African Journal of Agricultural Research

Total Page:16

File Type:pdf, Size:1020Kb

African Journal of Agricultural Research African Journal of Agricultural Research Volume 9 Number 19 15 May 2014 ISSN 1991-637X ABOUT AJAR The African Journal of Agricultural Research (AJAR) is published weekly (one volume per year) by Academic Journals. African Journal of Agricultural Research (AJAR) is an open access journal that publishes high-quality solicited and unsolicited articles, in English, in all areas of agriculture including arid soil research and rehabilitation, agricultural genomics, stored products research, tree fruit production, pesticide science, post harvest biology and technology, seed science research, irrigation, agricultural engineering, water resources management, marine sciences, agronomy, animal science, physiology and morphology, aquaculture, crop science, dairy science, entomology, fish and fisheries, forestry, freshwater science, horticulture, poultry science, soil science, systematic biology, veterinary, virology, viticulture, weed biology, agricultural economics and agribusiness. All articles published in AJAR are peer- reviewed. Contact Us Editorial Office: [email protected] Help Desk: [email protected] Website: http://www.academicjournals.org/journal/AJAR Submit manuscript online http://ms.academicjournals.me/ Editors Prof. N.A. Amusa Dr. Bampidis Vasil eios Editor, African Journal of Agricultural Research National Agricultural Research Foundation (NAGREF), Academic Journals. Animal Research Institute 58100 Giannitsa, Greece. Dr. Panagiota Florou-Paneri Laboratory of Nutrition, Dr. Zhang Yuanzhi Faculty of Veterinary Medicine, Laboratory of Space Technology, Aristotle University of Thessaloniki, University of Technology (HUT) Kilonkallio Espoo, Greece. Finland . Prof. Dr. Abdul Majeed Dr. Mboya E. Burud i Department of Botany, University of Gujrat,India, International Livestock Research Institute (ILRI) Director Horticulture, P.O. Box 30709 Nairobi 00100, and landscaping. Kenya. India. Dr. Andres Cibil s Prof. Suleyman TABAN Assistant Professor of Rangeland Science Department of Soil Science and Plant Nutrition, Dept. of Animal and Range Sciences Faculty of Agriculture, Box 30003, MSC 3-I New Mexico State University Las Ankara University, Cruces, 06100 Ankara-TURKEY. NM 88003 (USA). Prof.Hyo Choi Dr. MAJID Sattari Graduate School Rice Research Institute of Iran, Gangneung-Wonju National University Amol-Iran. Gangneung, Gangwondo 210-702, Dr. Agricola Odoi Korea. University of Tennessee, TN., USA. Dr. MATIYAR RAHAMAN KHAN AICRP (Nematode), Directorate of Research, Prof. Horst Kaiser Bidhan Chandra Krishi Department of Ichthyology and Fisheries Science Viswavidyalaya, P.O. Kalyani, Nadia, PIN-741235, Rhodes University, PO Box 94, West Bengal. South Africa. India. Prof. Xingkai Xu Prof. Hamid AIT-AMAR Institute of Atmospheric Physics, University of Science and Technology, Chinese Academy of Sciences, Houari Bouemdiene, B.P. 32, 16111 EL-Alia, Algiers, Beijing 100029, Algeria. China. Prof. Sheikh Raisudd in Dr. Agele, Samuel Ohikhena Department of Medical Elementology and Department of Crop, Soil and Pest Management, Toxicology,Jamia Hamdard (Hamdard University) Federal University of Technology New Delhi, PMB 704, Akure, India. Nigeria. Prof. Ahmad Arzani Dr. E.M. Aregheore Department of Agronomy and Plant Breeding The University of the South Pacific, College of Agriculture School of Agriculture and Food Technology Isfahan University of Technology Alafua Campus, Isfahan-84156, Apia, Iran. SAMOA. Editorial Board Dr. Mohamed A. Dawoud Dr. Bradley G Fritz Water Resources Department, Research Scientist, Terrestrial Environment Research Centre, Environmental Technology Division, Environmental Research and Wildlife Development Agency Battelle, Pacific Northwest National