On the Dynamical Evolution of 2002 VE68 3
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Minor Planet Bulletin
THE MINOR PLANET BULLETIN OF THE MINOR PLANETS SECTION OF THE BULLETIN ASSOCIATION OF LUNAR AND PLANETARY OBSERVERS VOLUME 36, NUMBER 3, A.D. 2009 JULY-SEPTEMBER 77. PHOTOMETRIC MEASUREMENTS OF 343 OSTARA Our data can be obtained from http://www.uwec.edu/physics/ AND OTHER ASTEROIDS AT HOBBS OBSERVATORY asteroid/. Lyle Ford, George Stecher, Kayla Lorenzen, and Cole Cook Acknowledgements Department of Physics and Astronomy University of Wisconsin-Eau Claire We thank the Theodore Dunham Fund for Astrophysics, the Eau Claire, WI 54702-4004 National Science Foundation (award number 0519006), the [email protected] University of Wisconsin-Eau Claire Office of Research and Sponsored Programs, and the University of Wisconsin-Eau Claire (Received: 2009 Feb 11) Blugold Fellow and McNair programs for financial support. References We observed 343 Ostara on 2008 October 4 and obtained R and V standard magnitudes. The period was Binzel, R.P. (1987). “A Photoelectric Survey of 130 Asteroids”, found to be significantly greater than the previously Icarus 72, 135-208. reported value of 6.42 hours. Measurements of 2660 Wasserman and (17010) 1999 CQ72 made on 2008 Stecher, G.J., Ford, L.A., and Elbert, J.D. (1999). “Equipping a March 25 are also reported. 0.6 Meter Alt-Azimuth Telescope for Photometry”, IAPPP Comm, 76, 68-74. We made R band and V band photometric measurements of 343 Warner, B.D. (2006). A Practical Guide to Lightcurve Photometry Ostara on 2008 October 4 using the 0.6 m “Air Force” Telescope and Analysis. Springer, New York, NY. located at Hobbs Observatory (MPC code 750) near Fall Creek, Wisconsin. -
The British Astronomical Association Handbook 2017
THE HANDBOOK OF THE BRITISH ASTRONOMICAL ASSOCIATION 2017 2016 October ISSN 0068–130–X CONTENTS PREFACE . 2 HIGHLIGHTS FOR 2017 . 3 CALENDAR 2017 . 4 SKY DIARY . .. 5-6 SUN . 7-9 ECLIPSES . 10-15 APPEARANCE OF PLANETS . 16 VISIBILITY OF PLANETS . 17 RISING AND SETTING OF THE PLANETS IN LATITUDES 52°N AND 35°S . 18-19 PLANETS – EXPLANATION OF TABLES . 20 ELEMENTS OF PLANETARY ORBITS . 21 MERCURY . 22-23 VENUS . 24 EARTH . 25 MOON . 25 LUNAR LIBRATION . 26 MOONRISE AND MOONSET . 27-31 SUN’S SELENOGRAPHIC COLONGITUDE . 32 LUNAR OCCULTATIONS . 33-39 GRAZING LUNAR OCCULTATIONS . 40-41 MARS . 42-43 ASTEROIDS . 44 ASTEROID EPHEMERIDES . 45-50 ASTEROID OCCULTATIONS .. ... 51-53 ASTEROIDS: FAVOURABLE OBSERVING OPPORTUNITIES . 54-56 NEO CLOSE APPROACHES TO EARTH . 57 JUPITER . .. 58-62 SATELLITES OF JUPITER . .. 62-66 JUPITER ECLIPSES, OCCULTATIONS AND TRANSITS . 67-76 SATURN . 77-80 SATELLITES OF SATURN . 81-84 URANUS . 85 NEPTUNE . 86 TRANS–NEPTUNIAN & SCATTERED-DISK OBJECTS . 87 DWARF PLANETS . 88-91 COMETS . 92-96 METEOR DIARY . 97-99 VARIABLE STARS (RZ Cassiopeiae; Algol; λ Tauri) . 100-101 MIRA STARS . 102 VARIABLE STAR OF THE YEAR (T Cassiopeiæ) . .. 103-105 EPHEMERIDES OF VISUAL BINARY STARS . 106-107 BRIGHT STARS . 108 ACTIVE GALAXIES . 109 TIME . 110-111 ASTRONOMICAL AND PHYSICAL CONSTANTS . 112-113 INTERNET RESOURCES . 114-115 GREEK ALPHABET . 115 ACKNOWLEDGEMENTS / ERRATA . 116 Front Cover: Northern Lights - taken from Mount Storsteinen, near Tromsø, on 2007 February 14. A great effort taking a 13 second exposure in a wind chill of -21C (Pete Lawrence) British Astronomical Association HANDBOOK FOR 2017 NINETY–SIXTH YEAR OF PUBLICATION BURLINGTON HOUSE, PICCADILLY, LONDON, W1J 0DU Telephone 020 7734 4145 PREFACE Welcome to the 96th Handbook of the British Astronomical Association. -
