000001 – 004000

Total Page:16

File Type:pdf, Size:1020Kb

000001 – 004000 ELEMENTS AND OPPOSITION DATES IN 2020 ecliptic and equinox 2000.0, epoch 2020 may 31.0 tt Planet H G M ω Ω i e µ a TE Oppos. V m ◦ ◦ ◦ ◦ ◦ 1 Ceres 3.34 0.12 162.68628 73.73163 80.28699 10.58862 0.0775571 0.21406009 2.7676569 20 9 2.9 7.7 2 Pallas 4.13 0.11 144.97565 310.20240 173.02474 34.83293 0.2299723 0.21334459 2.7738414 20 7 7.8 9.6 3 Juno 5.33 0.32 125.43534 248.06620 169.85149 12.99105 0.2569364 0.22612870 2.6682853 20 4 5.5 9.5 4 Vesta 3.20 0.32 204.32764 150.87487 103.80911 7.14189 0.0885159 0.27150658 2.3620141 20 — — 5 Astraea 6.85 X 17.84636 358.64834 141.57109 5.36743 0.1909134 0.23866121 2.5740372 20 1 20.7 9.2 6 Hebe 5.71 0.24 190.68649 239.73628 138.64342 14.73966 0.2032188 0.26107303 2.4245327 20 4 10.7 9.9 7 Iris 5.51 X 247.42584 145.20159 259.56389 5.52160 0.2301449 0.26719174 2.3873753 20 6 27.9 9.1 8 Flora 6.49 0.28 315.31798 285.45892 110.87653 5.88908 0.1558328 0.30175278 2.2014147 20 11 4.4 8.0 9 Metis 6.28 0.17 23.91220 6.33739 68.90941 5.57650 0.1233003 0.26739094 2.3861894 20 — — 10 Hygiea 5.43 X 222.85057 312.41290 283.19845 3.83180 0.1121173 0.17693125 3.1424354 20 — — 11 Parthenope 6.55 X 21.70181 195.35899 125.52843 4.63183 0.0998233 0.25663733 2.4523898 20 10 25.9 9.4 12 Victoria 7.24 0.22 243.83474 69.69418 235.40108 8.37275 0.2204390 0.27644889 2.3337777 20 2 14.5 11.2 13 Egeria 6.74 X 283.00262 80.41455 43.22099 16.53553 0.0852831 0.23837962 2.5760639 20 12 20.4 10.0 14 Irene 6.30 X 259.79574 97.80162 86.12401 9.12145 0.1662499 0.23695522 2.5863772 20 — — 15 Eunomia 5.28 0.23 15.02562 98.59527 292.93478 11.75361 0.1861777 0.22929171 2.6436897 20 — — 16 Psyche 5.90 0.20 7.04848 229.02699 150.04053 3.09656 0.1335313 0.19724721 2.9227756 20 12 8.2 9.4 17 Thetis 7.76 X 45.07430 135.97417 125.53962 5.59265 0.1333228 0.25374896 2.4709647 20 9 12.2 10.7 18 Melpomene 6.51 0.25 20.46209 228.07765 150.36523 10.13159 0.2175053 0.28335371 2.2957087 20 — — 19 Fortuna 7.13 0.10 300.34623 182.26277 211.06895 1.57267 0.1569747 0.25814100 2.4428571 20 9 10.6 9.3 20 Massalia 6.50 0.25 222.46034 257.35103 206.01312 0.70857 0.1424938 0.26354333 2.4093581 20 8 28.6 9.9 21 Lutetia 7.35 0.11 87.97586 249.99759 80.86632 3.06396 0.1633898 0.25934797 2.4352720 20 — — 22 Kalliope 6.45 0.21 274.63585 357.25647 66.00464 13.70174 0.0980497 0.19851201 2.9103475 20 9 18.2 10.5 23 Thalia 6.95 X 68.51284 60.63251 66.84476 10.11400 0.2347518 0.23172964 2.6251150 20 4 26.8 10.1 24 Themis 7.08 0.19 66.20952 106.98264 35.91965 0.75164 0.1244219 0.17752838 3.1353849 20 4 26.3 11.2 25 Phocaea 7.83 X 278.88234 90.30962 214.12027 21.60667 0.2548955 0.26515892 2.3995615 20 3 13.2 11.7 26 Proserpina 7.4 X 196.73971 193.57162 45.77888 3.56277 0.0898282 