Laboratory, (ERWDA), 902 Battelle Blvd., Richland , P. O. Box 45553, Washington, Abu Dhabi, USA. United Arab Emirates. Dr. Almut Gerhardt LimCo International, Dr. Phillip Retief Celli ers University of Tuebingen, Dept. Agriculture and Game Management, Germany. PO BOX 77000, NMMU, PE, 6031, Dr. Celin Acharya South Africa. Dr. K.S.Krishnan Research Associate (KSKRA), Molecular Biology Division, Dr. Rodolfo Ungerfeld Bhabha Atomic Research Centre (BARC), Departamento de Fisiología, Trombay, Mumbai-85, Facultad de Veterinaria, India. Lasplaces 1550, Montevideo 11600, Uruguay. Dr. Daizy R. Batish Department of Botany, Dr. Timothy Smith Panjab University, Stable Cottage, Cuttle Lane, Chandigarh, Biddestone, Chippenham, India. Wiltshire, SN14 7DF. UK. Dr. Seyed Mohammad Ali Razavi University of Ferdowsi, Dr. E. Nicholas Odongo, Department of Food Science and Technology, 27 Cole Road, Guelph, Mashhad, Ontario. N1G 4S3 Iran. Canada. Dr. Yasemin Kavdir Dr. D. K. Singh Canakkale Onsekiz Mart University, Scientist Irrigation and Drainage Engineering Division, Department of Soil Sciences, Central Institute of Agricultural Enginee inrg Terzioglu Campus 17100 Bhopal- 462038, M.P. Canakk ale India. Turkey. Prof. Hezhong Dong Prof. Giovanni Dinelli Professor of Agronomy , Department of Agroenvironmental Science and Cotton Research Center, Technology Shandong Academy of Agricultural Sciences, Viale Fanin 44 40100, Jinan 250100 Bologna China. Italy. Dr. Ousmane Youm Prof. Huanmin Zhou Assistant Director of Research & Leader, College of Biotechnology at Inner Mongoli a Integrated Rice Productions Systems Program Agricultural University, Africa Rice Center (WARDA) 01BP 2031, Inner Mongolia Agricultural University, Cotonou, No. 306# Zhao Wu Da Street, Benin. Hohhot 010018, P. R. China, China. African Journal of Agricultural Research Table of Contents: Volume 9 Number 20 15 May, 2014 ARTICLES An evaluation of mango (Mangifera indica L.) germplasm for future breeding programme 1530 Manveen Kaur, J. S. Bal, L. K. Sharma and S. K. Bali Effects of soaking on moisture: Dependent mechanical properties of some selected grains essential to design of grain drinks processing machine 1538 Gana, I. M., Peter, A. I., Gbabo, A. and Anuonye, J. C. Response of tomato (Lycopersicium lycopersicun, CV UC82B) to drip irrigation and planting conditions 1543 S. O. Afolayan, K. Ogedengbe, S. A. Lateef, O. A. Akintola and O. J. Oladele Physiological and biochemical performance of Pouteria ramiflora ( Mart.) Radlk. seeds harvested at different maturation stages and subjected to drying 1550 Lílian Abadia da Silva, Juliana de Fátima Sales, João Almir Oliveira, Heloisa Oliveira dos Santos, Túlio Silva Lara and Marcos Antônio Soares A concise scheme of vegetation boundary terms in subtropical high mountains 1560 Ching-An Chiu, Mei-Fen Lee, Hsy-Yu Tzeng, Min-Chun Liao Evaluation of organic and inorganic amendments on nutrient uptake, phosphorus use efficiency and yield of maize in Kisii County, Kenya 1571 Jacob S. Ademba, Johnson K. Kwach, Silas M. Ngari Anthony O. Esilaba and Nelson L. Kidula Impact of differential storage conditions on seed germination and viability of some medicinal plants 1578 R. K. S. Tiwari and Kuntal Das Table of Contents: Volume 9 Number 20 15 May, 2014 ARTICLES Less oil but more money! Artisanal palm oil milling in Cameroon 1586 Raymond N. NKONGHO, Yvonne NCHANJI, Ofundem TATAW and Patrice LEVANG Occurrence of green lacewings (Neuroptera: Chrysopidae) in two coffee cropping systems 1597 Ana Elizabete Lopes Ribeiro, Maria Aparecida Castellani, Raquel Pérez-Maluf, Aldenise Alves Moreira, Suzany Aguiar Leite and Daniela Ribeiro da Costa Impact of entrepreneurship training on rural poultry farmers adoption of improved management practices in Enugu State, Nigeria 1604 Ezeibe A. B. C., Okorji E. C., Chah J. M. and Abudei