<<

Forest Transforming the Forest Products Industry

Arthur J. Ragauskas Institute of Paper Science and Technology Georgia Institute of Technology Chalmers University of Technology Global Challenges Energy Needs

world population

10

8

6

4

2 2003 6.3 Billion People 0 1750 1800 1850 1900 1950 1998 2050 2050 8-10 Billion People

18,000 Terawatts Challenge 16,000 14,000

-1940 2 TW 12,000 -2004 15 TW 10,000 8,000

Biomass 1.6 TW 6,000

4,000

2,000 Energy Demand (Mtoe) 2050 ~30 – 60 TW 0 1971 1990 2004 2015 2030 30 TW OECD Transition Economies Developing Countries Stabilization of CO2 concentrations means fundamental change to the global energy system

History and Reference Case Stabilization of CO2 at 550 ppm 1600 1600 History History Future Future 1400 1400

1200 1200

1000 1000

800 800

600 600

400 400 Global Primary Energy (Exajoules) 1850-2100 . 200 200 Global Primary Energy 1850-2100 (Exajoules) (Exajoules) 1850-2100 Energy Global Primary

0 0 1850 1900 1950 2000 2050 2100 1850 1900 1950 2000 2050 2100 Preindustrial Oil Preindustrial Oil + CCS 280ppm Natural Gas 280ppm Natural Gas + CCS Coal Coal + CCS Source: Jae Edmonds Biomass Energy Nuclear Energy Non-Biomass End-use Energy Decreasing U.S. Consumption

Congress: State of the Union Address The “30 by 30” goal • Replace 30% of gas and diesel consumption with • Decrease consumption by 18% by 2030 in 14 years • Requires approximately 1B • Grow production of renewable dry tons of biomass for 60B gal to 31B gal/year by 2017 using current technology Upper limit of corn is • “Billion Ton Study” – there is set to 15 billion gal per year (National Corn Growers Association) enough biomass in the US

World Ethanol and Annual With capacity being built we will Production Annual Ethanol Production by Country in Ethanol (Petroleum use @ 1150 B g/yr) reach this limit within two years Biodiesel 2005 4500 10 4000 4359 4288 9 3500 Energy Bill H.R.6: 8 3000 7 2500 6 2000 5 1500 We must add cellulosic biofuels 4 1000 3 Gal Annual Million 528 500 251 79 79 40 in order to meet our national 2 32 (billion annual gallons) annual (billion Fuel 1 0 l ia 0 razi S rs goals B U na lumb 75 80 85 90 95 00 05 hi o Othe 9 9 9 9 9 0 0 C EU a C Indi Canada Potential Biomass Resource and Refinery Capacity in 2012: Logging Residues, Crop Residues, Switchgrass

Source: Perlack et al., ORNL Data do not include pulp & paper assets in the Southeast Potential Biomass Resource and Refinery Capacity in 2030: Forest Residues (all), Crop Residues, Switchgrass

Source: Perlack et al., ORNL

Data do not include pulp & paper assets in the Southeast The Southeast and Midwest will be the sources for US biomass Cellulosic BioRefineries Today- Tomorrow’s Forest Products BioRefiner

Material

Current Products: Pulp, Tall Oil, Turpentine Future Select Hemicellulose, Wood Extractives, Lignin •Add Fischer-Tropsch unit; convert BLG CO2 •Syngas to Renewable Fischer-Tropsch Fuel SyngasSyngas O2 Power Export 116 million BOE

or Fuels/ChemicalsLiquid 109 million barrels

Black Liquor & Residuals

¬Extract Hemicelluloses ¬new products Steam, Power chemicals & polymers ¬BL Gasifier & Chemicals 1.9 billion gallons Ethanol ¬Wood Residual Manufacturing 600 million gallons Acetic Acid Gasifier ¬Combined Cycle System ¬Process to manufacture Liquid Fuels and Chemicals ¬Pulp SW 55 million tons The Forest – Production BioRefinery: Hemicellulose Extraction

Experimental Pre-Extraction Conditions Loblolly Pine Experimental Alkaline Acidic Steam Parameter Pre-extraction Pre-extraction Pre-extraction Temperature/ oC 100 - 170 130 - 150 130 - 170 Time/h 0.5, 1.0, 1.5 0.5, 1.0 0.5, 1.0, 1.5, 2.0 Chemicals/% 1.0, 1.5% NaOH 0.0, 0.2, 0.5% H2SO4 53 psi Ratio of Liquor to 5.0 : 1.0 5.0 : 1.0 4.0 : 1.0 Wood Post Extraction No Yes & No No Washing

