Unit 3: Topic 8 Forests Under Threat
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Arachnozoogeographical Analysis of the Boundary Between Eastern Palearctic and Indomalayan Region
Historia naturalis bulgarica, 23: 5-36, 2016 Arachnozoogeographical analysis of the boundary between Eastern Palearctic and Indomalayan Region Petar Beron Abstract: This study aims to test how the distribution of various orders of Arachnida follows the classical subdivision of Asia and where the transitional zone between the Eastern Palearctic (Holarctic Kingdom) and the Indomalayan Region (Paleotropic) is situated. This boundary includes Thar Desert, Karakorum, Himalaya, a band in Central China, the line north of Taiwan and the Ryukyu Islands. The conclusion is that most families of Arachnida (90), excluding most of the representatives of Acari, are common for the Palearctic and Indomalayan Regions. There are no endemic orders or suborders in any of them. Regarding Arach- nida, their distribution does not justify the sharp difference between the two Kingdoms (Paleotropical and Holarctic) in Eastern Eurasia. The transitional zone (Sino-Japanese Realm) of Holt et al. (2013) also does not satisfy the criteria for outlining an area on the same footing as the Palearctic and Indomalayan Realms. Key words: Palearctic, Indomalayan, Arachnozoogeography, Arachnida According to the classical subdivision the region’s high mountains and plateaus. In southern Indomalayan Region is formed from the regions in Asia the boundary of the Palearctic is largely alti- Asia that are south of the Himalaya, and a zone in tudinal. The foothills of the Himalaya with average China. North of this “line” is the Palearctic (consist- altitude between about 2000 – 2500 m a.s.l. form the ing og different subregions). This “line” (transitional boundary between the Palearctic and Indomalaya zone) is separating two kingdoms, therefore the dif- Ecoregions. -
North America Land Cover Characteristics Data Base Version 2.0
North America Land Cover Characteristics Data Base Version 2.0 PLEASE NOTE: This is the Version 2.0 release of the North America land cover characteristics data base. The land cover information has been updated from Version 1.2. Please read section 5.0 for information about the revision process and what changes have been made to the data. Table of Contents 1.0 Data Description ....................................................................................................................... 1 2.0 Geometric Characteristics ......................................................................................................... 2 2.1 Interrupted Goode Homolosine Projection Parameters .............................................. 2 2.2 Lambert Azimuthal Equal Area Projection Parameters ............................................... 3 3.0 Derived Data Sets ..................................................................................................................... 3 3.1 North America Seasonal Land Cover Regions Legend .............................................. 3 3.2 Global Ecosystems Legend ............................................................................................. 9 3.3 IGBP Land Cover Legend .............................................................................................. 12 3.4 USGS Land Use/Land Cover System Legend (Modified Level 2) ........................... 13 3.5 Simple Biosphere Model Legend .................................................................................. 14 3.6 -
Russia's Boreal Forests
Forest Area Key Facts & Carbon Emissions Russia’s Boreal Forests from Deforestation Forest location and brief description Russia is home to more than one-fifth of the world’s forest areas (approximately 763.5 million hectares). The Russian landscape is highly diverse, including polar deserts, arctic and sub-arctic tundra, boreal and semi-tundra larch forests, boreal and temperate coniferous forests, temperate broadleaf and mixed forests, forest-steppe and steppe (temperate grasslands, savannahs, and shrub-lands), semi-deserts and deserts. Russian boreal forests (known in Russia as the taiga) represent the largest forested region on Earth (approximately 12 million km2), larger than