0.22780102 2.6552104 20 — — 27 Euterpe 7.0 X 85.06237 356.37804 94.78712 1.58369 0.1731310 0.27425068 2.3462318 20 3 15.7 9.4 28 Bellona 7.09 X 358.76461 344.00949 144.28694 9.42995 0.1517822 0.21307817 2.7761531 20 — — 29 Amphitrite 5.85 0.20 20.89746 63.27357 356.33586 6.08187 0.0729591 0.24135929 2.5548184 20 — — 30 Urania 7.57 X 137.56478 87.31834 307.46872 2.09602 0.1277283 0.27097799 2.3650847 20 2 28.9 10.9 31 Euphrosyne 6.74 X 157.37076 61.62386 31.09090 26.28000 0.2199421 0.17561645 3.1581003 20 6 2.8 12.5 32 Pomona 7.56 X 127.05137 339.07034 220.38693 5.52163 0.0816345 0.23683928 2.5872212 20 9 17.5 11.5 33 Polyhymnia 8.55 0.33 62.91487 338.41423 8.45968 1.85272 0.3314689 0.20228348 2.8740596 20 — — 34 Circe 8.51 X 216.44342 330.49431 184.34407 5.49734 0.1064453 0.22389503 2.6860025 20 10 28.1 12.3 35 Leukothea 8.5 X 291.30242 213.42655 353.71875 7.93241 0.2253082 0.19023253 2.9941912 20 — — 36 Atalante 8.46 X 26.32018 47.81235 358.20531 18.36903 0.3051013 0.21644744 2.7472683 20 — — 37 Fides 7.29 0.24 73.39731 62.77233 7.25802 3.07093 0.1756453 0.22950554 2.6420474 20 2 3.9 10.1 38 Leda 8.32 X 91.97854 169.24081 295.72219 6.97129 0.1547417 0.21747114 2.7386401 20 4 10.6 12.2 39 Laetitia 6.0 X 26.96822 209.30629 156.94805 10.37001 0.1114568 0.21391918 2.7688721 20 12 21.6 9.8 40 Harmonia 7.0 X 223.27222 269.49752 94.18877 4.25739 0.0471917 0.28877414 2.2668904 20 4 25.2 9.8 41 Daphne 7.12 0.10 220.25381 45.93169 178.07249 15.78819 0.2750322 0.21480131 2.7612863 20 12 31.7 11.7 42 Isis 7.53 X 306.81465 237.25691 84.19774 8.51437 0.2230467 0.25826747 2.4420595 20 5 24.2 10.0 43 Ariadne 7.93 0.11 258.39001 16.34897 264.80967 3.47136 0.1684345 0.30139461 2.2031584 20 2 1.2 11.1 44 Nysa 7.03 0.46 186.55443 343.86448 131.49478 3.71008 0.1479928 0.26102031 2.4248591 20 8 5.8 10.6 45 Eugenia 7.46 0.07 126.65098 87.79621 147.60014 6.60557 0.0841644 0.21979895 2.7192698 20 11 3.5 11.6 46 Hestia 8.36 0.06 168.15655 177.38328 181.07695 2.35003 0.1723017 0.24561888 2.5251948 20 2 21.0 12.2 47 Aglaja 7.84 0.16 132.70573 314.83717 3.06658 4.97456 0.1299470 0.20141937 2.8822737 20 — — 48 Doris 6.90 X 141.50845 252.84156 183.55265 6.54795 0.0722636 0.17974842 3.1095150 20 4 28.7 11.5 49 Pales 7.8 X 312.04388 112.95712 285.05523 3.20181 0.2213791 0.18077827 3.0976943 20 9 14.9 11.2 50 Virginia 9.24 X 250.01648 200.01232 173.52051 2.83791 0.2858621 0.22854674 2.6494315 20 5 15.9 13.6 51 Nemausa 7.35 0.08 204.78309 2.25227 175.96520 9.97894 0.0677712 0.27099952 2.3649594 20 11 28.3 10.6 52 Europa 6.31 0.18 309.86574 343.36647 128.60064 7.47847 0.1104420 0.18108026 3.0942494 20 12 28.8 10.0 53 Kalypso 8.81 X 157.27104 313.48474 143.51806 5.17168 0.2048082 0.23255079 2.6189317 20 6 15.2 13.2 54 Alexandra 7.66 X 106.62427 345.05043 