Beach Erosion Under Rising Sea‐

Total Page:16

File Type:pdf, Size:1020Kb

Beach Erosion Under Rising Sea‐ Sedimentology (2016) doi: 10.1111/sed.12264 Beach erosion under rising sea-level modulated by coastal geomorphology and sediment availability on carbonate reef-fringed island coasts BRADLEY M. ROMINE*, CHARLES H. FLETCHER†, L. NEIL FRAZER† and TIFFANY R. ANDERSON† *University of Hawaii Sea Grant College Program, University of Hawaii at Manoa, Honolulu, HI, USA (E-mail: [email protected]) †Department of Geology and Geophysics, University of Hawaii at Manoa, Honolulu, HI, USA Associate Editor – Vern Manville ABSTRACT This study addresses gaps in understanding the relative roles of sea-level change, coastal geomorphology and sediment availability in driving beach erosion at the scale of individual beaches. Patterns of historical shoreline change are examined for spatial relationships to geomorphology and for tem- poral relationships to late-Holocene and modern sea-level change. The study area shoreline on the north-east coast of Oahu, Hawaii, is characterized by a series of kilometre-long beaches with repeated headland-embayed morpho- logy fronted by a carbonate fringing reef. The beaches are the seaward edge of a carbonate sand-rich coastal strand plain, a common morphological set- ting in tectonically stable tropical island coasts. Multiple lines of geological evidence indicate that the strand plain prograded atop a fringing reef plat- form during a period of late-Holocene sea-level fall. Analysis of historical shoreline changes indicates an overall trend of erosion (shoreline recession) along headland sections of beach and an overall trend of stable to accreting beaches along adjoining embayed sections. Eighty-eight per cent of headland beaches eroded over the past century at an average rate of À À0Á12 Æ 0Á03 m yr 1. In contrast, 56% of embayed beaches accreted at an À average rate of 0Á04 Æ 0Á03 m yr 1. Given over a century of global (and local) sea-level rise, the data indicate that embayed beaches are showing remark- able resiliency. The pattern of headland beach erosion and stable to accret- ing embayments suggests a shift from accretion to erosion particular to the headland beaches with the initiation of modern sea-level rise. These results emphasize the need to account for localized variations in beach erosion related to geomorphology and alongshore sediment transport in attempting to forecast future shoreline change under increasing sea-level rise. Keywords Beach, coastal, erosion, Hawaii, Oahu, sea-level, shoreline. INTRODUCTION 1987). Beach erosion and shoreline recession will increase on a regional to global scale with Coastal erosion is a problem in Hawaii (Romine increasing sea-level rise in coming decades & Fletcher, 2012), on continental shores of the (National Research Council, 2012; IPCC, 2014). United States (Morton et al., 2004; Morton & However, coastal scientists are limited in their Miller, 2005; Hapke et al., 2006, 2010; Hapke & ability to predict shoreline change, particularly Reid, 2007) and coasts around the world (Bird, on the scale of individual beaches and littoral © 2016 The Authors. Sedimentology © 2016 International Association of Sedimentologists 1 2 B. M. Romine et al. cells, because shoreline change can be domi- in beach erosion rates. Also, the implications of nated by localized sediment availability and these findings in projecting future shoreline transport, which can act partially or totally inde- change under increasing rates of sea-level rise pendently of sea-level change. Other factors are discussed. complicating the ability to forecast shoreline Historical shoreline positions and change change include alongshore and cross-shore vari- rates from Fletcher et al. (2012) are utilized ations in geology, lithology and coastal slope. (see Materials and methods section) to analyse Understanding how beaches will change in a spatial patterns of beach erosion and to evaluate future dominated by sea-level rise requires the importance of coastal geomorphology and insights into these localized processes governing alongshore sediment transport on observed and historical and modern shoreline changes. future coastal change. The primary focus is on Sea-level rise has been implicated as a driver of beaches of north-east Oahu due to: (i) the coastal modern (observed) shoreline change for island geology, which is