R. N. Productivity of maize-legume intercropping systems under rainfed situation 1610 S. Kheroar and B. C. Patra Vol. 9(20), pp. 1530-1538, 15 May, 2014 DOI: 10.5897/AJAR2014.8583 Article Number: A5BED6644659 African Journal of Agricultural ISSN 1991-637X Copyright © 2014 Research Author(s) retain the copyright of this article http://www.academicjournals.org/AJAR Full Length Research Paper An evaluation of mango (Mangifera indica L.) germplasm for future breeding programme Manveen Kaur1, J. S. Bal1, L. K. Sharma2* and S. K. Bali2 1Department of Horticulture, Khalsa College, Amritsar, Punjab, India. 2Department of Soil Science, North Dakota State University, Fargo, ND-58108, USA. Received 4 February, 2014; Accepted 9 May, 2014 Evaluation of physical and chemical characteristics of fruit crops has been successfully used for selection of improved cultivars for breeding programs. The study was conducted at typical subtropical conditions in North-West India for evaluating the variability of mango germplasm to conserve the elite ones and identify the superior genotypes based on fruit quality for multiplication and for future crop improvement. Fourteen genotypes were tested for their physiological and chemical characteristics. Randomized complete block design was used and critical difference was used to compare quality characteristics of fourteen mango genotypes. Maximum fruit weight was found in Chausa whereas maximum reducing and total sugars were observed in Malda. Dashehari ranked first in respect of yield per tree, that is, 148.90 kg/tree. Local Selection-I was the earliest to mature. Among all genotypes Chausa, Kala Gola, Hundel and Gola showed tendency towards regular bearing. The Alphonso, Malda and Chausa was identified for superior traits like total soluble solids/acid ratio (TSS/acid ratio); Chausa and Langra Banarasi for high pulp percentage and pulp stone ratio; Rattaul for excellent flavour; ‘Local Selection-I’ for regular bearing and Dashehari for higher
Recommended publications
  • Proceedings of the United States National Museum
    Proceedings of the United States National Museum SMITHSONIAN INSTITUTION • WASHINGTON, D.C. Volume 112 I960 Number 3431 LACE-BUG GENERA OF THE WORLD (HEMIPTERA: TINGIDAE) « By Carl J. Drake and Florence A. Ruhoff Introduction A treatise of the generic names of the family Tingidae from a global standpoint embodies problems similar to those frequently encountered in corresponding studies in other animal groups. The more im- portant criteria, including such basic desiderata as fixation of type species, synonyms, priority, and dates of technical publications implicate questions concomitant with recent trends toward the clarification and stabilization of zoological nomenclature. Zoogeography, predicated and authenticated on the generic level by the distribution of genera and species, is portrayed here by means of tables, charts, and maps of the tingifauna of the world. This visual pattern of distribution helps one to form a more vivid concept of the family and its hierarchic levels of subfamilies and genera. To a limited extent the data indicate distributional concentrations and probable centers of evolution and dispersal paths of genera. The phylogenetic relationship of genera is not discussed. The present treatise recognizes 216 genera (plus 79 synonyms, homonyms, and emendations) of the Tingidae of the world and gives 1 Research for this paper was supported In part by the National Science Foundation, grant No. 4095. 2 PROCEEDINGS OF THE NATIONAL MUSEUM vol. 112 the figure of 1,767 as the approximate number of species now recog- nized. These figures, collated with similar categories in Lethierry and Severin (1896), show that there has been an increase of many genera and hundreds of species of Tingidae during the past three- quarters of a century.
