North Yukon Planning Region Biophysical Landscape Classification

Total Page:16

File Type:pdf, Size:1020Kb

North Yukon Planning Region Biophysical Landscape Classification North Yukon Planning Region Biophysical Landscape Classification (Landscape Types): Overview, Methods and Reference Images T F DRA Updated October 20, 2005 Project Team • John Meikle, Yukon Environment • Marcus Waterreus, Yukon Environment • Shawn Francis, NYPC • Jeff Hamm, YLUPC • Nancy Steffen, GLL • Biophysical working group – initial terrain and bioclimate concepts STUDY AREA • North Yukon Planning Region (55,000 km2) • Taiga Cordillera Ecozone • 6 Ecoregions: Eagle Plains, Old Crow Flats, Old Crow Basin, North Ogilvie Mountains, Davidson Mountains, Richardson Mountains • Basin, Plateau and Mountain Landscapes STUDY AREA Physiographic Basin Units and Ecodistricts Mountain Basin Plateau Old Crow Plateau Mountain Mountain MAPPING CONCEPTS • Mountain landscapes organized by elevation (Bioclimate Zone); Plateau landscapes organized by relative moisture gradient (Ecosite) • Beyond major Basin landscapes, surficial materials not controlling factor (unglaciated) • Mapping has regional applications (1:100K- 1:250K) • Available data sources are major determinant of potential methods DATA INPUTS • EOSD (25m LANDSAT Extent of 250K Regional Terrain supervised classification) Map (raster) • 90m DEM (raster) • 250K regional terrain map North Yukon Planning Region (vector) Peel Watershed …..due to importance of Planning Region EOSD and DEM, raster mapping approach was chosen METHODS • Field reconnaissance; develop concepts • Create regional terrain and Bioclimate Zone map through manual interpretation (refine Ecoregions and Ecodistricts to 250K) • Use DEM to model slope curvature (moisture) • Create EOSD mosaic; update with recent fires • Combine terrain, slope curvature and EOSD • Create biophysical classes • Classify High Elevation, Riparian and Wetlands separate from Plateau and valley METHODS Regional Terrain Map DEM Soil Moisture Model Landcover Map Biophysical Map GIS METHODS – Plateau (Eagle Plains) STEP 1: Develop regional terrain interpretations 2.5 km Regional Terrain Map (1:250K) GIS METHODS – Plateau (Eagle Plains) STEP 2: Develop Soil Moisture Model from 90m DEM 2.5 km DEM (90m) GIS METHODS – Plateau (Eagle Plains) Slope Form (Curvature) Ecosite Upper Slopes and Slope Crests MESIC Lower Slopes and Receiving Sites MOIST Gentle Slopes (Flat) WET GIS METHODS – Plateau (Eagle Plains) STEP 2 (cont): Soil Moisture Model – Classify DEM by slope form (curvature) 2.5 km Soil Moisture (Slope Curvature) GIS METHODS – Plateau (Eagle Plains) STEP 2 (cont): Filter slope curvature map to create simplified soil moisture map 2.5 km Filtered soil moisture map used for biophysical classification Soil Moisture (Slope Curvature - filtered) GIS METHODS – Plateau (Eagle Plains) STEP 3: 2004 Develop Fire satellite image- Update derived