characterized by a carbonate coasts (Singh, 1997; Ford, 2012; Romine et al., sand-rich strand plain (described in more detail 2013) and continental coasts (Leatherman et al., in the Physical setting section) – a common fea- 2000; Zhang et al., 2004; Brunel & Sabatier, 2009; ture on many tectonically stable carbonate reef- Guitierrez et al., 2011; Yates & Cozannet, 2012). fringed volcanic and atoll islands (Grossman However, the relative roles of coastal geomor- et al., 1998; Dickinson, 2001, 2004); (ii) the rela- phology, sediment availability, human influences tive abundance of historical shoreline positions and sea-level change in driving shoreline change from existing data sets (Historical shorelines sec- are not well-understood and add to uncertainty tion); (iii) the kilometres-long semi-continuous in these studies. These gaps in understanding of beaches with repeated headland-embayment the relative influence of individual processes on morphology allowing for investigation of charac- shoreline change highlight the need for further teristic longshore and cross-shore sediment studies that rely on observational data and mod- transport patterns; and (iv) the available maps of els and are applicable at the scale of individual nearshore sediment deposits and bathymetry beaches (Le Cozannet et al., 2014). (Conger et al., 2009). Cursory inspection of plots The reef-fringed coast of Oahu, Hawaii, is typi- of shoreline change along north-east Oahu in cal of other carbonate shoreline systems found on Fletcher et al. (2012) suggests a predominant tectonically stable islands in equatorial oceans trend of erosion along headland sections of worldwide. Throughout low-latitude areas of the beach and accretion within adjoining embayed Pacific and elsewhere, coasts have undergone a sections of beach. In addition to analysis of spa- unique history of relative sea-level fall during the tial patterns of shoreline change, potential rela- late Holocene due to post-glacial geoid subsi- tionships between the observed spatial patterns dence (Mitrovica & Peltier, 1991; Mitrovica & of shoreline change, existing coastal geomor- Milne, 2002) followed by recent eustatic sea-level phology and localized changes in late-Holocene rise due to global warming (IPCC, 2014). Millions sea-level are discussed. of people living on reef-fringed carbonate coasts around the world are exposed to increasing shore- line erosion with accelerating sea-level rise. It is PHYSICAL SETTING critically important that coastal managers are pro- vided with actionable scientific results that The island of Oahu, Hawaii, is located in the inform new policies to support decision making tropics of the central North Pacific (Fig. 1). The and planning for improved hazard resilience and coast is fringed by a carbonate reef platform resource management. comprised of a patchwork assemblage of fossil Using the Oahu coast as a representative set- Pleistocene reefs from interglacial high sea-level ting for carbonate, reef-fringed coasts in equato- stands of the past several hundred thousand rial waters, this study addresses gaps in current years (Fletcher et al., 2008). Hawaii lies in a understanding of the roles that coastal geomor- microtidal zone (tide range ≤1 m). The north- phology, sediment supply and sea-level rise play east Oahu study area is exposed to large waves in shoreline changes at the scale of individual in winter from the North Pacific (winter months) beaches. In particular, this study examines the and predominant trade winds year-round. As a role that coastal geomorphology and available result, wave-generated currents are the primary sediment, which are typically remnants of past drivers of sediment transport (Norcross et al., sea-level changes, play in alongshore variability 2003). © 2016 The Authors. Sedimentology © 2016 International Association of Sedimentologists, Sedimentology Beach erosion and sea-level rise on carbonate island coasts 3 158°15’ W 158°00’ 157°45’ 21° 45’ N Study area Pacific Ocean 21° 30’ Oahu 21° 0 5 Kilometres Fig. 1. Shoreline study area (black 15’ box) on the north-east coast of 0 5 Miles Oahu, Hawaii. Fig. 2. Low-lying sand-rich coastal plain and beach at Punaluu, east Oahu (view looking south-west). Note the embayed beach fronting the channel in the nearshore reef (left) and headland beach fronting the shallower nearshore reef (right) (photograph by Andrew