    [Show full text]
  • The First Green Lacewings from the Late Eocene Baltic Amber
    The first green lacewings from the late Eocene Baltic amber VLADIMIR N. MAKARKIN, SONJA WEDMANN, and THOMAS WEITERSCHAN Makarkin, V.N., Wedmann, S., and Weiterschan, T. 2018. The first green lacewings from the late Eocene Baltic amber. Acta Palaeontologica Polonica 63 (3): 527–537. Pseudosencera baltica gen. et sp. nov. of Chrysopinae (Chrysopidae, Neuroptera) is described from Baltic amber. Additionally, another species, Nothochrysa? sp. (Nothochrysinae), is left in the open nomenclature. Pseudosencera bal- tica gen. et sp. nov. represents the oldest confident record of Chrysopinae. The new genus lacks the apparent forewing intramedian cell, and possesses three character states not found in other Chrysopinae: the simple AA1, the short basal crossvein between M and Cu, and 5‒6 rings of setae on the antennal flagellomeres. This genus is probably a special- ised form in a basal branch of Chrysopinae, that could not be attributed to any of the known tribes. The specimen of Nothochrysa? sp. consists only of fragments of the forewings. The late Eocene Baltic amber represents the oldest horizon where Chrysopinae and Nothochrysinae are found to coexist. It is highly likely that Chrysopidae were extremely rare in these forests. Key words: Neuroptera, Chrysopinae, Nothochrysinae, Cenozoic, Baltic amber. Vladimir N. Makarkin [[email protected]], Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok 690022, Russia. Sonja Wedmann [[email protected]], Senckenberg Forschungsstation Grube Messel, Markstrasse 35, D-64409 Messel, Germany. Thomas Weiterschan [[email protected]], Forsteler Strasse 1, 64739 Höchst Odw., Germany. Received 16 May 2018, accepted 5 July 2018, available online 23 July 2018.
    [Show full text]
  • Value Chain Analysis for Processed Fruits from Burkina Faso, Mali and Ivory Coast
    CBI Ministry of Foreign Affairs Value Chain Analysis for Processed Fruits from Burkina Faso, Mali and Ivory Coast Commissioned by The Centre for the Promotion of Imports from developing countries (CBI) Agri-Logic August 2019 Value Chain Analysis for Processed Fruits from Burkina Faso, Mali and Ivory Coast Value Chain Analysis for CBI Final edited version 12 August 2019 Prepared by: Herma Mulder Sanne Steemers Jean Bosco Dibouloni Jacques Tamini Mohamed Ali Niang 1 Executive summary Background and scope This value chain analysis was commissioned by CBI (Centre for the Promotion of Imports from developing countries) in order to identify the most promising product market combinations for processed fruit from Burkina Faso, Côte d’Ivoire and Mali. Export market competitiveness While tropical dried fruits and tropical frozen fruits are still relatively small compared to the total processed fruit market size, we see that tropical fruits are gaining market share from native European fruits. Preserved fruits (mainly canned pineapple), fruit juices, concentrates (for juices) and coconut oil are larger markets, but they are stable or in some cases declining. Purées for the baby food segment and coconut derivatives other than coconut oil are interesting growth segments when the high quality and food safety standards required are achieved. For all processed fruits market segments, the same countries appear as trade hubs for the European market: The United Kingdom, The Netherlands, Germany, France, Belgium and Italy. Market trends provide opportunities and threats for the development of a processed fruits segment. Consumer demands for healthy and sustainable products are increasing. The shift in consumer dietary patterns and the growing vegan population is expected to drive the growth of the processed fruit market.