the Amazon. These forests have relatively few tree species, and are composed mainly of birch, pine, spruce, fir, with some deciduous species. Mixed in among the forests are bogs, fens, marshes, shallow lakes, rivers and wetlands, which hold vast amounts of water. They contain more than 55 per cent of the world’s conifers, and 11 per cent of the world’s biomass. Unique qualities of forest area Russia’s boreal region includes several important Global 200 ecoregions - a science-based global ranking of the Earth’s most biologically outstanding habitats. Among these is the Eastern-Siberian Taiga, which contains the largest expanse of untouched boreal forest in the world. Russia’s largest populations of brown bear, moose, wolf, red fox, reindeer, and wolverine can be found in this region. Bird species include: the Golden eagle, Black- billed capercaillie, Siberian Spruce grouse, Siberian accentor, Great gray owl, and Naumann’s thrush. Russia’s forests are also home to the Siberian tiger and Far Eastern leopard. -
Canada GREENLAND 80°W
DO NOT EDIT--Changes must be made through “File info” CorrectionKey=NL-B Module 7 70°N 30°W 20°W 170°W 180° 70°N 160°W Canada GREENLAND 80°W 90°W 150°W 100°W (DENMARK) 120°W 140°W 110°W 60°W 130°W 70°W ARCTIC Essential Question OCEANDo Canada’s many regional differences strengthen or weaken the country? Alaska Baffin 160°W (UNITED STATES) Bay ic ct r le Y A c ir u C k o National capital n M R a 60°N Provincial capital . c k e Other cities n 150°W z 0 200 400 Miles i Iqaluit 60°N e 50°N R YUKON . 0 200 400 Kilometers Labrador Projection: Lambert Azimuthal TERRITORY NUNAVUT Equal-Area NORTHWEST Sea Whitehorse TERRITORIES Yellowknife NEWFOUNDLAND AND LABRADOR Hudson N A Bay ATLANTIC 140°W W E St. John’s OCEAN 40°W BRITISH H C 40°N COLUMBIA T QUEBEC HMH Middle School World Geography A MANITOBA 50°N ALBERTA K MS_SNLESE668737_059M_K.ai . S PRINCE EDWARD ISLAND R Edmonton A r Canada legend n N e a S chew E s kat Lake a as . Charlottetown r S R Winnipeg F Color Alts Vancouver Calgary ONTARIO Fredericton W S Island NOVA SCOTIA 50°WFirst proof: 3/20/17 Regina Halifax Vancouver Quebec . R 2nd proof: 4/6/17 e c Final: 4/12/17 Victoria Winnipeg Montreal n 130°W e NEW BRUNSWICK Lake r w Huron a Ottawa L PACIFIC . t S OCEAN Lake 60°W Superior Toronto Lake Lake Ontario UNITED STATES Lake Michigan Windsor 100°W Erie 90°W 40°N 80°W 70°W 120°W 110°W In this module, you will learn about Canada, our neighbor to the north, Explore ONLINE! including its history, diverse culture, and natural beauty and resources. -
Forests Warranting Further Consideration As Potential World
Forest Protected Areas Warranting Further Consideration as Potential WH Forest Sites: Summaries from Various and Thematic Regional Analyses (Compendium produced by Marc Patry, for the proceedings of the 2nd World Heritage Forest meeting, held at Nancy, France, March 11-13, 2005) Four separate initiatives have been carried out in the past 10 years in an effort to help guide the process of identifying and nominating new WH Forest sites. The first, carried out by Thorsell and Sigaty (1997), addresses forests worldwide, and was developed based on the authors’ shared knowledge of protected forests worldwide. The second focuses exclusively on tropical forests and was assembled by the participants at the 1998 WH Forest meeting in Berastagi, Indonesia (CIFOR, 1999). A third initiative consists of potential boreal forest sites developed by the participants to an expert meeting on boreal forests, held in St. Petersberg in 2003. Finally, a fourth, carried out jointly between UNEP and IUCN applied a more systematic approach (IUCN, 2004). Though aiming at narrowing the field of potential candidate sites, these initiatives do not automatically imply that all of the listed forest areas would meet the criteria for inscription on the WH List, and conversely, nor do they imply that any site left off the list would not meet these criteria. Since these lists were developed, several of the proposed sites have been inscribed on the WH List, while others have been the subject of nominations, but were not inscribed, for various reasons. The lists below are reproduced here in an effort to facilitate access to this information and to guide future nomination initiatives. -