D. Short, University of Sydney). Beaches along east Oahu, including the study within the study area, beaches are simply the area, are composed primarily of biogenic cal- eroded leading edge of a sand-rich coastal plain careous sand originally derived from nearshore (Fletcher et al., 2012) (Fig. 2). reefs (Harney & Fletcher, 2003). Volcanoclastic Historical shoreline studies indicate an overall sediment eroded from inland watersheds is typi- stable trend (region-wide average) on beaches cally a minor fraction of beach sand on Oahu. along east Oahu (Fletcher et al., 2012; Romine & Beaches are typically backed by low-lying Fletcher, 2012). Like other coastal regions in coastal plains comprised of a mixture of beach Hawaii, long-term shoreline trends along east deposits and dunes, lithified carbonate deposits Oahu are highly variable along the shore, when (including fossil
Recommended publications
  • Natural and Anthropogenic Influences on the Morphodynamics of Sandy and Mixed Sand and Gravel Beaches Tiffany Roberts University of South Florida, [email protected]
    University of South Florida Scholar Commons Graduate Theses and Dissertations Graduate School January 2012 Natural and Anthropogenic Influences on the Morphodynamics of Sandy and Mixed Sand and Gravel Beaches Tiffany Roberts University of South Florida, [email protected] Follow this and additional works at: http://scholarcommons.usf.edu/etd Part of the American Studies Commons, Geology Commons, and the Geomorphology Commons Scholar Commons Citation Roberts, Tiffany, "Natural and Anthropogenic Influences on the Morphodynamics of Sandy and Mixed Sand and Gravel Beaches" (2012). Graduate Theses and Dissertations. http://scholarcommons.usf.edu/etd/4216 This Dissertation is brought to you for free and open access by the Graduate School at Scholar Commons. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact [email protected]. Natural and Anthropogenic Influences on the Morphodynamics of Sandy and Mixed Sand and Gravel Beaches by Tiffany M. Roberts A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy Department of Geology College of Arts and Sciences University of South Florida Major Professor: Ping Wang, Ph.D. Bogdan P. Onac, Ph.D. Nathaniel Plant, Ph.D. Jack A. Puleo, Ph.D. Julie D. Rosati, Ph.D. Date of Approval: July 12, 2012 Keywords: barrier island beaches, beach morphodynamics, beach nourishment, longshore sediment transport, cross-shore sediment transport. Copyright © 2012, Tiffany M. Roberts Dedication To my eternally supportive mother, Darlene, my brother and sister, Trey and Amber, my aunt Pat, and the friends who have been by my side through every challenge and triumph.
    [Show full text]
  • 1 the Influence of Groyne Fields and Other Hard Defences on the Shoreline Configuration
    1 The Influence of Groyne Fields and Other Hard Defences on the Shoreline Configuration 2 of Soft Cliff Coastlines 3 4 Sally Brown1*, Max Barton1, Robert J Nicholls1 5 6 1. Faculty of Engineering and the Environment, University of Southampton, 7 University Road, Highfield, Southampton, UK. S017 1BJ. 8 9 * Sally Brown ([email protected], Telephone: +44(0)2380 594796). 10 11 Abstract: Building defences, such as groynes, on eroding soft cliff coastlines alters the 12 sediment budget, changing the shoreline configuration adjacent to defences. On the 13 down-drift side, the coastline is set-back. This is often believed to be caused by increased 14 erosion via the ‘terminal groyne effect’, resulting in rapid land loss. This paper examines 15 whether the terminal groyne effect always occurs down-drift post defence construction 16 (i.e. whether or not the retreat rate increases down-drift) through case study analysis. 17 18 Nine cases were analysed at Holderness and Christchurch Bay, England. Seven out of 19 nine sites experienced an increase in down-drift retreat rates. For the two remaining sites, 20 retreat rates remained constant after construction, probably as a sediment deficit already 21 existed prior to construction or as sediment movement was restricted further down-drift. 22 For these two sites, a set-back still evolved, leading to the erroneous perception that a 23 terminal groyne effect had developed. Additionally, seven of the nine sites developed a 24 set back up-drift of the initial groyne, leading to the defended sections of coast acting as 1 25 a hard headland, inhabiting long-shore drift.
