Physiological Consequences of Environmental Contamination in an Elasmobranch with Matrotrophic Histotrophy, the Round Stingray (Urobatis Halleri)

Total Page:16

File Type:pdf, Size:1020Kb

Physiological Consequences of Environmental Contamination in an Elasmobranch with Matrotrophic Histotrophy, the Round Stingray (Urobatis Halleri) University of Calgary PRISM: University of Calgary's Digital Repository Graduate Studies The Vault: Electronic Theses and Dissertations 2018-01-15 Physiological consequences of environmental contamination in an elasmobranch with matrotrophic histotrophy, the Round Stingray (Urobatis halleri) Lyons, Katherine Lyons, K. (2018). Physiological consequences of environmental contamination in an elasmobranch with matrotrophic histotrophy, the Round Stingray (Urobatis halleri) (Unpublished doctoral thesis). University of Calgary, Calgary, AB. http://hdl.handle.net/1880/106331 doctoral thesis University of Calgary graduate students retain copyright ownership and moral rights for their thesis. You may use this material in any way that is permitted by the Copyright Act or through licensing that has been assigned to the document. For uses that are not allowable under copyright legislation or licensing, you are required to seek permission. Downloaded from PRISM: https://prism.ucalgary.ca UNIVERSITY OF CALGARY Physiological consequences of environmental contamination in an elasmobranch with matrotrophic histotrophy, the Round Stingray (Urobatis halleri) by Katherine Danielle Hohman Lyons A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY GRADUATE PROGRAM IN BIOLOGICAL SCIENCES CALGARY, ALBERTA JANUARY, 2018 © Katherine Danielle Hohman Lyons 2018 Abstract A range of physiological biomarkers were compared in two populations of Round Stingray (Urobatis halleri) that differed primarily in PCB exposure. Females, and their embryos, were sampled each month of pregnancy at both sites, while adult males were matched with a 40-day subset of females to investigate the effect of sex and its interaction with PCB exposure. I hypothesized that exposure would have negative energetic outcomes for PCB-exposed, compared to reference population, stingrays. Adverse impacts were widespread. Number of offspring was not affected by PCB exposure; however, exposure exacerbated maternal tissue mass, and quality, loss during pregnancy. PCB-exposed females also compromised osmoregulation with urea, an important osmolyte, reduced in maternal plasma. Higher liver quality in contaminant-exposed females was not associated with higher embryo quality, suggesting contaminants increase metabolic demands in adult females and lead to inefficiencies in embryos’ use of maternal resources. Embryos also influenced their uterine environment, as they were steroidogenic and capable of osmoregulating very early in development. I found sex- related differences in embryo mass only at the reference site, suggesting that contaminant effects on males begin in utero. These contaminant sex-related effects extended into adulthood, as relative liver mass and energy content were lower in comparably-sized adult males than females, whereas fewer differences were found between adults at the reference site. Higher energy generation potential, combined with lower tissue quality in contaminant-exposed adult males suggests they are more energetically compromised than females, despite the latter’s costly pregnancy demands. Regardless of sex, contaminant exposure had negative impacts on the ability of adult stingrays to mount a robust secondary stress response as reflected by lower plasma glucose levels after stress, thus potentially impairing their ability to respond to acute ii stressors. Effects found both in utero and in adulthood suggest that contaminants have a significant, and potentially life-long, impact on Round Stingray homeostasis. This has implications for other species with greater contaminant burdens. Contaminant exposure, and its interactive effects with sex and age, should be included as part of effective elasmobranch management. iii Acknowledgements First and foremost, I need to thank my family and friends for all of the unwavering support they provided to me while obtaining this degree. I could not have overcome all the struggles I went through without these people in my life. Specifically, and in no particular order, I want to thank my friends Ryan Freedman, Chris Bedore, Ramya Singh, Noreen Singh, Joanne Hou, Carrie Espasandin, “Arthur Cheng”, Brendan Cooper, Joe Bizzarro and my family, mom, dad and sister Rachael, who were there with me through the worst of it. I need to give a shout out to Ralph Appy who was out in the field with me every single fishing day with a smile and Dennis Noesen who generously shuttled us between the mainland and Catalina Island. Thanks to Chris Lowe for providing me lab space and storage of my samples while in the field. I need to give a mountain of gratitude to my advisor, Dr. Wynne-Edwards, for throwing me a life ring when I thought this was a sinking ship. In the much too short time Dr. Wynne- Edwards advised me, I learned so much more in four months than I did in the previous four years. Dr. Wynne-Edwards restored my faith in my science and played an incredibly instrumental role in helping me write and analyze my thesis into the strongest product it could be. I will be forever appreciative and grateful for the advice, guidance and mentorship that Dr. Wynne-Edwards has given to me. iv Dedication To the Round Stingray, whose sacrifice furthered our scientific understanding v Table of Contents Abstract .............................................................................................................................. ii Acknowledgements .......................................................................................................... iv Dedication ...........................................................................................................................v