landcover map (25m EOSD) 2.5 km Update EOSD mosaic with recent fire mapping and fill missing data areas Landcover Map (EOSD - 25m) GIS METHODS – Plateau (Eagle Plains) STEP 4: Combine 2004 terrain, soil Fire moisture and Update landcover maps 2.5 km Create bio- physical classes in step-wise manner: Upland Plateau; High Elevation; Riparian; Biophysical Classification (90m) Wetlands RESULTS • 3 Bioclimate Zones – Taiga Wooded; Taiga Shrub; Alpine • 28 biophysical classes recognized, organized by High Elevation, Low-Middle Elevation, Riparian and Wetland Landscape Positions • Low-Middle Elevation ecosystems organized by Ecosite (relative soil moisture) • Due to use of Ecosite approach, concept of vegetation succession is inherent in biophysical map • Raster map has single value, similar to EOSD BIOCLIMATE ZONES • describes dominant physiognomic vegetation type • separate classification from biophysical map • 250K vector REGIONAL LANDSCAPE TYPES Plateau (Low Elevation Upland and Riparian Ecosystems) Moist Riparian Coniferous Shrub Forest Wet Herb Riparian Shrub Moist Coniferous Forest Mesic Mixedwood Forest REGIONAL LANDSCAPE TYPES PLATEAU Old Crow REGIONAL LANDSCAPE TYPES Basin (Low Elevation and Wetland Ecosystems) Open Water Wetland - Herb Wetland - Shrub REGIONAL LANDSCAPE TYPES BASIN REGIONAL LANDSCAPE TYPES Mountain (High Elevation Ecosystems) High Elevation Herb High Elevation Coniferous Forest High Elevation Sparsely Vegetated High Elevation High Elevation Rock/Rubble Shrub REGIONAL LANDSCAPE TYPES MOUNTAIN NORTH YUKON PLANNING REGION BIOPHYSICAL CLASSIFICATION (LANDSCAPE TYPE) REFERENCE IMAGES North Yukon Biophysical Landscape Types Some landscape types are considered relatively stable; some are seral (successional) to a different type The following legend illustrates meta-stable, early to mid- successional and late-successional landscape types: Meta-Stable Landscape Type Early – Mid-Successional Landscape Type Late-Successional Vegetation Type Each landscape type reference image is color-coded to illustrate the assumed successional pathway and residence time HIGH ELEVATION ECOSYSTEMS ALPINE and High-TAIGA SHRUB Bioclimate Zones Value Landscape Type 100 - Rock/Exposed [High_Rock] 110 - Sparsely Vegetated [High_Sparse] 111 - Herb [High_Herb] T I 112 - Shrub [High_Shrub] M 1-150+ years E 113 - Coniferous Forest [High_CFor] 150+ years (100) - High Elevation Rock/Exposed [High_Rock] REF #1 (110) – High Elevation Sparsely Vegetated [High_Sparse] REF #2 (111) – High Elevation Herb [High_Herb] REF #3 (112) – High Elevation Shrub [High_Shrub] REF #4 (113) – High Elevation Coniferous Forest [High_CFor] REF #5 LOW - MIDDLE ELEVATION ECOSYSTEMS TAIGA WOODED and Low-TAIGA SHRUB Bioclimate Zones Value Landscape Type 200 – Exposed/Sparsely Vegetated [Low_Exposed] Upland – Wet Sites Value Landscape Type 210 – Wet Herb [Herb_wet] 211 – Wet Shrub [Shrub_wet] T I 212 – Wet Mixedwood Forest [MFor_wet] M 