    [Show full text]
  • Neuroptera: Chrysopidae)
    Zootaxa 3351: 1–14 (2012) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2012 · Magnolia Press ISSN 1175-5334 (online edition) A new genus of Neotropical Chrysopini (Neuroptera: Chrysopidae) FRANCISCO SOSA1 & SERGIO DE FREITAS2 1 Universidad Centroccidental “Lisandro Alvarado”, Museo Entomológico “Dr. José Manuel Osorio” (UCOB), Barquisimeto, Lara, . E-mail: [email protected] 2 Universidade Estadual Paulista, Jaboticabal, São Paulo, Brazil (deceased) Abstract Titanochrysa Sosa & Freitas is a new genus of Neotropical Chrysopini (Chrysopidae: Chrysopinae) recorded from Costa Rica, Venezuela and Brazil. Titanochrysa gen. nov. shares several external and genitalic characters with Ceraeochrysa Adams, 1982; Chrysopodes Navás, 1913; Cryptochrysa Freitas & Penny, 2000; Parachrysopiella Brooks & Barnard, 1990 and Ungla Navás 1914. It may be distinguished from those genera by its very long sternite 8+9, sternites 2–8 usually with microtholi, male geni- talia with the dorsal surface of the arcessus striated, gonosaccus well-developed, bearing elongate gonosetae and microsetae, and a spoon-like gonapsis. Herein, Titanochrysa circumfusa (Burmeister, 1939) [= Chrysopodes circumfusa (Burmeister)] comb. nov. and Titanochrysa pseudovaricosa (Penny) [= Ceraeochrysa pseudovaricosa Penny, 1998] comb. nov. were identi- fied; Titanochrysa ferreirai Sosa & Freitas sp. nov. and Titanochrysa trespuntensis Sosa & Freitas sp. nov. were described. The external morphology, and male and female genitalia of all these species
    [Show full text]
  • Handbook for Agricultural and Fishery Products Import Regulations 2009
    Handbook for Agricultural and Fishery Products Import Regulations 2009 February 2010 CONTENTS I. Products ....................................................................................................................1 1. Live Animals .............................................................................................................2 2. Meat and Prepared Products ...................................................................................7 3. Other Animal Products ...........................................................................................13 4. Fishery Products and Prepared Products .............................................................18 5. Dairy Products, etc. ...............................................................................................24 6. Plants, Resins and Vegetable Juices, etc. ............................................................28 7. Vegetables, Fruits and Prepared Products ............................................................33 8. Cereals and Prepared Products ............................................................................38 9. Sugars, Cocoa and Prepared Products .................................................................44 10. Spices ....................................................................................................................47 11. Oil Seeds and Prepared Products .........................................................................50 12. Various Prepared Foods ........................................................................................54
    [Show full text]
  • Seasonal Calendar: Fruits
    Seasonal Calendar: Fruits FRUITS TYPE EU OVERSEAS JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC Apple Braeburn AT, DE, IT, NL AR, NZ, US Cox Orange DE, NL - Elstar BE, DE, NL - Fuji FR, IT AR, NZ, US Granny Smith IT AR, US Jonagold BE, DE, NL - Red Delicious FR, IT AR, US Royal Gala DE, IT, NL AR, CL, NZ, US Apricot Diff. varieties ES, FR, GR, IT CL, NZ, TN, TR, ZA Avocado Ettinger - IL Fuerte ES, IT CL, EG, IL, KE, MX, PE, ZA Hass/Black Sensation ES, IT CL, CO, EG, IL, KE, MX, PE, ZA Pinkerton - IL Reed - IL Banana Baby Banana - CO, CR, DO, EC, GT, PE Cavendish - CO, DO, EC, GT, PE Cooking Banana (Plantains) - CO, DO, EC, GT, PE, TH Red Banana - CR, EC, ID, KE, PE Blackberry Diff. varieties BE, DE, FR, HU, IT, NL CL, GT, MX, NZ, US Blueberry Diff. varieties DE, ES, FR, IT AU, BY, CL, NZ, PE, ZA Cherimoya Diff. varieties ES