North Yukon Planning Region Biophysical Landscape Classification
North Yukon Planning Region Biophysical Landscape Classification (Landscape Types): Overview, Methods and Reference Images T F DRA Updated October 20, 2005 Project Team • John Meikle, Yukon Environment • Marcus Waterreus, Yukon Environment • Shawn Francis, NYPC • Jeff Hamm, YLUPC • Nancy Steffen, GLL • Biophysical working group – initial terrain and bioclimate concepts STUDY AREA • North Yukon Planning Region (55,000 km2) • Taiga Cordillera Ecozone • 6 Ecoregions: Eagle Plains, Old Crow Flats, Old Crow Basin, North Ogilvie Mountains, Davidson Mountains, Richardson Mountains • Basin, Plateau and Mountain Landscapes STUDY AREA Physiographic Basin Units and Ecodistricts Mountain Basin Plateau Old Crow Plateau Mountain Mountain MAPPING CONCEPTS • Mountain landscapes organized by elevation (Bioclimate Zone); Plateau landscapes organized by relative moisture gradient (Ecosite) • Beyond major Basin landscapes, surficial materials not controlling factor (unglaciated) • Mapping has regional applications (1:100K- 1:250K) • Available data sources are major determinant of potential methods DATA INPUTS • EOSD (25m LANDSAT Extent of 250K Regional Terrain supervised classification) Map (raster) • 90m DEM (raster) • 250K regional terrain map North Yukon Planning Region (vector) Peel Watershed …..due to importance of Planning Region EOSD and DEM, raster mapping approach was chosen METHODS • Field reconnaissance; develop concepts • Create regional terrain and Bioclimate Zone map through manual interpretation (refine Ecoregions and Ecodistricts to 250K) -
Rainforests and Tropical Diversity
Rainforests and Tropical Diversity Gaby Orihuela Visitor Experience Manager Global Strategy for Plant Conservation Objective IV: Education and awareness about plant diversity, its role in sustainable livelihoods and importance to all life on earth is promoted. – Target 14: The importance of plant diversity and the need for its conservation incorporated into communication, education and public awareness programs. What are Rainforests? Forests characterized by high rainfall, with definitions based on a minimum normal annual rainfall of 68–78 inches, and as much as 390 inches. (Miami receives an average annual of ~60 inches.) Two types: Tropical (wet and warm) and Temperate Around 40% to 75% of all biotic species are indigenous to the tropical rainforests Natural reservoir of genetic diversity and ecological services: – Rich source of medicinal plants – High-yield foods and a myriad of other useful forest products – Sustain a large number of diverse and unique indigenous cultures – Important habitat for migratory animals Peruvian Amazonia Where in the World? Today less than 3% of Earth’s land is covered with these forests (about 2 million square miles). A few thousand of years ago they covered 12% (6 million). Tropical forests are restricted to the latitudes 23.5° North and 23.5° South of the equator, or in other words between the Tropic of Capricorn and the Tropic of Cancer. Global distribution in four biogeographic realms: – Afrotropical (mainland Africa, Madagascar, and scattered islands) – Australian (Australia, New Guinea, and -
Responses of Plant Communities to Grazing in the Southwestern United States Department of Agriculture United States Forest Service
Responses of Plant Communities to Grazing in the Southwestern United States Department of Agriculture United States Forest Service Rocky Mountain Research Station Daniel G. Milchunas General Technical Report RMRS-GTR-169 April 2006 Milchunas, Daniel G. 2006. Responses of plant communities to grazing in the southwestern United States. Gen. Tech. Rep. RMRS-GTR-169. