H, Letardi A, de Jong Y (2015) Fauna Europaea: Neuropterida (Raphidioptera, Megaloptera, Neuroptera). Biodiversity Data Journal 3: e4830. doi: 10.3897/BDJ.3.e4830 Abstract Fauna Europaea provides a public web-service with an index of scientific names of all living European land and freshwater animals, their geographical distribution at country level (up to the Urals, excluding the Caucasus region), and some additional information. The Fauna Europaea project covers about 230,000 taxonomic names, including 130,000 accepted species and 14,000 accepted subspecies, which is much more than the originally projected number of 100,000 species. This represents a huge effort by more than 400 contributing specialists throughout Europe and is a unique (standard) reference suitable for many users in science, government, industry, nature conservation and education.
    [Show full text]
  • Phenological Responses of Pseudomallada (Neuroptera: Chrysopidae): Comparative Data from Three Nearctic Species and Interspecific Hybrids
    Eur. J. Entomol. 112(1): 49–62, 2015 doi: 10.14411/eje.2015.015 ISSN 1210-5759 (print), 1802-8829 (online) Phenological responses of Pseudomallada (Neuroptera: Chrysopidae): Comparative data from three Nearctic species and interspecific hybrids MAURICE J. TAUBER* and CATHERINE A. TAUBER Department of Entomology, Cornell University, Ithaca, NY 14853-2601, USA, and Department of Entomology and Nematology, University of California, Davis, CA 95616, USA; e-mail: [email protected] Key words. Neuroptera, Chrysopidae, Pseudomallada spp., larval diapause, photoperiod, temperature and development, quantitative response to daylength Abstract. Three Nearctic species – Pseudomallada macleodi (Adams & Garland), P. perfectus (Banks), and P. sierra (Banks) – share a suite of phenological characteristics with their Western Palearctic congeners. They overwinter as free-living larvae (primarily third instars) in a photoperiodically induced diapause. For these three species, the critical photoperiods for diapause induction fell between LD 16:8 and LD 14:10. In the laboratory, larvae remained responsive to daylength throughout diapause – short daylengths maintained diapause until diapause terminated spontaneously or death occurred. Transfer of diapausing larvae from short to intermediate or longer days accelerated diapause development, apparently in a quantitative response to daylength. A period of chilling appeared to delay, rather than hasten, diapause development. In general, the expression of diapause in F1 hybrids (P. perfectus × P. sierra) resembled that of the parents; there were minor differences in some features. Among populations of the three species under non-diapause conditions, the times for complete development (egg hatch to adult emergence) ranged between 40 and 50 days (23.9°C). Under long-day condi- tions, developmental rates of the P.
    [Show full text]
  • 97 on the Occurrence of Nineta Pallida (Schneider
    Entomologist’s Rec. J. Var. 126 (2014) 97 ON THE OCCURRENCE OF NINETA PALLIDA (SCHNEIDER, 1846) AND N. INPUNCTATA (REUTER, 1894) IN THE BRITISH ISLES AND REMARKS ON THESE RARE GREEN LACEWINGS (NEU.: CHRYSOPIDAE) 1 MICHEL CANARd, 2 dAVE WILTON ANd 3 COLIN W. PLANT 1 47 chemin Flou de Rious, F-31400 Toulouse, France (e-mail: [email protected]) 2 25 Burnham Road, Westcott, Aylesbury, Buckinghamshire, HP18 0PL, UK (e-mail: [email protected]) 3 14 West Road, Bishops Stortford, Hertfordshire CM23 3QP, UK (e-mail: [email protected]) Abstract A third record of the green lacewing Nineta pallida (Schneider, 1846) is reported for Britain. A published record of Nineta inpunctata (Reuter, 1894) is shown to be an error, leaving only one valid British Isles record for that species. The opportunity is taken to discuss distribution, status and ecology of these two rare lacewings in Britain and France. Key words. Neuroptera, Chrysopidae, Nineta pallida, Nineta inpunctata, morphology, distribution, life cycle, univoltinism, photoperiod sensitivity. Nouvelles données sur la présence de Nineta pallida (Schneider, 1846) et de Nineta inpunctata (Reuter, 1894) dans les îles britanniques et remarques sur ces rares chrysopes (Neu.: Chrysopidae). Résumé Un troisième enregistrement de la chrysope verte Nineta pallida (Schneider, 1846) est signalé pour la Grande-Bretagne. Un compte rendu publié de Nineta inpunctata (Reuter, 1894) est une erreur, laissant seulement un enregistrement valide pour les îles britanniques de cette espèce. L’occasion est saisie pour discuter de la distribution, du statut et de l’écologie de ces deux chrysopes rares en Grande-Bretagne et en France.