313.24682 11.79822 0.1973025 0.22080204 2.7110280 20 — — 55 Pandora 7.7 X 86.99154 5.38592 10.36969 7.17941 0.1432464 0.21490038 2.7604376 20 — — 56 Melete 8.31 X 340.84186 104.98979 192.97501 8.08014 0.2383936 0.23554229 2.5967100 20 6 28.3 10.5 57 Mnemosyne 7.03 X 213.71293 210.64038 199.16801 15.20417 0.1123872 0.17593040 3.1543421 20 6 9.4 12.2 58 Concordia 8.86 X 27.03760 31.12142 161.10650 5.06594 0.0425981 0.22221987 2.6994842 20 4 24.0 12.2 59 Elpis 7.93 X 247.68884 210.85171 170.00090 8.63992 0.1187821 0.22049433 2.7135496 20 6 10.1 12.0 60 Echo 8.21 0.27 314.97278 271.21805 191.54660 3.60051 0.1848457 0.26639856 2.3921118 20 — — 61 Dana¨e 7.68 X 348.61744 12.47043 333.57184 18.21001 0.1650231 0.19120734 2.9840059 20 9 17.8 11.2 62 Erato 8.76 X 310.19375 277.17657 125.12214 2.23657 0.1676605 0.17810325 3.1286345 20 9 25.9 12.4 63 Ausonia 7.55 0.25 245.76340 296.06547 337.72113 5.77642 0.1269570 0.26588032 2.3952192 20 1 19.7 11.1 64 Angelina 7.67 0.48 128.07182 179.22443 309.09721 1.30985 0.1252171 0.22421964 2.6834094 20 6 22.0 11.5 65 Cybele 6.62 0.01 323.01422 102.83039 155.61833 3.56403 0.1120460 0.15550490 3.4248377 20 4 15.3 11.1 66 Maja 9.36 X 110.77240 43.89285 7.49360 3.04602 0.1730117 0.22907174 2.6453818 20 3 1.9 13.1 67 Asia 8.28 X 23.27043 106.89044 202.41131 6.02890 0.1851482 0.26158336 2.4213782 20 10 25.1 10.9 68 Leto 6.78 0.05 346.52978 304.43820 44.08000 7.96144 0.1851753 0.21236164 2.7823942 20 10 3.1 9.5 69 Hesperia 7.05 0.19 17.89714 289.11273 184.98505 8.59097 0.1702603 0.19189985 2.9768226 20 — — 70 Panopaea 8.11 0.14 163.50366 255.47905 47.68990 11.59284 0.1805059 0.23289080 2.6163821 20 — — 71 Niobe 7.30 0.40 350.12230 267.07021 316.00503 23.26531 0.1732059 0.21545571 2.7556922 20 3 16.2 10.5 72 Feronia 8.94 X 122.31532 102.89938 207.96071 5.41544 0.1204859 0.28885490 2.2664678 20 — — 73 Klytia 9.0 X 245.83048 53.84381 6.87920 2.36890 0.0417997 0.22637171 2.6663753 20 8 11.3 12.4 74 Galatea 8.66 X 359.69157 174.53817 197.14347 4.07069 0.2358493 0.21260583 2.7802634 20 12 5.5 11.6 75 Eurydike 8.96 0.23 52.00905 339.33675 359.33914 4.99154 0.3035220 0.22540489 2.6739944 20 — — 76 Freia 7.90 X 346.76135 252.26704 204.30093 2.12134 0.1660109 0.15622778 3.4142649 20 — — 77 Frigga 8.52 0.16 13.87224 61.78305 1.14476 2.42270 0.1325579 0.22605515 2.6688640 20 — — 78 Diana 8.09 0.08 51.29130 152.74015 333.39714 8.70191 0.2071484 0.23256724 2.6188082 20 3 14.5 10.6 79 Eurynome 7.96 0.25 331.50558 201.51095 206.53369 4.61251 0.1899579 0.25785929 2.4446359 20 12 12.2 9.9 80 Sappho 7.98 X 210.66237 139.61955 218.68822 8.67608 0.2003134 0.28343097 2.2952915 20 3 25.0 11.8 – 1102 – ELEMENTS AND OPPOSITION DATES IN 2020 ecliptic and equinox 2000.0, epoch 2020 may 31.0 tt Planet H G M ω Ω i e µ a TE Oppos.