1-100 years E 213 – Wet Coniferous Forest [CFor_wet] 100+ years ECOSITE VEGETATION TYPE (200) – Low Elevation Exposed/Sparsely Vegetated [Low_Exposed] REF #6 LOW - MIDDLE ELEVATION ECOSYSTEMS TAIGA WOODED and Low-TAIGA SHRUB Bioclimate Zones Upland – Wet Sites Gentle Slopes – Flat (210) – Wet Herb [Herb_wet] REF #7 (211) – Wet Shrub [Shrub_wet] REF #8 (212) – Wet Mixedwood Forest [MFor_wet] No Reference Picture Available REF #9 (213) – Wet Coniferous Forest [CFor_wet] REF #10 LOW - MIDDLE ELEVATION ECOSYSTEMS TAIGA WOODED and Low-TAIGA SHRUB Bioclimate Zones Upland – Moist Sites LT Description 220 – Moist Herb [Herb_mst] 1-5 years T I 221 – Moist Shrub [Shrub_mst] M 6-40 years E 222 – Moist Mixedwood Forest [MFor_mst] 40-80 years 223 – Moist Coniferous Forest [CFor_mst] 81+ years ECOSITE VEGETATION TYPE LOW - MIDDLE ELEVATION ECOSYSTEMS TAIGA WOODED and Low-TAIGA SHRUB Bioclimate Zones Upland – Moist Sites Lower Slopes and Receiving Sites (220) – Moist Herb [Herb_mst] No Reference Picture Available REF #11 (221) – Moist Shrub [Shrub_mst] REF #12 (222) – Moist Mixedwood Forest [MFor_mst] No Reference Picture Available REF #13 (223) – Moist Coniferous Forest [CFor_mst] REF #14 LOW - MIDDLE ELEVATION ECOSYSTEMS TAIGA WOODED and Low-TAIGA SHRUB Bioclimate Zones Upland – Mesic Sites Value Landscape Type 230 – Mesic Herb 1-5 years T I 231 – Mesic Shrub M 6-25 years E 232 – Mesic Mixedwood Forest 26-60 years 233 – Mesic Coniferous Forest 61+ years ECOSITE VEGETATION TYPE LOW - MIDDLE ELEVATION ECOSYSTEMS TAIGA WOODED and Low-TAIGA SHRUB Bioclimate Zones Upland – Mesic Sites Upper Slopes and Slope Crests (230) – Mesic Herb [Herb_mes] REF #15 (231) – Mesic Shrub [Shrub_mes] REF #16 (232) – Mesic Mixedwood Forest [MFor_mes] REF #17 (233) – Mesic Coniferous Forest [CFor_mes] REF #18 RIPARIAN ECOSYSTEMS TAIGA WOODED and Low-TAIGA SHRUB Bioclimate Zones Value Description 300 – Riparian – Exposed [Rip_Exposed] 310 – Riparian Herb [Rip_Herb] 311 – Riparian Shrub [Rip_Shrub] T 1-40 years I M 312 – Riparian Mixedwood Forest [Rip_Mfor] E 41-80 years 313 – Riparian Coniferous Forest [Rip_Cfor] 81+ years 320 – Riparian – Wetland [Rip_Wetland] (300) – Riparian – Exposed [Rip_Exposed] REF #19 (310) – Riparian Herb [Rip_Herb] REF #20 (311) – Riparian Shrub [Rip_Shrub] REF #21 (312) – Riparian Mixedwood Forest [Rip_MFor] REF #22 (313) – Riparian Coniferous Forest [Rip_CFor] REF #23 (320) – Riparian – Wetland [Rip_Wetland] REF #24 WETLAND ECOSYSTEMS TAIGA WOODED and Low-TAIGA SHRUB Bioclimate Zones Value Description 400 – Wetland – Herb [Wetland_Herb] 401 – Wetland – Shrub [Wetland_Shrub] 402 – Wetland – Forested [Wetland_For] (400) – Wetland – Herb [Wetland_Herb] REF #25 (401) – Wetland – Shrub [Wetland_Shrub] REF #26 (402) – Wetland – Forested [Wetland_For] REF #27 AQUATIC ECOSYSTEMS TAIGA WOODED and Low-TAIGA SHRUB Bioclimate Zones Value Description 500 – Open Water [Water] (500) – Open Water [Water] REF #28.