    [Show full text]
  • Stratigraphic Studies of a Late Quaternary Barrier-Type Coastal Complex, Mustang Island-Corpus Christi Bay Area, South Texas Gulf Coast
    Stratigraphic Studies of a Late Quaternary Barrier-Type Coastal Complex, Mustang Island-Corpus Christi Bay Area, South Texas Gulf Coast U.S. GEOLOGICAL SURVEY PROFESSIONAL PAPER 1328 COVER: Landsat image showing a regional view of the South Texas coastal zone. IUR~AtJ Of ... lt~f<ARY I. liBRARY tPotC Af•a .VAStf. , . ' U. S. BUREAU eF MINES Western Field Operation Center FEB 1919S7 East 360 3rd Ave. IJ.tA~t tETUI~· Spokane, Washington .99~02. m UIIM» S.tratigraphic Studies of a Late Quaternary Barrier-Type Coastal Complex, Mustang Island­ Corpus Christi Bay Area, South Texas Gulf Coast Edited by GERALD L. SHIDELER A. Stratigraphic Studies of a Late Quaternary Coastal Complex, South Texas-Introduction and Geologic Framework, by Gerald L. Shideler B. Seismic and Physical Stratigraphy of Late Quaternary Deposits, South Texas Coastal Complex, by Gerald L. Shideler · C. Ostracodes from Late Quaternary Deposits, South Texas Coastal Complex, by Thomas M. Cronin D. Petrology and Diagenesis of Late Quaternary Sands, South Texas Coastal Complex, by Romeo M. Flores and C. William Keighin E. Geochemistry and Mineralogy of Late Quaternary Fine-grained Sediments, South Texas Coastal Complex, by Romeo M. Flores and Gerald L. Shideler U.S. G E 0 L 0 G I CAL SURVEY P R 0 FE S S I 0 N A L p·A PER I 3 2 8 UNrfED S~fA~fES GOVERNMENT PRINTING ·OFFICE, WASHINGTON: 1986 DEPARTMENT OF THE INTERIOR DONALD PAUL HODEL, Secretary U.S. GEOLOGICAL SURVEY Dallas L. Peck, Director Library of Congress Cataloging-in-Publication Data Main entry under title: Stratigraphic studies of a late Quaternary barrier-type coastal complex, Mustang Island-Corpus Christi Bay area, South Texas Gulf Coast.
    [Show full text]
  • Baja California Sur, Mexico)
    Journal of Marine Science and Engineering Article Geomorphology of a Holocene Hurricane Deposit Eroded from Rhyolite Sea Cliffs on Ensenada Almeja (Baja California Sur, Mexico) Markes E. Johnson 1,* , Rigoberto Guardado-France 2, Erlend M. Johnson 3 and Jorge Ledesma-Vázquez 2 1 Geosciences Department, Williams College, Williamstown, MA 01267, USA 2 Facultad de Ciencias Marinas, Universidad Autónoma de Baja California, Ensenada 22800, Baja California, Mexico; [email protected] (R.G.-F.); [email protected] (J.L.-V.) 3 Anthropology Department, Tulane University, New Orleans, LA 70018, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-413-597-2329 Received: 22 May 2019; Accepted: 20 June 2019; Published: 22 June 2019 Abstract: This work advances research on the role of hurricanes in degrading the rocky coastline within Mexico’s Gulf of California, most commonly formed by widespread igneous rocks. Under evaluation is a distinct coastal boulder bed (CBB) derived from banded rhyolite with boulders arrayed in a partial-ring configuration against one side of the headland on Ensenada Almeja (Clam Bay) north of Loreto. Preconditions related to the thickness of rhyolite flows and vertical fissures that intersect the flows at right angles along with the specific gravity of banded rhyolite delimit the size, shape and weight of boulders in the Almeja CBB. Mathematical formulae are applied to calculate the wave height generated by storm surge impacting the headland. The average weight of the 25 largest boulders from a transect nearest the bedrock source amounts to 1200 kg but only 30% of the sample is estimated to exceed a full metric ton in weight.