Recommended publications
  • The Minor Planet Bulletin
    THE MINOR PLANET BULLETIN OF THE MINOR PLANETS SECTION OF THE BULLETIN ASSOCIATION OF LUNAR AND PLANETARY OBSERVERS VOLUME 36, NUMBER 3, A.D. 2009 JULY-SEPTEMBER 77. PHOTOMETRIC MEASUREMENTS OF 343 OSTARA Our data can be obtained from http://www.uwec.edu/physics/ AND OTHER ASTEROIDS AT HOBBS OBSERVATORY asteroid/. Lyle Ford, George Stecher, Kayla Lorenzen, and Cole Cook Acknowledgements Department of Physics and Astronomy University of Wisconsin-Eau Claire We thank the Theodore Dunham Fund for Astrophysics, the Eau Claire, WI 54702-4004 National Science Foundation (award number 0519006), the [email protected] University of Wisconsin-Eau Claire Office of Research and Sponsored Programs, and the University of Wisconsin-Eau Claire (Received: 2009 Feb 11) Blugold Fellow and McNair programs for financial support. References We observed 343 Ostara on 2008 October 4 and obtained R and V standard magnitudes. The period was Binzel, R.P. (1987). “A Photoelectric Survey of 130 Asteroids”, found to be significantly greater than the previously Icarus 72, 135-208. reported value of 6.42 hours. Measurements of 2660 Wasserman and (17010) 1999 CQ72 made on 2008 Stecher, G.J., Ford, L.A., and Elbert, J.D. (1999). “Equipping a March 25 are also reported. 0.6 Meter Alt-Azimuth Telescope for Photometry”, IAPPP Comm, 76, 68-74. We made R band and V band photometric measurements of 343 Warner, B.D. (2006). A Practical Guide to Lightcurve Photometry Ostara on 2008 October 4 using the 0.6 m “Air Force” Telescope and Analysis. Springer, New York, NY. located at Hobbs Observatory (MPC code 750) near Fall Creek, Wisconsin.
    [Show full text]
  • Physical Properties of Near-Earth Asteroids
    Planet. Space Sci., Vol. 46, No. 1, pp. 47-74, 1998 Pergamon N~I1998 Elsevier Science Ltd All rights reserved. Printed in Great Britain 00324633/98 $19.00+0.00 PII: SOO32-0633(97)00132-3 Physical properties of near-Earth asteroids D. F. Lupishko’ and M. Di Martino’ ’ Astronomical Observatory of Kharkov State University, Sumskaya str. 35, Kharkov 310022, Ukraine ‘Osservatorio Astronomic0 di Torino, I-10025 Pino Torinese (TO), Italy Received 5 February 1997; accepted 20 June 1997 rather small objects, usually of the order of a few kilo- metres or less. MBAs of such sizes are generally not access- ible to ground-based observations. Therefore, when NEAs approach the Earth (at distances which can be as small as 0.01-0.02 AU and sometimes less) they give a unique chance to study objects of such small sizes. Some of them possibly represent primordial matter, which has preserved a record of the earliest stages of the Solar System evolution, while the majority are fragments coming from catastrophic collisions that occurred in the asteroid main- belt and could provide “a look” at the interior of their much larger parent bodies. Therefore, NEAs are objects of special interest for sev- eral reasons. First, from the point of view of fundamental science, the problems raised by their origin in planet- crossing orbits, their life-time, their possible genetic relations with comets and meteorites, etc. are closely connected with the solution of the major problem of “We are now on the threshold of a new era of asteroid planetary science of the origin and evolution of the Solar studies” System.
    [Show full text]
  • The British Astronomical Association Handbook 2017
    THE HANDBOOK OF THE BRITISH ASTRONOMICAL ASSOCIATION 2017 2016 October ISSN 0068–130–X CONTENTS PREFACE . 2 HIGHLIGHTS FOR 2017 . 3 CALENDAR 2017 . 4 SKY DIARY . .. 5-6 SUN . 7-9 ECLIPSES . 10-15 APPEARANCE OF PLANETS . 16 VISIBILITY OF PLANETS . 17 RISING AND SETTING OF THE PLANETS IN LATITUDES 52°N AND 35°S . 18-19 PLANETS – EXPLANATION OF TABLES . 20 ELEMENTS OF PLANETARY ORBITS . 21 MERCURY . 22-23 VENUS . 24 EARTH . 25 MOON . 25 LUNAR LIBRATION . 26 MOONRISE AND MOONSET . 27-31 SUN’S SELENOGRAPHIC COLONGITUDE . 32 LUNAR OCCULTATIONS . 33-39 GRAZING LUNAR OCCULTATIONS . 40-41 MARS . 42-43 ASTEROIDS . 44 ASTEROID EPHEMERIDES . 45-50 ASTEROID OCCULTATIONS .. ... 51-53 ASTEROIDS: FAVOURABLE OBSERVING OPPORTUNITIES . 54-56 NEO CLOSE APPROACHES TO EARTH . 57 JUPITER . .. 58-62 SATELLITES OF JUPITER . .. 62-66 JUPITER ECLIPSES, OCCULTATIONS AND TRANSITS . 67-76 SATURN . 77-80 SATELLITES OF SATURN . 81-84 URANUS . 85 NEPTUNE . 86 TRANS–NEPTUNIAN & SCATTERED-DISK OBJECTS . 87 DWARF PLANETS . 88-91 COMETS . 92-96 METEOR DIARY . 97-99 VARIABLE STARS (RZ Cassiopeiae; Algol; λ Tauri) . 100-101 MIRA STARS . 102 VARIABLE STAR OF THE YEAR (T Cassiopeiæ) . .. 103-105 EPHEMERIDES OF VISUAL BINARY STARS . 106-107 BRIGHT STARS . 108 ACTIVE GALAXIES . 109 TIME . 110-111 ASTRONOMICAL AND PHYSICAL CONSTANTS . 112-113 INTERNET RESOURCES . 114-115 GREEK ALPHABET . 115 ACKNOWLEDGEMENTS / ERRATA . 116 Front Cover: Northern Lights - taken from Mount Storsteinen, near Tromsø, on 2007 February 14. A great effort taking a 13 second exposure in a wind chill of -21C (Pete Lawrence) British Astronomical Association HANDBOOK FOR 2017 NINETY–SIXTH YEAR OF PUBLICATION BURLINGTON HOUSE, PICCADILLY, LONDON, W1J 0DU Telephone 020 7734 4145 PREFACE Welcome to the 96th Handbook of the British Astronomical Association.