2020-03-17T13:49:59+00:00Z
https://ntrs.nasa.gov/search.jsp?R=19920003574 2020-03-17T13:49:59+00:00Z . I L I r NASA Technical Memorandum 4329 Reports of Planetary Astronomy_1991 NASA Office of Space Science and Applications Washington, D.C. National Aeronautics and Space Administration Office of Management Scientific and Technical Information Program 1991 i t i i :| PREFACE This publication is a compilation of summaries of reports written by Principal Investigators funded through the Planetary Astronomy Program of NASA's Solar System,Exploration Division, Office of Space Science and Applications. The summaries are designed to provide information about current scientific research projects conducted in the Planetary Astronomy Program and to facilitate communication and coordination among concerned scientists and interested persons in universities, government, and industry. The reports are published as they were submitted by the Principal Investigators and are virtually unedited. They are arranged in alphabetical order. In a second section, highlights of recent accomplishments in planetary astronomy are summarized as they were submitted by the Principal Investigators. The name attached to an individual paragraph is generally the name of the person who submitted that paragraph. Jurgen Rahe Discipline Scientist Planetary Astronomy Program Solar System Exploration Division July 1991 iii PRECEDING PAGE BLANK NOT FILMED = = = CONTENTS Preface ........................................................... iii I List of Principal Investigators ......................................... -
The Minor Planet Bulletin Is Open to Papers on All Aspects of 6500 Kodaira (F) 9 25.5 14.8 + 5 0 Minor Planet Study
THE MINOR PLANET BULLETIN OF THE MINOR PLANETS SECTION OF THE BULLETIN ASSOCIATION OF LUNAR AND PLANETARY OBSERVERS VOLUME 32, NUMBER 3, A.D. 2005 JULY-SEPTEMBER 45. 120 LACHESIS – A VERY SLOW ROTATOR were light-time corrected. Aspect data are listed in Table I, which also shows the (small) percentage of the lightcurve observed each Colin Bembrick night, due to the long period. Period analysis was carried out Mt Tarana Observatory using the “AVE” software (Barbera, 2004). Initial results indicated PO Box 1537, Bathurst, NSW, Australia a period close to 1.95 days and many trial phase stacks further [email protected] refined this to 1.910 days. The composite light curve is shown in Figure 1, where the assumption has been made that the two Bill Allen maxima are of approximately equal brightness. The arbitrary zero Vintage Lane Observatory phase maximum is at JD 2453077.240. 83 Vintage Lane, RD3, Blenheim, New Zealand Due to the long period, even nine nights of observations over two (Received: 17 January Revised: 12 May) weeks (less than 8 rotations) have not enabled us to cover the full phase curve. The period of 45.84 hours is the best fit to the current Minor planet 120 Lachesis appears to belong to the data. Further refinement of the period will require (probably) a group of slow rotators, with a synodic period of 45.84 ± combined effort by multiple observers – preferably at several 0.07 hours. The amplitude of the lightcurve at this longitudes. Asteroids of this size commonly have rotation rates of opposition was just over 0.2 magnitudes. -