    [Show full text]
  • Functional Design of Coastal Structures
    FUNCTIONALFUNCTIONAL DESIGNDESIGN OFOF David R. Basco, Ph.D, P.E. Director, The Coastal Engineering Center Old Dominion University,Norfolk, Virginia USA 23529 [email protected] DESIGNDESIGN OFOF COASTALCOASTAL STRUCTURESSTRUCTURES •• FunctionFunction ofof structurestructure •• StructuralStructural integrityintegrity •• PhysicalPhysical environmentenvironment •• ConstructionConstruction methodsmethods •• OperationOperation andand maintenancemaintenance OUTLINEOUTLINE •• PlanPlan formform layoutlayout - headland breakwaters - nearshore breakwaters - groin fields • WaveWave runuprunup andand overtopping*overtopping* - breakwaters and revetments (seawalls, beaches not covered here) •• WaveWave reflectionsreflections (materials(materials includedincluded inin notes)notes) * materials from ASCE, Coastal Engineering Short Course, CEM Preview, April 2001 SHORESHORE PARALLELPARALLEL BREAKWATERS:BREAKWATERS: HEADLANDHEADLAND TYPETYPE Design Rules, Hardaway et al. 1991 • Use sand fill to create tombolo for constriction from land • Set berm elevation so tombolo always present at high tide • Set Yg/Lg =• 1.65 for stable shaped beach • Set Ls/Lg = 1 • Always combine with new beach fill • See CEM 2001 V-3 for details KEYKEY VARIABLESVARIABLES FORFOR NEARSHORENEARSHORE BREAKWATERBREAKWATER DESIGNDESIGN Dally and Pope, 1986 Definitions: Y = breakwater distance from nourished shoreline Ls = length of breakwater Lg = gap distance d = water depth at breakwater (MWL) ds = water depth• at breakwater (MWL) •Tombolo formation: Ls/Y = 1.5 to 2 single = 1.5 system •Salient formation: Ls/ = 0.5 to 0.67 = 0.125 long systems (a) (b) Process Parameter Description 1. Bypassing Dg/Hb Depth at groin tip/breaking wave height 2. Permeability • Over-passing Zg (y) Groin elevation across profile, tidal range • Through-passing P(y) Grain permeability across shore • Shore-passing Zb/R Berm elevation/runup elevation 3. Longshore transport Qn/Qg Net rate/gross rate Property Comment 1. Wave angle and wave height Accepted.
    [Show full text]
  • Along the Seashore
    Along the seashore 8ljkiXc`X`jk_\nfic[Ëjj`ok_cXi^\jk ZflekipXe[`jjliifle[\[Ypj\X% @k_XjXmXjkZfXjkc`e\Çjfd\*.''' b`cfd\ki\j%8cfe^`kXi\dfi\k_Xe((''' Y\XZ_\jXe[XeldY\if]jklee`e^ eXkliXc]\Xkli\j#jlZ_XjM`Zkfi`XËjKn\cm\ 8gfjkc\jXe[N\jk\ie8ljkiXc`XËj E`e^XcffI\\]%Knffk_\ij#k_\>i\Xk 9Xii`\iI\\]Xe[=iXj\i@jcXe[#Xi\ Nfic[?