Recommended publications
  • Arachnozoogeographical Analysis of the Boundary Between Eastern Palearctic and Indomalayan Region
    Historia naturalis bulgarica, 23: 5-36, 2016 Arachnozoogeographical analysis of the boundary between Eastern Palearctic and Indomalayan Region Petar Beron Abstract: This study aims to test how the distribution of various orders of Arachnida follows the classical subdivision of Asia and where the transitional zone between the Eastern Palearctic (Holarctic Kingdom) and the Indomalayan Region (Paleotropic) is situated. This boundary includes Thar Desert, Karakorum, Himalaya, a band in Central China, the line north of Taiwan and the Ryukyu Islands. The conclusion is that most families of Arachnida (90), excluding most of the representatives of Acari, are common for the Palearctic and Indomalayan Regions. There are no endemic orders or suborders in any of them. Regarding Arach- nida, their distribution does not justify the sharp difference between the two Kingdoms (Paleotropical and Holarctic) in Eastern Eurasia. The transitional zone (Sino-Japanese Realm) of Holt et al. (2013) also does not satisfy the criteria for outlining an area on the same footing as the Palearctic and Indomalayan Realms. Key words: Palearctic, Indomalayan, Arachnozoogeography, Arachnida According to the classical subdivision the region’s high mountains and plateaus. In southern Indomalayan Region is formed from the regions in Asia the boundary of the Palearctic is largely alti- Asia that are south of the Himalaya, and a zone in tudinal. The foothills of the Himalaya with average China. North of this “line” is the Palearctic (consist- altitude between about 2000 – 2500 m a.s.l. form the ing og different subregions). This “line” (transitional boundary between the Palearctic and Indomalaya zone) is separating two kingdoms, therefore the dif- Ecoregions.
    [Show full text]
  • Russia's Boreal Forests
    Forest Area Key Facts & Carbon Emissions Russia’s Boreal Forests from Deforestation Forest location and brief description Russia is home to more than one-fifth of the world’s forest areas (approximately 763.5 million hectares). The Russian landscape is highly diverse, including polar deserts, arctic and sub-arctic tundra, boreal and semi-tundra larch forests, boreal and temperate coniferous forests, temperate broadleaf and mixed forests, forest-steppe and steppe (temperate grasslands, savannahs, and shrub-lands), semi-deserts and deserts. Russian boreal forests (known in Russia as the taiga) represent the largest forested region on Earth (approximately 12 million km2), larger than the Amazon. These forests have relatively few tree species, and are composed mainly of birch, pine, spruce, fir, with some deciduous species. Mixed in among the forests are bogs, fens, marshes, shallow lakes, rivers and wetlands, which hold vast amounts of water. They contain more than 55 per cent of the world’s conifers, and 11 per cent of the world’s biomass. Unique qualities of forest area Russia’s boreal region includes several important Global 200 ecoregions - a science-based global ranking of the Earth’s most biologically outstanding habitats. Among these is the Eastern-Siberian Taiga, which contains the largest expanse of untouched boreal forest in the world. Russia’s largest populations of brown bear, moose, wolf, red fox, reindeer, and wolverine can be found in this region. Bird species include: the Golden eagle, Black- billed capercaillie, Siberian Spruce grouse, Siberian accentor, Great gray owl, and Naumann’s thrush. Russia’s forests are also home to the Siberian tiger and Far Eastern leopard.
    [Show full text]
  • Responses of Plant Communities to Grazing in the Southwestern United States Department of Agriculture United States Forest Service
    Responses of Plant Communities to Grazing in the Southwestern United States Department of Agriculture United States Forest Service Rocky Mountain Research Station Daniel G. Milchunas General Technical Report RMRS-GTR-169 April 2006 Milchunas, Daniel G. 2006. Responses of plant communities to grazing in the southwestern United States. Gen. Tech. Rep. RMRS-GTR-169. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 126 p. Abstract Grazing by wild and domestic mammals can have small to large effects on plant communities, depend- ing on characteristics of the particular community and of the type and intensity of grazing. The broad objective of this report was to extensively review literature on the effects of grazing on 25 plant commu- nities of the southwestern U.S. in terms of plant species composition, aboveground primary productiv- ity, and root and soil attributes. Livestock grazing management and grazing systems are assessed, as are effects of small and large native mammals and feral species, when data are available. Emphasis is placed on the evolutionary history of grazing and productivity of the particular communities as deter- minants of response. After reviewing available studies for each community type, we compare changes in species composition with grazing among community types. Comparisons are also made between southwestern communities with a relatively short history of grazing and communities of the adjacent Great Plains with a long evolutionary history of grazing. Evidence for grazing as a factor in shifts from grasslands to shrublands is considered. An appendix outlines a new community classification system, which is followed in describing grazing impacts in prior sections.