Acidic Pre-Extractions – Kraft Pulping BioRefinery: Hemicellulose Extraction Acidic Pre-Extracted Woodchips: Monosaccharide Analysis

Mass Terminal pH % Hydrolyzed % Recovery 50 Sugars 45 0.5h Pre-Extraction 0.5 h 1.0 h 40 Arabinose

0.0% H2SO4: 5 3.2 35 0.2% H SO : 5 2.7 Galactose 2 4 30 0.5% H2SO4: 8 2.3 Glucose 25 Xylose 1.0h Pre-Extraction 20 Mannose 15 0.0% H2SO4: 8 3.7 0.2% H2SO4: 10 2.4 10 0.5% H2SO4: 12 2.2 5

1-2

200 175 Fucose 0 150 Arabinose

125 Mannose 0 % 0.2% 0.5% 0 % 0.2% 0.5%

100 Galactose nC Xy los e H2SO4 H2SO4 H2SO4 H2SO4 H2SO4 H2SO4 75 Glucose

50

25

0 0 5.0 10.0 15.0 20.0 25.0 30.0 35.0 Yields 10 – 18% Minutes BioRefinery: Hemicellulose Extraction Kraft Pulping Acidic Pre-Extracted Woodchips: Kappa #(Lignin Content

30

25

20

15

Kappa # 10

5

0

n) 4 4 4 4 4 4 4 4 4 io ing O O O ing O O O ng O O O h S h S S act 2 2S 2S 2 2S 2S ashi 2 2S 2S r as H H H as H H H H H H xt w w w e h % % h % % it 2% 5 it 2% 5% out 2% 5% re- 0 0 0. 0 p W 0. 0. 0. W 0. 0. ith 0. 0. 0. o ed/ ed/ W (n ct ct ol a a ed/ r tr tr nt x x act o e e r xt C re- re- e p p re- 5hr 0hr p hr 0. 1. 0 1. BioRefinery: Hemicellulose Extraction Kraft Pulping Acidic Pre-Extracted Woodchips: Viscosity

35.0

30.0

25.0 P 20.0

15.0 Viscosity/c

10.0

5.0

0.0

g 4 SO4 H2SO4 ith washing .0 % H2SO4 0.0 % H2SO40.2% H2SO40.5% H2 0.0 % H2SO40.2% 0.5% H2SO4 0 0.2% H2SO40.5% H2SO

d/Without washin xtracted/W xtracted/With washing ontrol(no pre-extraction) -e C

pre-extracte 0.5hr pre-e 1.0hr pre .0hr 1 BioRefinery: Hemicellulose Extraction Kraft Pulping Acidic Pre-Extracted Woodchips: Burst

Burst Index 2.5

2.0

1.5

1.0

0.5

0.0

l ) ) ) a g 4 4 4 g 4 4 4 g 4 4 4 in in O O O in O O O in O O O g h S S S h S S S h S S S ri s 2 s 2 s 2 O H2 H2 H H2 H H2 H H2 H2 wa wa wa h % % % h % % % t % % % it 0 .2 .5 it 0 .2 .5 u 0 .2 .5 0 0 0 0 o 0 0 (w (w h d d it te te (w c c d ra ra te t t c x x a -e -e tr e e x r r e p p - r r re h h p .5 .0 r 0 1 h .0 1 BioRefinery: Hemicellulose Extraction Acidic Pre-Extracted Woodchips: Pretreatment Modification

Prior Studies H SO /H O Direct 2 4 2

Alternative t=0

Approach H2SO4/H2O t= 48 h Delayed Spray Chips 1 h, 150 oC BioRefinery: Hemicellulose Extraction Acidic Pre-Extracted Woodchips: Pretreatment Modification

H2SO4/H2O

Direct & Delayed

1 h, 150 oC

Reducing Sugars (mg/ml) % Hemicellulose

0.5% H2SO4 Direct (t:0) 36.3 12 Delayed (t: 48 h) 57.8 19

0.75% H2SO4 Direct (t:0) 67.9 22 Delayed (t: 48 h) 72.2 23 Basic Pre-Extractions – Kraft Pulping BioRefinery: Hemicellulose Extraction Acidic Pre-Extracted Woodchips: Pretreatment Modification