\i`kX^\8i\Xj% Dfjkf]8ljkiXc`XËjgfglcXk`fec`m\j Zcfj\kfk_\ZfXjkc`e\#gXik`ZlcXicp`ek_\ \XjkXe[jflk_$\Xjk%Fecp(,g\iZ\ekc`m\j dfi\k_XeXe_fliËj[i`m\]ifdk_\j\X% K_\mXip`e^Zc`dXk`ZZfe[`k`fejXe[ \em`ifed\ekjf]8ljkiXc`XËjZfXjkc`e\Xccfn `kkfjlggfikXi`Z_[`m\ij`kpf]jg\Z`\j% @edfi\i\Z\ek[\ZX[\j#jfd\f]k_\j\# Xe[jfd\]iX^`c\ZfXjkXc\em`ifed\ekj# _Xm\Y\\e`eZi\Xj`e^cpk_i\Xk\e\[Yp gfcclk`fe#liYXe[\m\cfgd\ekXe[ kfli`jd% ( 9iX`ejkfidknfZcXjjc`jkj1 X eXkliXcZfXjkXc]\Xkli\jXe[ Y _ldXeXZk`m`k`\jfi[\m\cfgd\ekj kpg`ZXccp]fle[Xcfe^ZfXjkc`e\j% ) K_\cXi^\`dX^\fek_\c\]k`jXj\Zk`fe f]k_\Kn\cm\8gfjkc\j% X N_p[fpflk_`ebk_`jd`^_kY\ • How coastlines are formed jlZ_XgfglcXikfli`jkXkkiXZk`fe6 • In what ways people use coastal environments Y ?fnZflc[kfli`jdgfk\ek`Xccp and some of the effects of this use X]]\Zkk_`jeXkliXc\em`ifed\ek6 • Why pollution is causing serious problems for many * N_Xkjfikjf]gi\jjli\j[fpflk_`eb Australian coastlines _ldXeXZk`m`kpXe[[\m\cfgd\ek • How coastlines can be managed to balance competing d`^_kY\gcXZ`e^fek_\jki\kZ_f] demands in a sustainable way ZfXjkc`e\`ek_\jdXcc\i`dX^\6<ogcX`e% 9eWijWbbWdZ\ehci BOUT 85 PER CENT of Australia’s population lives in coastal towns and cities (more A than 25 per cent within three kilometres of the coast).
    [Show full text]
  • A Summary of Historical Shoreline Changes on Beaches of Kauai, Oahu, and Maui, Hawaii Bradley M
    Journal of Coastal Research 00 0 000–000 West Palm Beach, Florida Month 0000 A Summary of Historical Shoreline Changes on Beaches of Kauai, Oahu, and Maui, Hawaii Bradley M. Romine and Charles H. Fletcher* Department of Geology and Geophysics www.cerf-jcr.org School of Ocean and Earth Science and Technology University of Hawaii at Manoa POST Building, Suite 701, 1680 East–West Road Honolulu, HI 96822, USA [email protected], [email protected] ABSTRACT ROMINE, B.M. and FLETCHER, C.H., 2012. A summary of historical shoreline changes on beaches of Kauai, Oahu, and Maui; Hawaii. Journal of Coastal Research, 00(0), 000–000. West Palm Beach (Florida), ISSN 0749-0208. Shoreline change was measured along the beaches of Kauai, Oahu, and Maui (Hawaii) using historical shorelines digitized from aerial photographs and survey charts for the U.S. Geological Survey’s National Assessment of Shoreline Change. To our knowledge, this is the most comprehensive report on shoreline change throughout Hawaii and supplements the limited data on beach changes in carbonate reef–dominated systems. Trends in long-term (early 1900s– present) and short-term (mid-1940s–present) shoreline change were calculated at regular intervals (20 m) along the shore using weighted linear regression. Erosion dominated the shoreline change in Hawaii, with 70% of beaches being erosional (long-term), including 9% (21 km) that was completely lost to erosion (e.g., seawalls), and an average shoreline change rate of 20.11 6 0.01 m/y. Short-term results were somewhat less erosional (63% erosional, average change rate of 20.06 6 0.01 m/y).