The British Astronomical Association Handbook 2014
THE HANDBOOK OF THE BRITISH ASTRONOMICAL ASSOCIATION 2015 2014 October ISSN 0068–130–X CONTENTS CALENDAR 2015 . 2 PREFACE . 3 HIGHLIGHTS FOR 2015 . 4 SKY DIARY . .. 5 VISIBILITY OF PLANETS . 6 RISING AND SETTING OF THE PLANETS IN LATITUDES 52°N AND 35°S . 7-8 ECLIPSES . 9-14 TIME . 15-16 EARTH AND SUN . 17-19 LUNAR LIBRATION . 20 MOON . 21 MOONRISE AND MOONSET . 21-25 SUN’S SELENOGRAPHIC COLONGITUDE . 26 LUNAR OCCULTATIONS . 27-33 GRAZING LUNAR OCCULTATIONS . 34-35 APPEARANCE OF PLANETS . 36 MERCURY . 37-38 VENUS . 39 MARS . 40-41 ASTEROIDS . 42 ASTEROID EPHEMERIDES . 43-47 ASTEROID OCCULTATIONS .. 48-50 NEO CLOSE APPROACHES TO EARTH . 51 ASTEROIDS: FAVOURABLE OBSERVING OPPORTUNITIES . 52-54 JUPITER . 55-59 SATELLITES OF JUPITER . 59-63 JUPITER ECLIPSES, OCCULTATIONS AND TRANSITS . 64-73 SATURN . 74-77 SATELLITES OF SATURN . 78-81 URANUS . 82 NEPTUNE . 83 TRANS–NEPTUNIAN & SCATTERED DISK OBJECTS . 84 DWARF PLANETS . 85-88 COMETS . 89-96 METEOR DIARY . 97-99 VARIABLE STARS (RZ Cassiopeiae; Algol; λ Tauri) . 100-101 MIRA STARS . 102 VARIABLE STAR OF THE YEAR (V Bootis) . 103-105 EPHEMERIDES OF DOUBLE STARS . 106-107 BRIGHT STARS . 108 ACTIVE GALAXIES . 109 PLANETS – EXPLANATION OF TABLES . 110 ELEMENTS OF PLANETARY ORBITS . 111 ASTRONOMICAL AND PHYSICAL CONSTANTS . 111-112 INTERNET RESOURCES . 113-114 GREEK ALPHABET . 115 ACKNOWLEDGEMENTS . 116 ERRATA . 116 Front Cover: The Moon at perigee and apogee – highlighting the clear size difference when the Moon is closest and farthest away from the Earth. Perigee on 2009/11/08 at 23:24UT, distance -
The Visible Spectroscopic Survey of 820 Asteroids ✩
Icarus 172 (2004) 179–220 www.elsevier.com/locate/icarus S3OS2: the visible spectroscopic survey of 820 asteroids ✩ D. Lazzaro a,∗,C.A.Angelia,J.M.Carvanoa, T. Mothé-Diniz a,R.Duffarda, M. Florczak b a Observatório Nacional, R. Gal. José Cristino 77, 20921-400 Rio de Janeiro, Brazil b CEFET, Departamento Física, Av. Sete de Setembro 3165, 8230-091 Curitiba, Brazil Received 15 January 2004; revised 18 May 2004 Available online 4 August 2004 Abstract We present the results of a visible spectroscopic survey of 820 asteroids carried on between November 1996 and September 2001 at the 1.52 m telescope at ESO (La Silla). The instrumental set-up allowed an useful spectral range of about 4900 Å <λ<9200 Å. The global spatial distribution of the observed asteroids covers quite well all the region between 2.2 and 3.3 AU though some concentrations are apparent. These are due to the fact that several sub-sets of asteroids, such as families and groups, have been selected and studied during the development of the survey. The observed asteroids have been classified using the Tholen and the Bus taxonomies which, in general, agree quite well. 2004 Elsevier Inc. All rights reserved. Keywords: Asteroids; Asteroids, composition; Spectroscopy; Surfaces, asteroids 1. Introduction 1995; Bus, 1999; Burbine, 2000; Bus and Binzel, 2002a; Burbine and Binzel, 2002). Spectrophotometric observations It has long been realized the importance of a precise com- of nearly 600 asteroids were obtained by the ECAS while positional characterization of the asteroid belt to model the SMASS obtained spectroscopic observations of about 1400 Solar System origin and evolution. -