AU, CL, EC, EG, IL, KE, NZ, PE, US Cherry Morello DE, HU, PL TR, US Sweet DE, IT TR, US Coconut Diff. varieties - CI, DO, HN, LK, PH Cranberry Diff. varieties IT CA, CL, US Currant Black DE, FR, NL CL Red BE, DE, NL CL Date Diff. varieties IT EG, IL, IR, TN, US Dragon fruit (Pitaya) Diff. varieties - CO, EC, IL, NI, TH, VN Fig Diff. varieties ES, IT BR, IL, TN, TR Ginger Diff. varieties - CN, PE AR Argentina CA Canada CO Colombia (IPD) EG Egypt (IPD) GM Gambia IT Italy MG Madagaskar NZ New Zealand RU Russian Federation UA Ukraine (IPD) AU Australia CD Democratic Republic CR Costa Rica ES Spain GT Guatemala IR Iran MX Mexico PA Panama SN Senegal UG Uganda AT Austria of the Congo CY Cyprus ET Ethiopia (IPD) HN Honduras
    [Show full text]
  • Redalyc.First Record of Chrysoperla Asoralis and C. Argentina
    Revista de la Sociedad Entomológica Argentina ISSN: 0373-5680 [email protected] Sociedad Entomológica Argentina Argentina HARAMBOURE, Marina; REGUILÓN, Carmen; ALZOGARAY, Raúl A.; SCHNEIDER, Marcela Inés First record of Chrysoperla asoralis and C. argentina (Neuroptera: Chrysopidae) in horticultural fields of La Plata associated with the sweet pepper (Capsicum annuum L.) Revista de la Sociedad Entomológica Argentina, vol. 73, núm. 3-4, diciembre, 2014, pp. 187-190 Sociedad Entomológica Argentina Buenos Aires, Argentina Available in: http://www.redalyc.org/articulo.oa?id=322032818013 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Nota Científica Scientific Note ISSN 0373-5680 (impresa), ISSN 1851-7471 (en línea) Revista de la Sociedad Entomológica Argentina 73 (3-4): 187-190, 2014 First record of Chrysoperla asoralis and C. argentina (Neuroptera: Chrysopidae) in horticultural fields of La Plata associated with the sweet pepper (Capsicum annuum L.) HARAMBOURE, Marina¹, Carmen REGUILÓN², Raúl A. ALZOGARAY³, 4 & Marcela Inés SCHNEIDER¹, 5 ¹ Laboratorio de Ecotoxicología: Plaguicidas y Control Biológico. Centro de Estudios Parasito- lógicos y de Vectores [CEPAVE (CONICET LA PLATA-UNLP)], Bv. 120 s/n e/61 y 62, La Plata CP 1900, Buenos Aires, Argentina. E-mail: [email protected] ² Instituto de Entomología, Fundación Miguel Lillo, Tucumán, Argentina. ³ Centro de Investigaciones de Plagas e Insecticidas (CIPEIN-UNIDEF/CONICET), Villa Mar- telli, Bs. As., Argentina. 4 Instituto de Investigación e Ingeniería Ambiental (3IA – UNSAM).
    [Show full text]
  • Non-Destructive Assessment of Quality and Maturity of Mangoes Based on Image Analysis
    MSc. Thesis (MSCV) Department of Applied Computer Science University of Bourgogne Non-destructive assessment of quality and maturity of mangoes based on image analysis Kumar Ankush A Thesis submitted in July 2020 for the Degree of MSc in Computer Vision (VIBOT/MSCV) Master thesis supervised by Dr. Emile Faye and Dr. Julien Sarron of the UPR HortSys of CIRAD. Abstract Quality and maturity estimation of mangoes are important for the organization of harvesting date and post-harvest conservation. Although extensive fruit quality estimations exist, they are mostly destructive in nature and available tools for non-destructive estimation are limited. Maturity estimation rely on visual inspection of the fruit, in-hand feel or destructive measure- ment based on quality assessment. Thus, non-destructive tools for an accurate estimation of the quality and the maturity of the fruit have yet to be developed, especially for smallhold- ers. The aim of this study was to develop a tool for non-destructive assessment of quality and maturity of mangoes based on image analysis. This experiment studied 1040 lateral RGB images of 520 mangoes of di↵erent stages of maturity and harvested in two orchards in West Africa. Upon performing digital image segmentation on the images of mangoes, six image fea- tures were calculated with the use of digital image processing functions in MATLAB and four destructive features were taken in consideration. Then, correlations between destructive and non-destructive features of mangoes were explored. No research is ever quite complete. It is the glory of a good bit of work that it opens the way for something still better, and this repeatedly leads to its own eclipse..