    [Show full text]
  • Taiga Plains
    ECOLOGICAL REGIONS OF THE NORTHWEST TERRITORIES Taiga Plains Ecosystem Classification Group Department of Environment and Natural Resources Government of the Northwest Territories Revised 2009 ECOLOGICAL REGIONS OF THE NORTHWEST TERRITORIES TAIGA PLAINS This report may be cited as: Ecosystem Classification Group. 2007 (rev. 2009). Ecological Regions of the Northwest Territories – Taiga Plains. Department of Environment and Natural Resources, Government of the Northwest Territories, Yellowknife, NT, Canada. viii + 173 pp. + folded insert map. ISBN 0-7708-0161-7 Web Site: http://www.enr.gov.nt.ca/index.html For more information contact: Department of Environment and Natural Resources P.O. Box 1320 Yellowknife, NT X1A 2L9 Phone: (867) 920-8064 Fax: (867) 873-0293 About the cover: The small photographs in the inset boxes are enlarged with captions on pages 22 (Taiga Plains High Subarctic (HS) Ecoregion), 52 (Taiga Plains Low Subarctic (LS) Ecoregion), 82 (Taiga Plains High Boreal (HB) Ecoregion), and 96 (Taiga Plains Mid-Boreal (MB) Ecoregion). Aerial photographs: Dave Downing (Timberline Natural Resource Group). Ground photographs and photograph of cloudberry: Bob Decker (Government of the Northwest Territories). Other plant photographs: Christian Bucher. Members of the Ecosystem Classification Group Dave Downing Ecologist, Timberline Natural Resource Group, Edmonton, Alberta. Bob Decker Forest Ecologist, Forest Management Division, Department of Environment and Natural Resources, Government of the Northwest Territories, Hay River, Northwest Territories. Bas Oosenbrug Habitat Conservation Biologist, Wildlife Division, Department of Environment and Natural Resources, Government of the Northwest Territories, Yellowknife, Northwest Territories. Charles Tarnocai Research Scientist, Agriculture and Agri-Food Canada, Ottawa, Ontario. Tom Chowns Environmental Consultant, Powassan, Ontario. Chris Hampel Geographic Information System Specialist/Resource Analyst, Timberline Natural Resource Group, Edmonton, Alberta.
    [Show full text]
  • Mapping of West Siberian Taiga Wetland Complexes Using Landsat Imagery: Implications for Methane Emissions
    Biogeosciences, 13, 4615–4626, 2016 www.biogeosciences.net/13/4615/2016/ doi:10.5194/bg-13-4615-2016 © Author(s) 2016. CC Attribution 3.0 License. Mapping of West Siberian taiga wetland complexes using Landsat imagery: implications for methane emissions Irina Evgenievna Terentieva1,*, Mikhail Vladimirovich Glagolev1,3,4,5, Elena Dmitrievna Lapshina3, Alexandr Faritovich Sabrekov2, and Shamil Maksyutov6 1Laboratory of Computational Geophysics, Tomsk State University, Tomsk, 643050, Russia 2BIO-GEO-CLIM Laboratory, Tomsk State University, Tomsk, 643050, Russia 3UNESCO Department ’Environmental Dynamics and Global Climate Changes’, Yugra State University, Khanty-Mansiysk, 628012, Russia 4Institute of Forest Science Russian Academy of Sciences, Uspenskoe, 143030, Russia 5Faculty of Soil Science, Moscow State University, Moscow, 119992, Russia 6Center for Global Environmental Research, National Institute for Environmental Studies, Tsukuba, 305-8506, Japan *previously published under the name I. E. Kleptsova Correspondence to: Irina Evgenievna Terentieva ([email protected]) Received: 5 November 2015 – Published in Biogeosciences Discuss.: 16 December 2015 Revised: 18 July 2016 – Accepted: 21 July 2016 – Published: 16 August 2016 Abstract. High-latitude wetlands are important for under- (5 %), patterned fens (4 %), and swamps (4 %). Various olig- standing climate change risks because these environments otrophic environments are dominant among wetland ecosys- sink carbon dioxide and emit methane. However, fine-scale tems, while poor fens cover only 14 % of the area. Because of heterogeneity of wetland landscapes poses a serious chal- the significant change in the wetland ecosystem coverage in lenge when generating regional-scale estimates of green- comparison to previous studies, a considerable reevaluation house gas fluxes from point observations. In order to reduce of the total CH4 emissions from the entire region is expected.