    [Show full text]
  • The Minor Planet Bulletin 44 (2017) 142
    THE MINOR PLANET BULLETIN OF THE MINOR PLANETS SECTION OF THE BULLETIN ASSOCIATION OF LUNAR AND PLANETARY OBSERVERS VOLUME 44, NUMBER 2, A.D. 2017 APRIL-JUNE 87. 319 LEONA AND 341 CALIFORNIA – Lightcurves from all sessions are then composited with no TWO VERY SLOWLY ROTATING ASTEROIDS adjustment of instrumental magnitudes. A search should be made for possible tumbling behavior. This is revealed whenever Frederick Pilcher successive rotational cycles show significant variation, and Organ Mesa Observatory (G50) quantified with simultaneous 2 period software. In addition, it is 4438 Organ Mesa Loop useful to obtain a small number of all-night sessions for each Las Cruces, NM 88011 USA object near opposition to look for possible small amplitude short [email protected] period variations. Lorenzo Franco Observations to obtain the data used in this paper were made at the Balzaretto Observatory (A81) Organ Mesa Observatory with a 0.35-meter Meade LX200 GPS Rome, ITALY Schmidt-Cassegrain (SCT) and SBIG STL-1001E CCD. Exposures were 60 seconds, unguided, with a clear filter. All Petr Pravec measurements were calibrated from CMC15 r’ values to Cousins Astronomical Institute R magnitudes for solar colored field stars. Photometric Academy of Sciences of the Czech Republic measurement is with MPO Canopus software. To reduce the Fricova 1, CZ-25165 number of points on the lightcurves and make them easier to read, Ondrejov, CZECH REPUBLIC data points on all lightcurves constructed with MPO Canopus software have been binned in sets of 3 with a maximum time (Received: 2016 Dec 20) difference of 5 minutes between points in each bin.
    [Show full text]
  • An Anisotropic Distribution of Spin Vectors in Asteroid Families
    Astronomy & Astrophysics manuscript no. families c ESO 2018 August 25, 2018 An anisotropic distribution of spin vectors in asteroid families J. Hanuš1∗, M. Brož1, J. Durechˇ 1, B. D. Warner2, J. Brinsfield3, R. Durkee4, D. Higgins5,R.A.Koff6, J. Oey7, F. Pilcher8, R. Stephens9, L. P. Strabla10, Q. Ulisse10, and R. Girelli10 1 Astronomical Institute, Faculty of Mathematics and Physics, Charles University in Prague, V Holešovickáchˇ 2, 18000 Prague, Czech Republic ∗e-mail: [email protected] 2 Palmer Divide Observatory, 17995 Bakers Farm Rd., Colorado Springs, CO 80908, USA 3 Via Capote Observatory, Thousand Oaks, CA 91320, USA 4 Shed of Science Observatory, 5213 Washburn Ave. S, Minneapolis, MN 55410, USA 5 Hunters Hill Observatory, 7 Mawalan Street, Ngunnawal ACT 2913, Australia 6 980 Antelope Drive West, Bennett, CO 80102, USA 7 Kingsgrove, NSW, Australia 8 4438 Organ Mesa Loop, Las Cruces, NM 88011, USA 9 Center for Solar System Studies, 9302 Pittsburgh Ave, Suite 105, Rancho Cucamonga, CA 91730, USA 10 Observatory of Bassano Bresciano, via San Michele 4, Bassano Bresciano (BS), Italy Received x-x-2013 / Accepted x-x-2013 ABSTRACT Context. Current amount of ∼500 asteroid models derived from the disk-integrated photometry by the lightcurve inversion method allows us to study not only the spin-vector properties of the whole population of MBAs, but also of several individual collisional families. Aims. We create a data set of 152 asteroids that were identified by the HCM method as members of ten collisional families, among them are 31 newly derived unique models and 24 new models with well-constrained pole-ecliptic latitudes of the spin axes.