    [Show full text]
  • The Neotropical Genus Titanochrysa (Neuroptera, Chrysopidae): Larval Descriptions, Biological Notes, a New Species, and Taxonomic Changes
    Zootaxa 3514: 1–26 (2012) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ ZOOTAXA Copyright © 2012 · Magnolia Press Article ISSN 1175-5334 (online edition) urn:lsid:zoobank.org:pub:2ADED4C5-8F16-4AE4-989D-0F8688DBDC1D The Neotropical genus Titanochrysa (Neuroptera, Chrysopidae): larval descriptions, biological notes, a new species, and taxonomic changes CATHERINE A. TAUBER1, GILBERTO S. ALBUQUERQUE2 & MAURICE J. TAUBER1 1Department of Entomology, Comstock Hall, Cornell University, Ithaca, NY 14853-2601 & Department of Entomology, University of California, Davis, CA. E-mail: [email protected] 2Laboratório de Entomologia e Fitopatologia, CCTA, Universidade Estadual do Norte Fluminense, Campos dos Goytacazes, Rio de Janeiro, Brazil 28013-602. E-mail: [email protected] Abstract This report provides new information on three facets of a recently described Neotropical genus of chrysopine lacewings, Titanochrysa Sosa & Freitas 2012. First, because the current taxonomic understanding of the genus is based entirely on the adult stage, we describe the larvae and aspects of the biology of Titanochrysa trespuntensis Sosa & Freitas. We show that although T. trespuntensis larvae share many morphological and behavioral characteristics with other Neotropical gen- era of Chrysopini, they also differ significantly in many generic-level characters. Their unique suite of larval features pro- vides strong support for the designation of this group of lacewings as a genus. Second, Titanochrysa is known to contain four species; this report describes the adult of a fifth species—Titanochrysa simpliciala New Species, from Costa Rica. Third, the report presents new locality records for three of the original four Titanochrysa species and deals with several taxonomic issues. Specifically, (a) Chrysopa annotaria Banks is transferred to the genus; thus the valid name for the spe- cies becomes Titanochrysa annotaria (Banks), New Combination.
    [Show full text]
  • Insecta, Neuroptera, Chrysopidae, Chrysopinae, Chrysopini) with Markedly Divergent Adult and Larval Features
    Bull. Natl. Mus. Nat. Sci., Ser. A, 44(2), pp. 69–85, May 22, 2018 Kuwayamachrysa, a New Genus of Lacewings (Insecta, Neuroptera, Chrysopidae, Chrysopinae, Chrysopini) with Markedly Divergent Adult and Larval Features Shigehiko Tsukaguchi1 and Toshihiro Tago2 1 10–10–203 Kanbara, Nishinomiya, Hyogo 662–0021, Japan E-mail: [email protected] 2 1–29–13–101 Motogou, Kawaguchi, Saitama 332–0011, Japan E-mail: [email protected] (Received 22 March 2018; accepted 28 March 2018) Abstract The authors describe Kuwayamachrysa gen. nov. from northeastern Asia–Japan, Korea and Russian Far East. This new genus is characterized by a number of extraordinary features in the male and female genitalia, and also in the pattern of larval setation. In the male genitalia, there is a uniquely asymmetrical and intersecting gonapsis; in the female genitalia, a bursa-vela connector, vaginal frame and laminate link are present; and in the first instar, secondary setae occur on both thoracic and abdominal segments. The type species of the monotypic genus is Chrysopa kichijoi Kuwayama, 1936. It is redescribed with emphasis on the adult abdominal hypodermal coloration, female terminalia, and larval morphology (first and third instars), all of which were previously unknown. Several features of the new genus are compared with those of other genera: (i) the mor- phology of the gonapsis in relation to the dorsal membrane of the 9th sternite (ii) the morphology of newly described features (bursa-vela connector, vaginal frame and laminate link), and (iii) the first and third instar patterns of setation. Key words: Chrysopini, genitalia, Japan, kichijoi, Korea, Kuwayamachrysa, larval setation, new combination, new genus, Russian Far East.