    [Show full text]
  • Quantifying the Structure of the Woody Element in Savannahs Using Integrated Optical and Synthetic Aperture Radar (SAR) Approach
    Quantifying the structure of the woody element in Savannahs using integrated optical and Synthetic Aperture Radar (SAR) approach: a stepping stone towards country wide monitoring in South Africa by Laven Naidoo Submitted in partial fulfilment of the requirements for the degree DOCTOR OF PHILOSOPHY (Geoinformatics) in the Faculty of Natural and Agricultural Sciences, University of Pretoria Supervisors: Dr Renaud Mathieu (CSIR & University of Pretoria) Dr Konrad Wessels (CSIR & University of Pretoria) Date: 30 September 2017 1 Table of Contents Table of Contents .................................................................................................................................... 2 List of Figures .......................................................................................................................................... 6 List of Tables ........................................................................................................................................... 9 Dedications ........................................................................................................................................... 11 Acknowledgements ............................................................................................................................... 12 Plagiarism Declaration .......................................................................................................................... 13 List of Publications ...............................................................................................................................
    [Show full text]
  • Arborvitae Special Issue
    arborvitæ Supplement January 1998 This Supplement has been edited by Nigel Dudley and Sue Stolton of Equilibrium Boreal forests: policy Consultants. Managing editors Jean-Paul Jeanrenaud of WWF International and Bill Jackson of IUCN, the World Conservation Union. Design by WWF-UK Design Team. challenges for the future Reprints: Permission is granted to reproduce news stories from this supplement providing by Nigel Dudley, Don Gilmour and Jean-Paul Jeanrenaud full credit is given. The editors and authors are responsible for their own articles. The opinions do not necessarily always express the views of WWF or IUCN. M Wägeus, WWF Pechoro Illych As IUCN launches an important new temperate and boreal forest This paper has been compiled with the active programme, this arborvitæ special gives an outline of key conservation participation of many issues in boreal forests. people within IUCN and WWF, including Andrew The boreal forests of the far north make up about a third of the world's Deutz, Bill Jackson, Harri Karjalainen, Andrei total forest area, much of it still virtual wilderness, yet they receive Laletin, Anders Lindhe, only a fraction of the attention given to tropical and temperate forests. Vladimir Moshkalo and Despite their vast size, boreal forests now face increasing exploitation Per Rosenberg. and disturbance, with threats to both the total area of forest and to WWF International Avenue du Mont-Blanc the quality of the forests that remain. 1196 Gland, Switzerland Tel: +41 22 364 91 11 Fax: +41 22 364 53 58 The following paper introduces the ecology and status of boreal forests, summarises some of the main threats, and proposes key IUCN, 28 rue de Mauverney 1196 Gland, Switzerland elements in a conservation strategy.