NaOH/H2O

Exp. Terminal pH %Sugar Recovery Reducing Sugar (mg/ml) 1 h, 150 oC 150 oC 4.5% NaOH 1.0 h: 10.6 8 1.9

160 oC 4.5%% NaOH 1.0 h: 10.0 11 2.0

170 oC 4.5% NaOH, 2 h 8.9 11 2.3 6.0% NaOH, 1 h 11.3 14 2.5 9.0% NaOH, 1 h 12.7 16 3.3 12.0% NaOH, 1h 12.7 18 4.0 BioRefinery: Hemicellulose Extraction Kraft Pulping Alkali Pre-Extracted Woodchips: Kappa # Experimental Conditions: NaOH: 4.5 – 12.0% t: 1.0 – 3.0 hr Temp.: 150 - 170 oC

60 Exp. Terminal pH % Monosaccharide o 50 150 C 4.5% NaOH Arabinose 1.0 h: 10.6 40 Galactose Glucose Xy l os e o 160 C 4.5%% NaOH 30 Mannose 1.0 h: 10.0 20 170 oC 4.5% NaOH, 1 h 9.1 10 4.5% NaOH, 2 h 8.9 0 4.5% NaOH, 3 h 8.0 r r r C h C r r h h 0 1 h C h r r r 1 1 5 , 0 1 0 1 2h h h 6.0% NaOH, 1 h 11.3 1 % 6 7 3 1 %, 5 1 %, 1 0 0%, . .5 5%, %, %, %, . 4 4 . .5 .5 0 2 9.0% NaOH, 1 h 12.7 H 4 4 4 6. . 1 O H H H 9 H a O O H H H O N a a O O O O a 12.0% NaOH, 1h 12.7 N N a a a a N N N N N BioRefinery: Hemicellulose Extraction

Benefits of Pre-extraction • Significant reliable source of Hemicelluloses • Improves pulpability • Benefits some bleaching operations

O OAc O OAc O O OH AcO O HO O AcO O-Xylan HO O O HO O OAc O O OAc O O O O O HO C 2 OH

HO Concerns of Pre-extraction OH H CO 3 HO HO • Capital Costs - Partnership • Impact on strength properties - Grade - Technology •Yield - Technology - Data Today- Tomorrow’s Forest Products TMP BioRefiner

Value-Added Bark Energy Chemicals

Wood Wood Wood Debarking Sulfur Free Collection Wood Chipping Extractives Chips Biochemical BioLube

Pulping

Glucomannans

Pulp Bleaching - Strength Aid/Yield for Kraft - Clean Polysaccharide Resource

Papermaking

Current Products: Pulp Future Select Hemicellulose, Wood Extractives Abietic Acid Biorefinery: Mechanical Pulping H

H CO2H 3.0%

2.5%

2.0% b 1.5% Ambient 1.0% 60oC, 80% RH 45oC 73% RH

Acetone Extracta 0.5%

Challenge: 0.0% 0 7 14 21 • Wood extractives cause process – Day Filtrate Extractives quality problems 0.35 1.80 Pulp Extractives Fatty Acids Fatty Acids 0.30 1.60 Resin Acids Resin Acids Alkanol Monoglycerol 1.40 Monoglycerol 0.25 Sterol 1.20 Sterol Unknown Unknown 1.00 0.20

0.80 mg/ml mg/od g 0.15 0.60

0.40 0.10 0.20

0.00 0.05

r ips k h ine ts C f finer an p ts ts Re p 0.00 1o o Re iner lp 2 nch T rejec ef u e n r p Chip wash Plug screw Reject screw Cloudy WW Central WW Qu ee ed pulp d Screen feed h he Screen acceScr post c GWD silo pressate pressate 1o 1o Rej. MP ej. Screen acceT Y Bleac PM Headbox R PY Blea Biorefinery: Mechanical Pulping

TMP Woodchips Extractives

Starting Chips 2.8% Pressure Wash Acetone 70 oC1.2% Ethyl 90 oC1.2% 0.2% Ethoxylates surfactant 90 oC1.4% Biorefinery: Mechanical Pulping

Fatty Acids mgr/gr od pulp Hexadecanoic acid 1.4 9,12-Octadecadienoic acid Linolenic acid 1.2 Octadecanoic acid 11-Eicosaenoic acid 1

0.8

0.6

0.4

Orginal 0.2 Acetone Extracted 0 1 Ethanol Extracted 1-E ico Oct sa Aqueous Surfactant ade eno Lin ca ic a 9, ole noic ci H 12- nic ac ex Oct aci id ade ade d d can cad oic ien aci oic d aci d Biorefinery: Mechanical Pulping