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 126 p. Abstract Grazing by wild and domestic mammals can have small to large effects on plant communities, depend- ing on characteristics of the particular community and of the type and intensity of grazing. The broad objective of this report was to extensively review literature on the effects of grazing on 25 plant commu- nities of the southwestern U.S. in terms of plant species composition, aboveground primary productiv- ity, and root and soil attributes. Livestock grazing management and grazing systems are assessed, as are effects of small and large native mammals and feral species, when data are available. Emphasis is placed on the evolutionary history of grazing and productivity of the particular communities as deter- minants of response. After reviewing available studies for each community type, we compare changes in species composition with grazing among community types. Comparisons are also made between southwestern communities with a relatively short history of grazing and communities of the adjacent Great Plains with a long evolutionary history of grazing. Evidence for grazing as a factor in shifts from grasslands to shrublands is considered. An appendix outlines a new community classification system, which is followed in describing grazing impacts in prior sections. -
Taiga Plains
ECOLOGICAL REGIONS OF THE NORTHWEST TERRITORIES Taiga Plains Ecosystem Classification Group Department of Environment and Natural Resources Government of the Northwest Territories Revised 2009 ECOLOGICAL REGIONS OF THE NORTHWEST TERRITORIES TAIGA PLAINS This report may be cited as: Ecosystem Classification Group. 2007 (rev. 2009). Ecological Regions of the Northwest Territories – Taiga Plains. Department of Environment and Natural Resources, Government of the Northwest Territories, Yellowknife, NT, Canada. viii + 173 pp. + folded insert map. ISBN 0-7708-0161-7 Web Site: http://www.enr.gov.nt.ca/index.html For more information contact: Department of Environment and Natural Resources P.O. Box 1320 Yellowknife, NT X1A 2L9 Phone: (867) 920-8064 Fax: (867) 873-0293 About the cover: The small photographs in the inset boxes are enlarged with captions on pages 22 (Taiga Plains High Subarctic (HS) Ecoregion), 52 (Taiga Plains Low Subarctic (LS) Ecoregion), 82 (Taiga Plains High Boreal (HB) Ecoregion), and 96 (Taiga Plains Mid-Boreal (MB) Ecoregion). Aerial photographs: Dave Downing (Timberline Natural Resource Group). Ground photographs and photograph of cloudberry: Bob Decker (Government of the Northwest Territories). Other plant photographs: Christian Bucher. Members of the Ecosystem Classification Group Dave Downing Ecologist, Timberline Natural Resource Group, Edmonton, Alberta. Bob Decker Forest Ecologist, Forest Management Division, Department of Environment and Natural Resources, Government of the Northwest Territories, Hay River, Northwest Territories. Bas Oosenbrug Habitat Conservation Biologist, Wildlife Division, Department of Environment and Natural Resources, Government of the Northwest Territories, Yellowknife, Northwest Territories. Charles Tarnocai Research Scientist, Agriculture and Agri-Food Canada, Ottawa, Ontario. Tom Chowns Environmental Consultant, Powassan, Ontario. Chris Hampel Geographic Information System Specialist/Resource Analyst, Timberline Natural Resource Group, Edmonton, Alberta. -
Deciduousness in a Seasonal Tropical Forest in Western Thailand: Interannual and Intraspecific Variation in Timing, Duration and Environmental Cues
Oecologia (2008) 155:571–582 DOI 10.1007/s00442-007-0938-1 ECOSYSTEM ECOLOGY - ORIGINAL PAPER Deciduousness in a seasonal tropical forest in western Thailand: interannual and intraspecific variation in timing, duration and environmental cues Laura J. Williams Æ Sarayudh Bunyavejchewin Æ Patrick J. Baker Received: 20 February 2007 / Accepted: 3 December 2007 / Published online: 10 January 2008 Ó Springer-Verlag 2007 Abstract Seasonal tropical forests exhibit a great diver- the timing of leaf flushing varied among species, most sity of leaf exchange patterns. Within these forests variation (*70%) flushed during the dry season. Leaf flushing was in the timing and intensity of leaf exchange may occur associated with changes in photoperiod in some species and within and among individual trees and species, as well as the timing of rainfall in other species. However, more than a from year to year. Understanding what generates this third of species showed no clear association with either diversity of phenological behaviour requires a mechanistic photoperiod or rainfall, despite the considerable length and model that incorporates rate-limiting physiological condi- depth of the dataset. Further progress in resolving the tions, environmental cues, and