    [Show full text]
  • Wetland Mapping of West Siberian Taiga Zone Using Landsat Imagery
    1 Mapping of West Siberian taiga wetland complexes using Landsat 2 imagery: Implications for methane emissions 3 Terentieva I. E.1*, Glagolev M. V.1,2,3,4, Lapshina E. D.2, Sabrekov A. F.1 and 4 Maksyutov S.5 5 [1] {Tomsk State University, Tomsk, Russia} 6 [2] {Yugra State University, Khanty-Mansyisk, Russia} 7 [3] {Moscow State University, Moscow, Russia} 8 [4] {Institute of Forest Science, Moscow region, Russia} 9 [5] {National Institute for Environmental Studies, Tsukuba, Japan} 10 [*] {previously published as Kleptsova I. E.} 11 Correspondence to: I. E. Terentieva ([email protected]) 12 13 Abstract 14 High latitude wetlands are important for understanding climate change risks because these 15 environments sink carbon dioxide and emit methane. Fine-scale heterogeneity of wetland 16 landscapes poses a serious challenge when generating regional-scale estimates of greenhouse 17 gas fluxes from point observations. To reduce uncertainties at the regional scale, we mapped 18 wetlands and water bodies in the taiga zone of The West Siberia Lowland (WSL) on a scene- 19 by-scene basis using a supervised classification of Landsat imagery. Training data consists of 20 high-resolution images and extensive field data collected at 28 test areas. The classification 21 scheme aims at supporting methane inventory applications and includes 7 wetland ecosystem 22 types comprising 9 wetland complexes distinguishable at the Landsat resolution. To merge 23 typologies, mean relative areas of wetland ecosystems within each wetland complex type were 24 estimated using high-resolution images. Accuracy assessment based on 1082 validation 25 polygons of 10×10 pixel size indicated an overall map accuracy of 79%.
    [Show full text]
  • Spiders of the Southern Taiga Biome of Labrador, Canada
    Spiders of the Southern Taiga Biome of Labrador, Canada R. C. P eRRy 1, 3 , J. R. P iCkavanCe 2, and S. P aRdy 1 1Wildlife division, department of environment and Conservation, Government of newfoundland and Labrador, 117 Brakes Cove, Corner Brook, newfoundland and Labrador a2H 7S1 Canada 2The Rooms Provincial Museum, 9 Bonaventure avenue, St. John’s, newfoundland and Labrador a1C 3y9 Canada 3Corresponding author: [email protected] Perry, R. C., J. R. Pickavance, and S. Pardy. 2014. Spiders of the southern Taiga biome of Labrador, Canada . Canadian Field- naturalist 128(4): 363–376. ad hoc collections of spiders were made in august and early September 2003 and pitfall trap collections were conducted from June to October in 2004 and 2005 in southern Labrador. These collections represent the first systematic spider sampling for the most easterly area of mainland Canada. in total, 161 species in 15 families were identified to genus and species and 16 were inde - terminate. Of the identified species, 89 were new records for Labrador and, of those, 16 species were new records for the province. in total, 94 species (58.4%) have nearctic distributions and 67 species (41.6%) are Holarctic. no Palearctic species were found. Our study brings the number of spider species recorded in the province of newfoundland and Labrador to 377 (213 in Labrador). key Words: arachnids; Spiders; eastern Canada; Labrador; species distribution Introduction sampling occurred, is part of the taiga biome, which is The distribution of the flora and fauna of Labrador typified by very cold winter temperatures, a lengthier is largely undocumented, and this is particularly true growing season and more precipitation relative to the for spiders.
    [Show full text]
  • Fire Effects Guide This Page Was Last Modified 06/21/01 |Disclaimer| | Privacy| | Copyright| |Webmaster|
    National Wildfire Coordinating Group Fire Effects Guide This page was last modified 06/21/01 |Disclaimer| | Privacy| | Copyright| |Webmaster| Home Preface FIRE EFFECTS GUIDE Objectives Fire Behavior Fuels Sponsored by: Air Quality Soils & Water Plants National Wildlife Coordinating Group Wildlife Cultural Res. Fire Use Working Team Grazing Mgmt. Evaluation Copies of the guide (NFES 2394) can be ordered form: Data Analysis Computer National Interagency Fire Center Soft. Great Basin Area Cache Glossary 3833 S. Development Ave. Bibliography Boise ID 83702 Contributions National Wildfire Coordinating Group Fire Effects Guide This page was last modified 06/20/01 |Disclaimer| | Privacy| | Copyright| |Webmaster| Home PREFACE Preface Objectives by Dr. Bob Clark and Melanie Miller Fire Behavior Fuels A. Purpose Air Quality Soils & Water Plants The Federal government manages a variety of ecosystems across the Wildlife United States, including deserts, grasslands, tundra, shrublands, Cultural Res. forestlands, estuaries, and riparian zones. These ecosystems range Grazing from arid to humid, warm to cold, and sea level to over 10,000 feet Mgmt. elevation. Fires naturally occur in almost all of these ecosystems, with Evaluation fire characteristics determined by climate, vegetation, and terrain. Data Analysis Computer The purposes of this Guide are to summarize available information on Soft. fire effects principles and processes, provide references for additional Glossary information, and provide guidelines for the collection, analysis, and Bibliography evaluation of wild and prescribed fire effects data. Basic mechanisms of Contributions fire effects are described so that the reader will be able to understand and interpret fire effects literature, and evaluate observed results that conflict with those presented in published reports.