    [Show full text]
  • A Taxonomic Review of the Common Green Lacewing Genus Chrysoperla (Neuroptera: Chrysopidae)
    Bull. Br. nat. Hist. (Ent.) 63(2): 137-210 Issued 24 November 1994 A taxonomic review of the common green lacewing genus Chrysoperla (Neuroptera: Chrysopidae) S.J. BROOKS Department of Entomology, The Natural History Museum, Cromwell Road, London SW7 5 ED CONTENTS Introduction ............................................................................... ........... 137 Historical review .................................................................................... 138 Generic classification ............................................................................ 138 Species classification ............................................................................. 139 Materials and methods ............................................................................. 140 Abbreviations ........................................................................................ 140 Acknowledgements ................................................................................. 141 The systematic position of Chrysoperla ........................................................ 141 Species affinities within Chrysoperla ........................................................... 142 Chrysoperla Steinmann .. .. ... .... .. .. ... .. ... ... ... ... .... .. .... .. ..... ... ... 143 Key to the world Chrysoperla species ....................................................... 144 Species descriptions .............................................................................. 146 Synoptic checklist of the species of Chrysoperla ............................................
    [Show full text]
  • Neuroptera (Neuropterida)
    33 NEUROPTERA (NEUROPTERIDA) John D. Oswald', Atilano Contreras-Ramos" & Norman D. Penny RESUMEN. En este capitulo se presenta un panorama difficult to encounter. They probably attain their sobre la sistematica, biologia y distribuci6n geografi­ greatest abundance (but not diversity) in desert ca de los Neuroptera (Planipennia) de Mexico, con communities and in a variety of temperate habi­ una orientaci6nhacia la literatura taxon6mica.Se con­ tats, such as forests, grasslands, and urban back­ sideran las familias actualmente conocidas en Mexi­ yards. On warm, early fall evenings in north tem­ co,las cuales estan en orden descendente por riqueza perate towns and cities, storefront and home win­ de especies registradas (entre parentesis): Myrme­ dows are often covered with hundreds of adult leontidae (97), Chrysopidae (81), Hemerobiidae (44), lacewings attracted to the lights. Coniopterygidae (36), Mantispidae (22), Ascalaphidae Neuroptera have two distinctive characteristics (21), Sisyridae (4), Ithonidae (2), Berothidae (2), Dila­ that make them fascinating creatures. First, they ridae (1) y Polystoechotidae (1). Lafauna total de Neu­ are predators, especially as larvae, giving them the roptera actualmente registrada en el pais suma 311 es­ distinction of helping protect us from a wide vari­ pecies. Como en otroscasos,elorden ha sido estudiado ety of agricultural and horticultural pests (Tauber s610 superficialmente en Mexico, por 10 que se consi­ et al., 2000) as well as disease carriers. Secondly, dera importante que se realicen estudios sistematicos they have developed broad, membranous wings y faunisticos en las diferentes regiones del pais. for flight, which are strengthened by an elaborate network of crossveins, and hence the name lacew­ ings.