And X-Class Asteroids
Icarus 195 (2008) 184–205 www.elsevier.com/locate/icarus A radar survey of M- and X-class asteroids Michael K. Shepard a,∗, Beth Ellen Clark b, Michael C. Nolan c, Ellen S. Howell c, Christopher Magri d, Jon D. Giorgini e, Lance A.M. Benner e,StevenJ.Ostroe,AlanW.Harrisf, Brian Warner g, Donald Pray h,PetrPraveci, Michael Fauerbach j, Thomas Bennett j, Alain Klotz k, Raoul Behrend l, Horacio Correia k, Josep Coloma m, Silvano Casulli n, Andrew Rivkin o a Department of Geography and Geosciences, Bloomsburg University of Pennsylvania, 400 E. Second St., Bloomsburg, PA 17815, USA b Ithaca College, Ithaca, NY 14853, USA c NAIC/Arecibo Observatory, HC 3 Box 53995, Arecibo, PR 00612, USA d University of Maine at Farmington, Farmington, ME 04938, USA e Jet Propulsion Laboratory, Pasadena, CA 91109, USA f Space Science Institute, La Canada, CA 91011-3364, USA g Palmer Divide Observatory/Space Science Institute, Colorado Springs, CO, USA h Carbuncle Hill Observatory, Greene, RI, USA i Astronomical Institute, Academy of Sciences of the Czech Republic, Ondrejov, CZ-25165, Czech Republic j Florida Gulf Coast University, Ft. Meyers, FL 33965, USA k TAROT, Haute-Provence Observatory, St.-Michel l’Observatoire, France l TAROT, Centre d’Astronomie de St.-Michel l’Observatoire, France m Agrupacion Astronomica de Sabadell, Sabadell, Barcelona, Spain n Osservatorio Astronomico Vallemare di Borbona, Rome, Italy o Johns Hopkins Applied Physics Laboratory, Laurel, MD 20723, USA Received 16 May 2007; revised 9 November 2007 Available online 18 January 2008 Abstract We observed ten M- and X-class main-belt asteroids with the Arecibo Observatory’s S-band (12.6 cm) radar. -
The Minor Planet Bulletin (Warner Et Al., 2009A)
THE MINOR PLANET BULLETIN OF THE MINOR PLANETS SECTION OF THE BULLETIN ASSOCIATION OF LUNAR AND PLANETARY OBSERVERS VOLUME 36, NUMBER 4, A.D. 2009 OCTOBER-DECEMBER 133. NEW LIGHTCURVES OF 8 FLORA, 13 EGERIA, consistent with a period near 12.9 h. Hollis et. al. (1987) derived a 14 IRENE, 25 PHOCAEA, 40 HARMONIA, 74 GALATEA, period of 12.790 h. Di Martino (1989) and Harris and Young AND 122 GERDA (1989) also found periods of approximately 12.87 h, as did Piiornen et al. (1998). Torppa et al. (2003) found a sidereal period Frederick Pilcher of 12.79900 h using lightcurve inversion techniques. Several 4438 Organ Mesa Loop attempts have also been made to determine the spin axis Las Cruces, NM 88011 USA orientation for Flora. Hollis et al. (1987) reported a pole longitude [email protected] near 148° while Di Martino et al. (1989) found two possible solutions at longitude 140° or 320°. Torppa et al. (2003) found a (Received: 2009 Jun 30 Revised: 2009 Aug 2) pole solution of (160°, +16°) and sidereal period of 12.79900 h, similar to (155°, +5°) found by Durech (2009a), both using lightcurve inversion methods. Durech’s sidereal period, however, New lightcurves yield synodic rotation periods and was 12.86667 h. amplitudes for: 8 Flora, 12.861 ± 0.001 h, 0.08 ± 0.01 mag; 13 Egeria, 7.0473 ± 0.0001 h, 0.15 ± 0.02 mag in New observations of the asteroid obtained by the author on 8 2007, 0.37 ± 0.02 mag in 2009; 14 Irene, 15.089 ± nights from 2009 Feb. -