    [Show full text]
  • Impacts of Sand Mining on Beaches in Suriname
    Impacts of sand mining on beaches in Suriname Braamspunt beach, February 2016 Edward J. Anthony Consultant in Geomorphology and Shoreline Management June, 2016. Background p. 3 Abstract p. 4 Summary of recommendations p. 5 Part 1. The environment, context and formation of sandy beaches in Suriname p. 6 1.1. Introduction p. 7 1.2. The Guianas mud-bank system p. 11 1.3. Cheniers and chenier beaches: natural wave-energy buffers and ecosystems p. 15 1.4. Bank and inter-bank phases, and inter-bank chenier development p. 17 1.5. River mouths and chenier development p. 19 1.6. The Suriname Coastal Plain and long-term chenier development p. 22 Part 2. Recent shoreline changes in Suriname: general morphodynamics, methodology and results for Braamspunt beach p. 27 2.1. Chenier morphodynamics – cross-shore and longshore processes p. 28 2.1. The Maroni and Surniname river-mouth contexts and Braamspunt beach p. 33 2.2. Methodology: recent shoreline changes and evolution of Braamspunt beach p. 35 2.2.1. Mesoscale (multi-decadal changes) p. 35 2.2.2. Field surveys of the morphology and dynamics of Braamspunt beach p. 38 2.3. Recent bank and inter-bank phases on the Suriname coast p. 43 2.3.1. The Maroni-Suriname sector p. 44 2.3.2. The Suriname-Coppename sector p. 44 2.3.3. The Coppename-Corantijn sector p. 45 2.4. Morphodynamics of Braamspunt beach p. 45 2.4.1. Offshore and nearshore hydrodynamic conditions p. 45 2.4.2. Grain-size and sedimentology of Braamspunt beach p.
    [Show full text]
  • Coastal Barriers - D
    COASTAL ZONES AND ESTUARIES – Coastal Barriers - D. M. FitzGerald and I. V. Buynevich COASTAL BARRIERS D. M. FitzGerald and I. V. Buynevich Department of Earth Sciences, Boston University, USA Keywords: barrier, beach, spit, inlet, barrier stratigraphy, barrier evolution Contents 1. Introduction 2. Physical Description 2.1 Beach 2.2 Barrier Interior 2.3 Landward Margin 3. Global Distribution and Tectonic Setting 3.1 General 3.2 Tectonic Controls 3.3 Climatic Controls 4. Barrier Types 4.1 Barrier Spits 4.2 Spit Initiation 4.2.1 Recurved Spits 4.2.2 Cuspate Spits 4.2.3 Flying Spits 4.2.4 Tombolos 4.2.5 Cuspate Forelands 4.3 Welded Barriers 4.4 Barrier Islands 4.4.1 Origin of Barrier Islands 4.4.2 E. de Beaumont 4.4.3 G.K. Gilbert 4.4.4 W.D. McGee 4.4.5 D.W. Johnson 4.4.6 John Hoyt 4.4.7 John Fisher 4.4.8 Recent Barrier Studies 5. BarrierUNESCO Coast Morphology – EOLSS 5.1 Hydrographic Regime and Types of Barrier Coast 5.1.1 Wave-dominatedSAMPLE Coast CHAPTERS 5.1.2 Mixed-Energy Coast 5.1.3 Tide-Dominated Coasts 5.2 Georgia Bight – A Case Study 6. Prograding, Retrograding, and Aggrading Barriers 6.1 Prograding Barriers 6.2 Retrograding Barriers 6.3 Aggrading Barriers 7. Barrier Stratigraphy 7.1 Prograding barrier (regressive stratigraphy) ©Encyclopedia of Life Support Systems (EOLSS) COASTAL ZONES AND ESTUARIES – Coastal Barriers - D. M. FitzGerald and I. V. Buynevich 7.2 Retrograding barrier (transgressive stratigraphy) 7.3 Aggrading barrier stratigraphy Glossary Bibliography Biographical Sketches Summary Barriers occur on a worldwide basis but are predominantly found along Amero-trailing edge continental margins in coastal plain settings where the supply of sand is abundant.