    [Show full text]
  • Correlation Between Inflorescence Phenological Events of Mango (Mangifera Indica Cv
    Journal of Experimental Agriculture International 25(3): 1-12, 2018; Article no.JEAI.43153 ISSN: 2457-0591 (Past name: American Journal of Experimental Agriculture, Past ISSN: 2231-0606) Correlation between Inflorescence Phenological Events of Mango (Mangifera indica cv. Kent) and Some Climatic Parameters in Côte d'Ivoire Kouakou Kouassi Léopold1*, Kone Tchoa1, N'da Adopo Achille2 and Kouakou Tanoh Hilaire1 1Laboratoire de Biologie et Amélioration des Productions Végétales, UFR Sciences de la Nature, Université Nangui Abrogoua, 02 BP 801 Abidjan 02, Côte d’Ivoire. 2Centre National de Recherche Agronomique, Station de Lataha (Korhogo), 01 BP 1740 Abidjan Côte d’Ivoire. Authors’ contributions This work was carried out in collaboration between all authors. Author KKL designed the study, performed the statistical analysis, wrote the protocol and wrote the first draft of the manuscript. Authors NAA and KTH managed the analyses of the study. Author KT managed the literature searches. All authors read and approved the final manuscript. Article Information DOI: 10.9734/JEAI/2018/43153 Editor(s): (1) Lanzhuang Chen, Professor, Laboratory of Plant Biotechnology, Faculty of Environment and Horticulture, Minami Kyushu University, Miyazaki, Japan. Reviewers: (1) Kabi Pokhrel, Tribhuvan University, Nepal. (2) Raúl Leonel Grijalva-Contreras, Instituto Nacional de Investigaciones Forestales Agrícolas y Pecuarias, Mexico. Complete Peer review History: http://www.sciencedomain.org/review-history/25866 Received 19th May 2018 th Original Research Article Accepted 24 July 2018 Published 13th August 2018 ABSTRACT Aims: It was aimed to investigate the relationship between two climatic parameters, temperature and relative humidity, and the flower-cutting interval of mangoes tree cv. Kent Study Design: The experimental design used was the completely randomized design with triplicate.
    [Show full text]
  • Use of Potassium Nitrate on Mango Flowering
    USE OF POTASSIUM NITRATE ON MANGO FLOWERING Mike A. Nagaol and Melvin S. Nishina2 lDepartment of Horticulture and 2Cooperative Extension Service, Hawaii County College of Tropical Agriculture and Human Resources University of Hawaii at Manoa The mango (Mangifera indica L.), a member of Elisa and Davenport 1992). It was concluded that the Anarcardiaceae, is a popular fruit of the water stress was not responsible for flower tropics and occupies a position in the tropics induction, but could enhance the response to cool similar to that of apples in temperate regions. temperatures. Similar conclusions have also been Originating in the Indo-Burma region, the mango obtained by workers in Australia (Whiley 1992). has since spread to nearly all tropical areas of the Reliable flowering is necessary to obtain world. On the Indian subcontinent, it has been consistent mango production in the tropics. In under cultivation for at least 4,000 years. Hawaii, the Pacific, and the Caribbean, where land In the tropics, mangos are usually grown at is a limiting factor, mango is a potentially elevations between sea level and 1,200 meters, but important fruit crop if increased production, does best below 610 meters in climates with a reliable bearing, and off-season bearing can be pronounced dry season. In Hawaii mango will achieved. In Hawaii, biennial bearing is common; grow best at elevations from sea level to 457 a heavy crop one year may prevent further fruiting meters (1,500 ft) (Chia et a!. 1988). Mangos grow for two years or longer. In the Hawaiian Islands, best at temperatures between 27 - 24°C and are leeward sections, which are drier during the winter susceptible to frost damage.
    [Show full text]