Tensile Index Resin Acids 9

8

7

6

5

4

3

2

1

0 OriginalControl TMP Acetone TMP Ethyl alcohol TMP Surfactant extracted extracted pretreated Biorefinery: Mechanical Pulping

ISO Brightness Resin Acids 55.5

55

54.5

54

53.5

53

52.5

52

51.5

51

50.5 OriginalControl TMP Acetone TMP Ethyl TMP Surfactant extracted alcohol extracted pretreated Biorefinery: Mechanical Pulping

Biolube Current Products

Markets for nonsulfur plant extractives Related BioMass-BioFuels Activities Ragauskas Team Hydrogen (H2) Methanol Water gas shift (CH3OH) + separation DME Gasification Syngas (CH OCH ) Catalyzed 3 3 synthesis FT Diesel (CxHy) Anaerobic SNG digestion Purification (CH4)

Flash pyrolysis Hydro treating Biodiesel Lignocellulosic Bio oil and refining (C H ) biomass Hydrothermal x y liquefaction Ethanol Hydrolysis Sugar Fermentation (CH3CH2OH) Sugar/starch Milling and Biodiesel crops hydrolysis Esterification (alkyl esters) Oil plants Pressing or Plant Oil >>Extractives<< extraction Bio oil Early Adoption/Paper Mill Sludge- Municipal Waste

OH OH O OH O OH O HO O HO O- HO O HO O OH O OH O OH OH

Ethanol from Cellulosic Waste

Glucose

Ethanol Bark for Biofuels/Biochemicals ` Conversion Chemistry • Cat. Pyrolysis Chemistry

Green Diesel/

OH

R OCH3

OH OH

OH

OCH3 OH

OH OH

Phenolics Feedstocks Bark for Biofuels/Biochemicals ` Pyrolysis of Black Liquor

Pyrolysis oil Solid yield Unaccounted Hydrogen Carbon Oxygen Sulfur Ash yield (Char) (Gas) Sample name [wt%] [wt%] [wt%] [wt%] [wt%] Black Liquor 3.63 35.14 33.80 4.13 23.30 Sample [wt%] [wt%] [wt%] BL Solid 2.36 36.06 30.24 1.53 29.81 Sample [wt%] [wt%] [wt%] BL Pyr. Oil 8.88 67.69 17.18 2.19 4.06 Black liquor (crude) 33.16 64.14 2.71

P 9.5 (crude) 31.53 67.55 0.92 P 9.5 (extracted) 42.98 42.25 14.78 Profiling Biomass Resources Kraft Lignin Isolation Assorted Possibilities Ultra-filtration

Low MW Lignin

Evaporators Acid Precipitation Weak black To recovery boiler High MW Lignin liquor tank Black liquor

Washed lignin

Dewatering “Re-slurry” tank Wash liquor Precipitation vessel Profiling Biomass Resources Kraft Lignin Application: Carbon Fibers

10% of U.S. kraft lignin is sufficient to produce enough carbon fiber to replace half of the steel in all domestic passenger transport vehicles

Lignin/PEO HWKL (°C) Alcell (°C) 100/0 195-228 138-165 95/5 189-198 153-172 87.5/12.5 191-200 138-172 75/25 150-182 120-157 Alcell and Hard Wood Kraft Lignin (HWKL) were spun continuously into satisfactory fibers Alcell/PEO blends: inter-fiber fusing SWKL: formed chars instead of fibers Profiling Biomass Resources Kraft Lignin Application: Pellet Binder Drivers for Wood Pellets • Investment Tax Credit • Capital Grants • Consumer Rebates • Excise Tax Exemptions • Tax Credits • Targets/Quotas with Penalties • Subsidies • Production of Green Electricity • Consumption Lignin: Binder for Wood Pellets District Heating Profiling Biomass Resources Kraft Lignin Application: Resin/Adhesive

Strength Properties of OSB-Panels Produced with Combination of Phenolic Resin and Lignin Binder Property 100% Phenolic 80% Phenolic/20% Lignin

Powder Resin MOR/psi 3456 3654 IB/psi 59.4 60.1 D-4/lbs 144 143 D-5/lbs 115 141

Liquid Resin MOR/psi 5204 4866 IB/psi 83 295 D-4/lbs 276 97 Novel Oxidative/Reductive Chemistry

OCH3 HO for Lignin OH

HO

HO OH O

OCH3

H3CO HO O HO O OCH3 ∼ C –C HO 800 900 HO OCH3 OCH3 O HO O HO OCH3 C –C O OCH3 8 22 HO OH O OH

OH

H3CO O O OCH O HO 3 OCH3 OH HO HO OH HO O HO OCH 3 O OCH3 O OCH3 HO OH O O OCH3 O Oxid.