    [Show full text]
  • Identification of Tundra and Taiga Bean Goose
    © Seppo Ekelund Identification of Tundra and Taiga Bean Goose The Taiga Bean Goose (Anser fabalis fabalis) and Tundra Bean Goose (Anser fabalis rossicus) are difficult to separate in the field, and some individuals will always be impossible to assign to subspecies based on visual characteristics alone. Separation between subspecies is mainly based on the colouration and shape of the head and bill. Good views of foraging or resting flocks and inspection of shot birds will usually allow for subspecies identification. In field conditions the bill of Taiga Bean Goose usually looks rather orange-yellow and low-lined, and the head-bill combination thus long and low- lined. The head of Tundra Bean Goose looks rounder and darker than the neck, while the bill looks dark and heavy. In field counts the longer neck and more elegant characteristics of Taiga Bean Goose are also good to look for. The Challenge: Correctly Identifying Bean Goose Subspecies Taiga Bean Goose Tundra Bean Goose young adult Beaks of Taiga and Tundra Bean Goose juvenile and adult birds. © Antti Piironen Bill shape and colouration are often the most useful characters to study and may be used for identification of both live and dead birds. In Taiga Bean Goose, the bill is rather long and slim, with a straight or slightly concave lower mandible. Often a large part of the bill is orange-yellow, with a varying amount of black extending from the base. In Tundra Bean Goose, the orange-yellow part of the bill is usually restricted to a narrow band across the bill, and the bill is shorter and heavier.
    [Show full text]
  • Effects of Shrub Encroachment in Grass-Dominated Biomes on Vertebrate Communities
    EFFECTS OF SHRUB ENCROACHMENT IN GRASS-DOMINATED BIOMES ON VERTEBRATE COMMUNITIES By RICHARD A. STANTON, JR. A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 2017 © 2017 Richard A. Stanton, Jr. To my parents ACKNOWLEDGMENTS I thank my advisors, Rob Fletcher and Bob McCleery, as well as my committee members, Ara Monadjem, Tom Frazer, and Todd Palmer, for their invaluable guidance and support at every stage of my doctoral studies. I would not have been successful without it. I also thank Muzi Sibiya, who devoted many hours in the field with me collecting data, translating SisWati to English, and generally making it possible for me to work in Swazi communities. His cheerful demeanor, hard work, and outstanding talent as a naturalist were all essential to the success of this research, and I consider myself incredibly fortunate to have had his assistance. Joe Soto-Shoender, Wes Boone, and Niels Blaum also made critical contributions that made my dissertation possible by providing or collecting data and offering input on one or more of my chapters. Likewise, Julie Shapiro, Jessica Laskowski, and Sarah Duncan provided more feedback on chapters, grant applications, and proposal drafts than I can properly measure much less repay. Brian Reichert, Brad Udell, Dan Greene, and Rajeev Pillay were always willing to make time to discuss data analysis, coding, field methods, or logistics with me, and their unique knowledge was invaluable in helping me to make progress in my research. The School of Natural Resources and the Environment and the Center for African Studies provided essential fellowship and grant support, respectively, for which I am very grateful.
    [Show full text]