    [Show full text]
  • Asteroid Regolith Weathering: a Large-Scale Observational Investigation
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 5-2019 Asteroid Regolith Weathering: A Large-Scale Observational Investigation Eric Michael MacLennan University of Tennessee, [email protected] Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Recommended Citation MacLennan, Eric Michael, "Asteroid Regolith Weathering: A Large-Scale Observational Investigation. " PhD diss., University of Tennessee, 2019. https://trace.tennessee.edu/utk_graddiss/5467 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by Eric Michael MacLennan entitled "Asteroid Regolith Weathering: A Large-Scale Observational Investigation." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Doctor of Philosophy, with a major in Geology. Joshua P. Emery, Major Professor We have read this dissertation and recommend its acceptance: Jeffrey E. Moersch, Harry Y. McSween Jr., Liem T. Tran Accepted for the Council: Dixie L. Thompson Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) Asteroid Regolith Weathering: A Large-Scale Observational Investigation A Dissertation Presented for the Doctor of Philosophy Degree The University of Tennessee, Knoxville Eric Michael MacLennan May 2019 © by Eric Michael MacLennan, 2019 All Rights Reserved.
    [Show full text]
  • Clasificación Taxonómica De Asteroides
    Clasificación Taxonómica de Asteroides Cercanos a la Tierra por Ana Victoria Ojeda Vera Tesis sometida como requisito parcial para obtener el grado de MAESTRO EN CIENCIAS EN CIENCIA Y TECNOLOGÍA DEL ESPACIO en el Instituto Nacional de Astrofísica, Óptica y Electrónica Agosto 2019 Tonantzintla, Puebla Bajo la supervisión de: Dr. José Ramón Valdés Parra Investigador Titular INAOE Dr. José Silviano Guichard Romero Investigador Titular INAOE c INAOE 2019 El autor otorga al INAOE el permiso de reproducir y distribuir copias parcial o totalmente de esta tesis. II Dedicatoria A mi familia, con gran cariño. A mis sobrinos Ian y Nahil, y a mi pequeña Lia. III Agradecimientos Gracias a mi familia por su apoyo incondicional. A mi mamá Tere, por enseñarme a ser perseverante y dedicada, y por sus miles de muestras de afecto. A mi hermana Fernanda, por darme el tiempo, consejos y cariño que necesitaba. A mi pareja Odi, por su amor y cariño estos tres años, por su apoyo, paciencia y muchas horas de ayuda en la maestría, pero sobre todo por darme el mejor regalo del mundo, nuestra pequeña Lia. Gracias a mis asesores Dr. José R. Valdés y Dr. José S. Guichard, promotores de esta tesis, por su paciencia, consejos y supervisión, y por enseñarme con sus clases divertidas y motivadoras todo lo que se refiere a este trabajo. A los miembros del comité, Dra. Raquel Díaz, Dr. Raúl Mújica y Dr. Sergio Camacho, por tomarse el tiempo de revisar y evaluar mi trabajo. Estoy muy agradecida con todos por sus críticas constructivas y sugerencias.
    [Show full text]
  • Asteroids + Comets
    Datasets for Asteroids and Comets Caleb Keaveney, OpenSpace intern Rachel Smith, Head, Astronomy & Astrophysics Research Lab North Carolina Museum of Natural Sciences 2020 Contents Part 1: Visualization Settings ………………………………………………………… 3 Part 2: Near-Earth Asteroids ………………………………………………………… 5 Amor Asteroids Apollo Asteroids Aten Asteroids Atira Asteroids Potentially Hazardous Asteroids (PHAs) Mars-crossing Asteroids Part 3: Main-Belt Asteroids …………………………………………………………… 12 Inner Main Asteroid Belt Main Asteroid Belt Outer Main Asteroid Belt Part 4: Centaurs, Trojans, and Trans-Neptunian Objects ………………………….. 15 Centaur Objects Jupiter Trojan Asteroids Trans-Neptunian Objects Part 5: Comets ………………………………………………………………………….. 19 Chiron-type Comets Encke-type Comets Halley-type Comets Jupiter-family Comets C 2019 Y4 ATLAS About this guide This document outlines the datasets available within the OpenSpace astrovisualization software (version 0.15.2). These datasets were compiled from the Jet Propulsion Laboratory’s (JPL) Small-Body Database (SBDB) and NASA’s Planetary Data Service (PDS). These datasets provide insights into the characteristics, classifications, and abundance of small-bodies in the solar system, as well as their relationships to more prominent bodies. OpenSpace: Datasets for Asteroids and Comets 2 Part 1: Visualization Settings To load the Asteroids scene in OpenSpace, load the OpenSpace Launcher and select “asteroids” from the drop-down menu for “Scene.” Then launch OpenSpace normally. The Asteroids package is a big dataset, so it can take a few hours to load the first time even on very powerful machines and good internet connections. After a couple of times opening the program with this scene, it should take less time. If you are having trouble loading the scene, check the OpenSpace Wiki or the OpenSpace Support Slack for information and assistance.