their interactions. In this underlying internal and external mechanisms controlling study we examined long-term patterns of leaf flushing for a leaf exchange will require targeting these species for large proportion of the hundreds of tree species that co- detailed physiological and microclimatic studies. occur in a seasonal tropical forest community in western Thailand. We used the data to examine community-wide Keywords Dry season flushing Á Huai Kha Khaeng Á variation in deciduousness and tested competing hypotheses Southeast Asia Á Tropical tree phenology regarding the timing and triggers of leaf flushing in seasonal tropical forests. -
Climate and Vegetation • Almost Every Type of Climate Is Found in the 50 United States Because They Extend Over Such a Large Area North to South
123-126-Chapter5 10/16/02 10:16 AM Page 123 Main Ideas Climate and Vegetation • Almost every type of climate is found in the 50 United States because they extend over such a large area north to south. • Canada’s cold climate is related to its location in the far northern latitudes. A HUMAN PERSPECTIVE A little gold and bitter cold—that is what Places & Terms thousands of prospectors found in Alaska and the Yukon Territory dur- permafrost ing the Klondike gold rushes of the 1890s. Most of these fortune prevailing westerlies hunters were unprepared for the harsh climate and inhospitable land of Everglades the far north. Winters were long and cold, the ground frozen. Ice fogs, blizzards, and avalanches were regular occurrences. You could lose fin- Connect to the Issues gers and toes—even your life—in the cold. But hardy souls stuck it out. urban sprawl The rapid Legend has it that one miner, Bishop Stringer, kept himself alive by boil- spread of urban sprawl has led US & CANADA ing his sealskin and walrus-sole boots and then drinking the broth. to the loss of much vegetation in both the United States and Canada. Shared Climates and Vegetation The United States and Canada have more in common than just frigid winter temperatures where Alaska meets northwestern Canada. Other shared climate and vegetation zones are found along their joint border at the southern end of Canada and the northern end of the United States. If you look at the map on page 125, you will see that the United MOVEMENT The snowmobile States has more climate zones than Canada. -
Challenges in the Paleoclimatic Evolution of the Arctic and Subarctic Pacific Since the Last Glacial Period—The Sino–German
challenges Concept Paper Challenges in the Paleoclimatic Evolution of the Arctic and Subarctic Pacific since the Last Glacial Period—The Sino–German Pacific–Arctic Experiment (SiGePAX) Gerrit Lohmann 1,2,3,* , Lester Lembke-Jene 1 , Ralf Tiedemann 1,3,4, Xun Gong 1 , Patrick Scholz 1 , Jianjun Zou 5,6 and Xuefa Shi 5,6 1 Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung Bremerhaven, 27570 Bremerhaven, Germany; [email protected] (L.L.-J.); [email protected] (R.T.); [email protected] (X.G.); [email protected] (P.S.) 2 Department of Environmental Physics, University of Bremen, 28359 Bremen, Germany 3 MARUM Center for Marine Environmental Sciences, University of Bremen, 28359 Bremen, Germany 4 Department of Geosciences, University of Bremen, 28359 Bremen, Germany 5 First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; zoujianjun@fio.org.cn (J.Z.); xfshi@fio.org.cn (X.S.) 6 Pilot National Laboratory for Marine Science and Technology, Qingdao 266061, China * Correspondence: [email protected] Received: 24 December 2018; Accepted: 15 January 2019; Published: 24 January 2019 Abstract: Arctic and subarctic regions are sensitive to climate change and, reversely, provide dramatic feedbacks to the global climate. With a focus on discovering paleoclimate and paleoceanographic evolution in the Arctic and Northwest Pacific Oceans during the last 20,000 years, we proposed this German–Sino cooperation program according to the announcement “Federal Ministry of Education and Research (BMBF) of the Federal Republic of Germany for a German–Sino cooperation program in the marine and polar research”. Our proposed program integrates the advantages of the Arctic and Subarctic marine sediment studies in AWI (Alfred Wegener Institute) and FIO (First Institute of Oceanography).