000001 – 004000
ELEMENTS AND OPPOSITION DATES IN 2020 ecliptic and equinox 2000.0, epoch 2020 may 31.0 tt Planet H G M ω Ω i e µ a TE Oppos. V m ◦ ◦ ◦ ◦ ◦ 1 Ceres 3.34 0.12 162.68628 73.73163 80.28699 10.58862 0.0775571 0.21406009 2.7676569 20 9 2.9 7.7 2 Pallas 4.13 0.11 144.97565 310.20240 173.02474 34.83293 0.2299723 0.21334459 2.7738414 20 7 7.8 9.6 3 Juno 5.33 0.32 125.43534 248.06620 169.85149 12.99105 0.2569364 0.22612870 2.6682853 20 4 5.5 9.5 4 Vesta 3.20 0.32 204.32764 150.87487 103.80911 7.14189 0.0885159 0.27150658 2.3620141 20 — — 5 Astraea 6.85 X 17.84636 358.64834 141.57109 5.36743 0.1909134 0.23866121 2.5740372 20 1 20.7 9.2 6 Hebe 5.71 0.24 190.68649 239.73628 138.64342 14.73966 0.2032188 0.26107303 2.4245327 20 4 10.7 9.9 7 Iris 5.51 X 247.42584 145.20159 259.56389 5.52160 0.2301449 0.26719174 2.3873753 20 6 27.9 9.1 8 Flora 6.49 0.28 315.31798 285.45892 110.87653 5.88908 0.1558328 0.30175278 2.2014147 20 11 4.4 8.0 9 Metis 6.28 0.17 23.91220 6.33739 68.90941 5.57650 0.1233003 0.26739094 2.3861894 20 — — 10 Hygiea 5.43 X 222.85057 312.41290 283.19845 3.83180 0.1121173 0.17693125 3.1424354 20 — — 11 Parthenope 6.55 X 21.70181 195.35899 125.52843 4.63183 0.0998233 0.25663733 2.4523898 20 10 25.9 9.4 12 Victoria 7.24 0.22 243.83474 69.69418 235.40108 8.37275 0.2204390 0.27644889 2.3337777 20 2 14.5 11.2 13 Egeria 6.74 X 283.00262 80.41455 43.22099 16.53553 0.0852831 0.23837962 2.5760639 20 12 20.4 10.0 14 Irene 6.30 X 259.79574 97.80162 86.12401 9.12145 0.1662499 0.23695522 2.5863772 20 — — 15 Eunomia 5.28 0.23 15.02562 98.59527 292.93478 -
The Minor Planet Bulletin
THE MINOR PLANET BULLETIN OF THE MINOR PLANETS SECTION OF THE BULLETIN ASSOCIATION OF LUNAR AND PLANETARY OBSERVERS VOLUME 37, NUMBER 1, A.D. 2010 JANUARY-MARCH 1. ASTEROID LIGHTCURVE ANALYSIS AT THE OAKLEY As far as we are aware, these are the first reported observations for SOUTHERN SKY OBSERVATORY: 2009 APRIL – MAY the period of the following asteroids: 2009 Voloshina, 2217 Eltigen, 2610 Tuva, 2665 Schrutka, 3219 Komaki, 3999 Richard Ditteon, Elaine Kirkpatrick Aristarchus, 4154 Rumsey, 4358 Lynn, 4417 Lecar, 5350 Rose-Hulman Institute of Technology CM 171 Epetersen, 5567 Durisen, (5787) 1992 FA1, 5839 GOI, (6073) 5500 Wabash Ave., Terre Haute, IN 47803 1939 UB, (7255) 1993 VY1, and 13018 Geoffjames. One asteroid, [email protected] 255 Oppavia, had a published period of 14.3 ± 0.4 h found by Behrend (2009). Our data for 255 Oppavia could not be made to Katelyn Doering fit this period. Six of the asteroids appear to have long periods, but Avon High School, Avon, IN we did not get enough data to determine a rotational period. These were 1097 Vicia, 1454 Kalevala, 4147 Lennon, (5773) 1989 NO, (Received: 2009 Aug 28) (14720) 2000 CQ85, and (29665) WD24. For seven of the asteroids the lightcurve amplitude was smaller than random Photometric data for 30 asteroids were collected over 23 variation in our data, so no period could be found. This list nights of observing during 2009 April and May at the includes 957 Camelia, 2670 Chuvashia, 2869 Nepryadva, 3432 Oakley Southern Sky Observatory. The asteroids were: Kobuchizawa, 3909 Gladys, 4654 Gor’kavyj, and 8151 255 Oppavia, 957 Camelia, 1097 Vicia, 1454 Kalevala, Andranada. -