    [Show full text]
  • The Role of Waves, Shelf Slope and Sediment Characteristics on The
    1 The role of waves, shelf slope and sediment characteristics on the 2 development of erosional chenier plains 1* 2 3 Nardin William and Sergio Fagherazzi 4 1Horn Point Laboratory, University of Maryland Center for Environmental Science, Cambridge MD 5 USA 21613 6 2Department of Earth and Environment, Boston University, Boston MA USA 02215 7 8 *Author to whom correspondence should be addressed; E-Mail: [email protected]; 9 Tel.: +1-410-221-8232. 10 11 Abstract 12 Cheniers are sandy ridges parallel to the coast separated by muddy deposits. Here we explore the 13 development of erosional chenier plains, which form by winnowing during storms, through 14 dimensional analysis and numerical results from the morphodynamic model Delft3D-SWAN. Our 15 results show that wave energy and inner-shelf slope play an important role in the formation of erosional 16 chenier plains. In our numerical experiments, waves affect the development of erosional chenier plains 17 in three ways: by winnowing sand in the mudflats, by eroding mud at the shore, and by accumulating 18 sand over the beach during extreme wave events. We further show that different sediment 19 characteristics and wave climates lead to three alternative coastal landscapes: sandy strandplains, 20 mudflats, or the more complex erosional chenier plains. Low inner-shelf slopes are the most favorable 21 for mudflat and chenier plain formation, while high slopes decrease the likelihood of mudflat 22 development and preservation, favoring the formation of strandplains. The presented study shows that 23 erosional cheniers can form only when there is enough sediment availability to counteract wave action 24 and for a specific range of shelf slopes.
    [Show full text]
  • Introduction to Cabo Pulmo
    Introduction to Cabo Pulmo his book is a chronicle of my forty-five-year fascination with an extraordinary five-mile stretch of coastline located along the East Cape of Mexico’s Baja TCalifornia Peninsula. Cabo Pulmo (Cape Lung) is an isolated, fifty-foot-high volcanic beach remnant forming a minor headland (Pulmo Head) at the northern end of this shoreline. The village of Cabo Pulmo is situated a quarter of a mile south of Pulmo Head. The open, two-mile-wide indentation forming Pulmo Bay extends south from the Head, ending abruptly at Frailes Mountain, the easternmost extension of the Baja Peninsula. This massive 800-foot-high mountain headland faces the city of Mazatlan on the Mexican mainland, a hundred and twenty-five miles across the mouth of the Gulf of California. Frailes Mountain’s mile-long run seaward hides most of the East Cape’s coastline south of Cabo Pulmo. On the south side of the mountain lie Frailes Bay and its exotic submarine canyon, an underwater crevasse rising from the offshore depths into the shallows at the southwest corner of the half-mile-long shelter. The major attraction at Cabo Pulmo lies below the waterline immediately in front of Pulmo Village. Only yards off the sandy point at the south end of the original six-dwelling community, the innermost of Pulmo’s hard-coral-covered volcanic reef strands angles offshore (aerial photo on p. 14). This nearly square mile of reefs, the most northerly hard coral complex on the Pacific coast of the Western Hemisphere, has long been a major attraction for Mexican fishermen and market divers.
    [Show full text]
  • Concept Designs for a Groyne Field on the Far North Nsw Coast
    CONCEPT DESIGNS FOR A GROYNE FIELD ON THE FAR NORTH NSW COAST I Coghlan 1, J Carley 1, R Cox 1, E Davey 1, M Blacka 1, J Lofthouse 2 1 Water Research Laboratory (WRL), School of Civil and Environmental Engineering, The University of New South Wales, Manly Vale, NSW 2Tweed Shire Council (TSC), Murwillumbah, NSW Introduction On the open coast of NSW, many options exist to adapt to the hazards of erosion and recession. Perhaps the most common historical approach to counter the erosion and recession hazard is to construct a seawall or revetment to protect the existing foreshore. Other alternatives include the construction of a submerged breakwater, assisted beach recovery and/or beach nourishment. For beaches with a littoral drift imbalance, the construction of one or more groyne structures is a further possibility. This paper presents two different concept designs for a long term groyne field at Kingscliff Beach. Background Information Case Study: Kingscliff Beach Kingscliff Beach, located at the southern end of Wommin Bay on the far north coast of NSW (Figure 1), is a section of the Tweed coastline with built assets at immediate risk from coastal hazards. Ongoing erosion in the last few years has resulted in substantial loss of beach amenity and community land. Storm erosion episodes between 2009 and 2012 severely impacted the Kingscliff Beach Holiday Park (KBHP). This section is also affected by moderate ongoing underlying shoreline recession (WBM, 2001). To manage the Kingscliff Beach foreshore (Figure 2) in the longer term, Tweed Shire
    [Show full text]