OCH3 O OCH3 OCH3 O O

HO HO

O OCH3 HO OCH OH 3 OH H2/Cat

OCH3 OCH3 O O Catalytic Conversion of Biomass to Biofuels BiofuelBiofuel precursor:precursor:

OCH3 HO OH ∼∼ CC800 –– CC900 HO

HO OH O CC –– CC OCH3 9 18

H3CO HO O Cracking Biopolymer HO O OCH3 Viable Biodiesel HO HO OCH3 OCH3 or Biogasoline O HO O Current Research Activities: HO Component OCH3 - Utilization of conventional O OCH3 HO OH O OH heterogeneous hydrogenation OH catalysts H3CO O O OCH O HO 3 OCH3 - Development of homogenous OH - Development of homogenous HO OH O HO aqueous phase catalysis OCH3 chemistry for hydrogenation HO O O OCH3 cleavage of:

OCH Aryl-O-Aryl 3 O Aryl-O-Aliphatic Ethers BioChemical: Novel Reductive Catalytic Chemistry

BioMaterial Precursors OCH3 HO OH∼ C800 –C900 HO Reductive HO OH O OCH3 C6 –C24 H3CO HO O Cracking Biopolymer HO O OCH3 HO HO OCH3 OCH3 O HO Current Research Activities O HO Develop heterogeneous/homogenous aqueous OCH3 phase catalysis chemistry O OCH3 HO OH O OH hydrogenation cleavage OH

H3CO O O OCH O HO 3 OCH3 OH HO Non-water-soluble Water-soluble OH hydrogenation complexes hydrogenation complexes O HO Ruthenium OCH 3 [Ru(Cl)2( PPh3)3] [Ru(Cl)2( TPPTS)3] [Ru(H)(Cl)( PPh3)3] [Ru(H)(Cl)(TPPTS)3] HO [Ru(H)2(PPh3)4] [Ru(H)2(TPPTS)4] O O OCH3 Rhodium [RhCl(PPh3)3] [RhCl(TPPTS)3]

OCH3 O Experimental Setup

• 4560 Mini Parr reactor equipped with a 4842 temperature controller. • Pressurized with UHP Hydrogen gas. • Under on-line controlled time and pressure. Lignin Hydrogenation

Mass Balance lignin Hydrogenolysis RuCl2(PPh3)3

100%

90%

80%

70%

60%

50% Charred 40% Unsolluble Phase Solluble Phase 30%

20%

10%

0% Schlenk 50 C Parr 200 C 50 C 100 C 150 C 175 C 200 C Parr Reaction conditions Tg = 148 ± 1 °C Lignin Hydrogenation

Reaction conditions Solubility in Mn ethanol (% dry wt.) (g mol-1)

EOL * 52.1 1191

Blank * 65.0 1026

Heterogeneous catalysts Co/Mo 54.3 1075 Raney-Ni * 71.8 1148 Pd/C 69.8 995 Pt/C 76.5 953

Homogeneous catalysts NaBH4/I2 * 72.4 404 RhCl(PPh3)3 76.3 787 Ru(Cl)2( PPh3)3 * 96.4 893 Ru(H)(Cl)( PPh3)3 77.2 837 Ru-(PVP) 58.1 902 Profiling Biomass Resources Kraft Lignin Application Phenols, Cresols Phenol, Acetic Acid Acetylene Substituted Phenols Substituted Phenols, CO, CH4 Ethylene

HYDROGENATION PYROLYSIS FAST PYROLYSIS

Phenol HYDROLYSIS ALKALI Phenolic Acids Substituted Phenols Catechols

OXIDATION MICROBIAL OXOREDUCTASE

Vanillin, MeS2 Lignin with Increased Vanillic, Ferulic Oxidized Lignin MeSH, DMSO Polymerization Coumaric/other Coating/Paint Acids Additive W.J. Bryan Destiny is not a matter of chance, it is a matter of choice, it is not a thing to be waited for, it is a thing to be achieved

Thank You!