    [Show full text]
  • Chrysoperla Extern a (Neuroptera: Chrysopidae): Life History and Potential for Biological Control in Central and South America
    BIOLOGICAL CONTROL 4,8-13 (1994) Chrysoperla extern a (Neuroptera: Chrysopidae): Life History and Potential for Biological Control in Central and South America GILBERTO S. ALBUQUERQUE, CATHERINE A. TAUBER, AND MAURICE J. TAUBER Department of Entomology, Comstock Hall, Cornel/University, Ithaca, New York 14853-0901 Received February 22, 1993; accepted August 9, 1993 Lizarraga, 1988) reflect the growing interest in this spe­ The predacious insect Chrysoperia externa (Hagen) cies, especially in Central and South America. has a number of traits that make it amenable to mass­ Every stage of biological control-from choosing an rearing and use as a biological control agent. Develop­ appropriate natural enemy, to its rearing, release, and mental and reproductive rates were relatively high and evaluation-requires prior knowledge of specific life his­ directly related to temperature between 15.6 and tory and behavioral traits. This holds true for both na­ 26. 7°C. Survival also was high throughout this tempera­ tive and exotic natural enemies. With this in mind, we ture range. Lower thermal thresholds for development examined facets of the life history of C. externa that are (t) of all immature stages fell between 11 and 12.5°C, directly relevant for developing mass-rearing tech­ and the K value for total development was 320 heat de­ niques and for predicting development and activity in gree-days above 11.8°C. At 21.1°C, oviposition aver­ the field. Our study investigated the influence oftemper­ aged 284 eggs during the first 30 days. Variability in ature and photoperiod on developmental time and sur­ diapause induction occurred within and among popula­ vival of C.
    [Show full text]
  • East Devon Pebblebed Heaths Providing Space for Nature Biodiversity Audit 2016 Space for Nature Report: East Devon Pebblebed Heaths
    East Devon Pebblebed Heaths East Devon Pebblebed Providing Space for East Devon Nature Pebblebed Heaths Providing Space for Nature Dr. Samuel G. M. Bridgewater and Lesley M. Kerry Biodiversity Audit 2016 Site of Special Scientific Interest Special Area of Conservation Special Protection Area Biodiversity Audit 2016 Space for Nature Report: East Devon Pebblebed Heaths Contents Introduction by 22nd Baron Clinton . 4 Methodology . 23 Designations . 24 Acknowledgements . 6 European Legislation and European Protected Species and Habitats. 25 Summary . 7 Species of Principal Importance and Introduction . 11 Biodiversity Action Plan Priority Species . 25 Geology . 13 Birds of Conservation Concern . 26 Biodiversity studies . 13 Endangered, Nationally Notable and Nationally Scarce Species . 26 Vegetation . 13 The Nature of Devon: A Biodiversity Birds . 13 and Geodiversity Action Plan . 26 Mammals . 14 Reptiles . 14 Results and Discussion . 27 Butterflies. 14 Species diversity . 28 Odonata . 14 Heathland versus non-heathland specialists . 30 Other Invertebrates . 15 Conservation Designations . 31 Conservation Status . 15 Ecosystem Services . 31 Ownership of ‘the Commons’ and management . 16 Future Priorities . 32 Cultural Significance . 16 Vegetation and Plant Life . 33 Recreation . 16 Existing Condition of the SSSI . 35 Military training . 17 Brief characterisation of the vegetation Archaeology . 17 communities . 37 Threats . 18 The flora of the Pebblebed Heaths . 38 Military and recreational pressure . 18 Plants of conservation significance . 38 Climate Change . 18 Invasive Plants . 41 Acid and nitrogen deposition. 18 Funding and Management Change . 19 Appendix 1. List of Vascular Plant Species . 42 Management . 19 Appendix 2. List of Ferns, Horsetails and Clubmosses . 58 Scrub Clearance . 20 Grazing . 20 Appendix 3. List of Bryophytes . 58 Mowing and Flailing .
    [Show full text]