    [Show full text]
  • Aqueous Alteration on Main Belt Primitive Asteroids: Results from Visible Spectroscopy1
    Aqueous alteration on main belt primitive asteroids: results from visible spectroscopy1 S. Fornasier1,2, C. Lantz1,2, M.A. Barucci1, M. Lazzarin3 1 LESIA, Observatoire de Paris, CNRS, UPMC Univ Paris 06, Univ. Paris Diderot, 5 Place J. Janssen, 92195 Meudon Pricipal Cedex, France 2 Univ. Paris Diderot, Sorbonne Paris Cit´e, 4 rue Elsa Morante, 75205 Paris Cedex 13 3 Department of Physics and Astronomy of the University of Padova, Via Marzolo 8 35131 Padova, Italy Submitted to Icarus: November 2013, accepted on 28 January 2014 e-mail: [email protected]; fax: +33145077144; phone: +33145077746 Manuscript pages: 38; Figures: 13 ; Tables: 5 Running head: Aqueous alteration on primitive asteroids Send correspondence to: Sonia Fornasier LESIA-Observatoire de Paris arXiv:1402.0175v1 [astro-ph.EP] 2 Feb 2014 Batiment 17 5, Place Jules Janssen 92195 Meudon Cedex France e-mail: [email protected] 1Based on observations carried out at the European Southern Observatory (ESO), La Silla, Chile, ESO proposals 062.S-0173 and 064.S-0205 (PI M. Lazzarin) Preprint submitted to Elsevier September 27, 2018 fax: +33145077144 phone: +33145077746 2 Aqueous alteration on main belt primitive asteroids: results from visible spectroscopy1 S. Fornasier1,2, C. Lantz1,2, M.A. Barucci1, M. Lazzarin3 Abstract This work focuses on the study of the aqueous alteration process which acted in the main belt and produced hydrated minerals on the altered asteroids. Hydrated minerals have been found mainly on Mars surface, on main belt primitive asteroids and possibly also on few TNOs. These materials have been produced by hydration of pristine anhydrous silicates during the aqueous alteration process, that, to be active, needed the presence of liquid water under low temperature conditions (below 320 K) to chemically alter the minerals.
    [Show full text]
  • 76 Minor Planet Bulletin 45 (2018) TWENTY-ONE ASTEROID LIGHTCURVES at ASTEROIDS OBSERVERS (OBAS)
    76 TWENTY-ONE ASTEROID LIGHTCURVES needed confirmation. All the targets were selected from the AT ASTEROIDS OBSERVERS (OBAS) - MPPD: Collaborative Asteroid Lightcurve (CALL) website at NOV 2016 - MAY 2017 http://www.minorplanet.info/call.html, paying special attention to keeping the asteroid’s magnitude within reach of the telescopes Vicente Mas, G. Fornas being used. We tried to observe asteroids at a phase angle of less CAAT, Centro Astronómico del Alto Turia, SPAIN than 14°, but this was not always possible. [email protected] Images were measured using MPO Canopus (Bdw Publishing) Juan Lozano with a differential photometry technique. For more information Elche Observatory, Alicante, SPAIN about methods and techniques used, see Aznar Macias et al. (2015). Table II lists the individual results along with the range of Onofre Rodrigo dates for the observations and the number of nights that Bétera Observatory, Valencia, SPAIN observations were made. A. Fornas 589 Croatia, Observed on nine nights from 2016 Nov to 2017 Jan. Oropesa Observatory, Castellón, SPAIN Period: 24.73 ± 0.013 h. Amplitude: 0.47 mag. This result is consistent with Behrend (2013), who found 24.821 h, but not with A. Carreño Waszczak et al. (2015) who found 16.385 h. Zonalunar Observatory,Valencia, SPAIN 593 Titania. Observed during five nights 2017 Apr. Period: 9.930 Enrique Arce ± 0.009 h. Amplitude: 0.21 mag. This period is consistent with Vallbona Observatory, Valencia, SPAIN Zappala (1983, 9.89 h), Harris (1989, 9.899 h), and Behrend (2017, 9.8968 h). Pedro Brines TRZ Observatory, Valencia, SPAIN 728 Leonisis. Observed on two nights in 2017 March-April.