The Minor Planet Bulletin 40 (2013) 65
THE MINOR PLANET BULLETIN OF THE MINOR PLANETS SECTION OF THE BULLETIN ASSOCIATION OF LUNAR AND PLANETARY OBSERVERS VOLUME 40, NUMBER 2, A.D. 2013 APRIL-JUNE 61. SYNODIC PERIOD FOR 2454 OLAUS MAGNUS FROM FRANK T. ETSCORN OBSERVATORY Angelica Vargas Frank T. Etscorn Campus Observatory New Mexico Tech 101 East Road Socorro, NM, USA 87801 [email protected] (Received: 2 January) The main-belt asteroid 2454 Olaus Magnus was observed between 2012 October 6 and November 6 at Etscorn Observatory. Analysis found a synodic period of 3.804 ± 0.002 h and amplitude of 0.39 ± 0.10 mag. 2454 Olaus Magnus is a main belt asteroid with an orbital period and Technology, NMIMT. Student support at NMIMT is given by of 3.3804 years and was discovered by Y. Vaisla on 1941 a NASA EPScOR grant NNX11AQ35A. September 21 at Turku (JPL, 2012). It has also been known as 1941 SS, 1968 QQ, and 1975 XV. There is no reference in the References asteroid lightcurve database (LCDB; Warner et al., 2009). Photometric observations of the asteroid were made from the JPL Small-body Database Browser (2012). Frank T. Etscorn Campus Observatory at New Mexico Tech in http://ssd.jpl.nasa.gov/sbdb.cgi#top 2012 October and November. Two telescopes were used, each a 35.6-cm f/11 Schmidt-Cassegrain. Both used an SBIG STL-1001E Warner, B.D., Harris, A.W., and Pravec, P. (2009). “The asteroid CCD with 1024x1024 24-micron pixels resulting in a plate scale of lightcurve database.” Icarus 202, 134-146. Updates available: 1.25 arcsec/pixel. -
The Minor Planet Bulletin
THE MINOR PLANET BULLETIN OF THE MINOR PLANETS SECTION OF THE BULLETIN ASSOCIATION OF LUNAR AND PLANETARY OBSERVERS VOLUME 44, NUMBER 1, A.D. 2017 JANUARY-MARCH 1. EDITORIAL ANNOUNCEMENTS: (http://www.minorplanet.info/minorplanetbulletin.html) along MPB VOLUME 44 with MPB templates in Microsoft Word (Word 97) DOT and Word 2007 and above (DOTX) files. The templates include Richard P. Binzel, Editor instructions for using them as “starter papers” or to import MPB Brian D. Warner, Associate Editor paragraph styles into new or existing Word documents. David Polishook, Assistant Editor We welcome Dr. David Polishook as a new Assistant Editor and describe a new manuscript submission LIGHTCURVE ANALYSIS FOR requirement of a Summary Table for lightcurve results. THREE MAIN-BELT ASTEROIDS Stephen M. Brincat As evidenced by the figure below, rapid growth continues for the Flarestar Observatory (MPC 171) Minor Planet Bulletin. Volume 43 (2016) had a record number of San Gwann SGN 3160, MALTA 366 pages and results for more than 700 asteroids. [email protected] (Received: 2016 August 13) Photometric observations of three main-belt asteroids were made from 2016 March to June. The results of the lightcurve analysis are reported for 1154 Astronomia (1927 CB), 3680 Sasha (1987 MY), and (6138) 1991 JH1. The purpose of this research was to obtain the lightcurves of three main-belt asteroids: 1154 Astronomia (1927 CB), 3680 Sasha (1987 MY), and (6138) 1991 JH1 in order to determine the rotation period for each asteroid. A search of the asteroid lightcurve database (LCDB; Warner et al., 2009) and other sources did not find previously reported lightcurve results for these asteroids.