    [Show full text]
  • The Minor Planet Bulletin
    THE MINOR PLANET BULLETIN OF THE MINOR PLANETS SECTION OF THE BULLETIN ASSOCIATION OF LUNAR AND PLANETARY OBSERVERS VOLUME 35, NUMBER 3, A.D. 2008 JULY-SEPTEMBER 95. ASTEROID LIGHTCURVE ANALYSIS AT SCT/ST-9E, or 0.35m SCT/STL-1001E. Depending on the THE PALMER DIVIDE OBSERVATORY: binning used, the scale for the images ranged from 1.2-2.5 DECEMBER 2007 – MARCH 2008 arcseconds/pixel. Exposure times were 90–240 s. Most observations were made with no filter. On occasion, e.g., when a Brian D. Warner nearly full moon was present, an R filter was used to decrease the Palmer Divide Observatory/Space Science Institute sky background noise. Guiding was used in almost all cases. 17995 Bakers Farm Rd., Colorado Springs, CO 80908 [email protected] All images were measured using MPO Canopus, which employs differential aperture photometry to determine the values used for (Received: 6 March) analysis. Period analysis was also done using MPO Canopus, which incorporates the Fourier analysis algorithm developed by Harris (1989). Lightcurves for 17 asteroids were obtained at the Palmer Divide Observatory from December 2007 to early The results are summarized in the table below, as are individual March 2008: 793 Arizona, 1092 Lilium, 2093 plots. The data and curves are presented without comment except Genichesk, 3086 Kalbaugh, 4859 Fraknoi, 5806 when warranted. Column 3 gives the full range of dates of Archieroy, 6296 Cleveland, 6310 Jankonke, 6384 observations; column 4 gives the number of data points used in the Kervin, (7283) 1989 TX15, 7560 Spudis, (7579) 1990 analysis. Column 5 gives the range of phase angles.
    [Show full text]
  • Appendix 1 1311 Discoverers in Alphabetical Order
    Appendix 1 1311 Discoverers in Alphabetical Order Abe, H. 28 (8) 1993-1999 Bernstein, G. 1 1998 Abe, M. 1 (1) 1994 Bettelheim, E. 1 (1) 2000 Abraham, M. 3 (3) 1999 Bickel, W. 443 1995-2010 Aikman, G. C. L. 4 1994-1998 Biggs, J. 1 2001 Akiyama, M. 16 (10) 1989-1999 Bigourdan, G. 1 1894 Albitskij, V. A. 10 1923-1925 Billings, G. W. 6 1999 Aldering, G. 4 1982 Binzel, R. P. 3 1987-1990 Alikoski, H. 13 1938-1953 Birkle, K. 8 (8) 1989-1993 Allen, E. J. 1 2004 Birtwhistle, P. 56 2003-2009 Allen, L. 2 2004 Blasco, M. 5 (1) 1996-2000 Alu, J. 24 (13) 1987-1993 Block, A. 1 2000 Amburgey, L. L. 2 1997-2000 Boattini, A. 237 (224) 1977-2006 Andrews, A. D. 1 1965 Boehnhardt, H. 1 (1) 1993 Antal, M. 17 1971-1988 Boeker, A. 1 (1) 2002 Antolini, P. 4 (3) 1994-1996 Boeuf, M. 12 1998-2000 Antonini, P. 35 1997-1999 Boffin, H. M. J. 10 (2) 1999-2001 Aoki, M. 2 1996-1997 Bohrmann, A. 9 1936-1938 Apitzsch, R. 43 2004-2009 Boles, T. 1 2002 Arai, M. 45 (45) 1988-1991 Bonomi, R. 1 (1) 1995 Araki, H. 2 (2) 1994 Borgman, D. 1 (1) 2004 Arend, S. 51 1929-1961 B¨orngen, F. 535 (231) 1961-1995 Armstrong, C. 1 (1) 1997 Borrelly, A. 19 1866-1894 Armstrong, M. 2 (1) 1997-1998 Bourban, G. 1 (1) 2005 Asami, A. 7 1997-1999 Bourgeois, P. 1 1929 Asher, D.
    [Show full text]