Table of Contents ............................................................................................................. vi List of Tables ......................................................................................................................x List of Figures and Illustrations ..................................................................................... xi List of Symbols, Abbreviations and Nomenclature ......................................................xv Chapter 1: Introduction ....................................................................................................1 1.1 Elasmobranch Physiology .......................................................................................1 1.2 Polychlorinated Biphenyl Contaminants ...............................................................3 1.3 Patterns of Accumulation ........................................................................................4 1.4 Organochlorine Effects in Elasmobranchs ............................................................5 1.5 Knowledge Gaps ......................................................................................................7 1.6 Round Stingray Ecology in Southern California ..................................................7 1.7 Sources of Contamination at the Mainland Site ...................................................8 1.8 Comparisons with the Offshore Site ....................................................................10 1.9 Research Objectives ...............................................................................................12 Chapter 2: Physiological Consequences of Legacy PCB Contamination in an Elasmobranch with Matrotrophic Histotrophy, the Round Stingray (Urobatis halleri): Impaired Intrauterine Development ......................................................13 2.1 Introduction ............................................................................................................13 2.2 Methods ...................................................................................................................15 2.2.1 Study sites. ......................................................................................................15 2.2.2 Sampling. ........................................................................................................17 2.2.3 Data analysis. .................................................................................................17 2.2.3.1 Environmental factors. .........................................................................17 2.2.3.2 PCB quantification. ..............................................................................17 2.2.3.3 Fecundity. ..............................................................................................19 2.2.3.4 Developmental stage. ............................................................................19 2.2.3.5 Sex-specific effects. ...............................................................................19 2.2.3.6 Embryo quality. .....................................................................................20 2.2.3.7 Intrauterine growth variability. ............................................................20 2.3 Results .....................................................................................................................20 2.3.1 Timing of ovulation. ......................................................................................20 2.3.2 Fecundity. .......................................................................................................21 2.3.3 Developmental stage. .....................................................................................21 2.3.4 Sex-specific effects. ........................................................................................24
Recommended publications
  • Bibliography Database of Living/Fossil Sharks, Rays and Chimaeras (Chondrichthyes: Elasmobranchii, Holocephali) Papers of the Year 2016
    www.shark-references.com Version 13.01.2017 Bibliography database of living/fossil sharks, rays and chimaeras (Chondrichthyes: Elasmobranchii, Holocephali) Papers of the year 2016 published by Jürgen Pollerspöck, Benediktinerring 34, 94569 Stephansposching, Germany and Nicolas Straube, Munich, Germany ISSN: 2195-6499 copyright by the authors 1 please inform us about missing papers: [email protected] www.shark-references.com Version 13.01.2017 Abstract: This paper contains a collection of 803 citations (no conference abstracts) on topics related to extant and extinct Chondrichthyes (sharks, rays, and chimaeras) as well as a list of Chondrichthyan species and hosted parasites newly described in 2016. The list is the result of regular queries in numerous journals, books and online publications. It provides a complete list of publication citations as well as a database report containing rearranged subsets of the list sorted by the keyword statistics, extant and extinct genera and species descriptions from the years 2000 to 2016, list of descriptions of extinct and extant species from 2016, parasitology, reproduction, distribution, diet, conservation, and taxonomy. The paper is intended to be consulted for information. In addition, we provide information on the geographic and depth distribution of newly described species, i.e. the type specimens from the year 1990- 2016 in a hot spot analysis. Please note that the content of this paper has been compiled to the best of our abilities based on current knowledge and practice, however,
    [Show full text]
  • Species Diversity of Rhinebothrium Linton, 1890 (Eucestoda
    Zootaxa 4300 (1): 421–437 ISSN 1175-5326 (print edition) http://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2017 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4300.3.5 http://zoobank.org/urn:lsid:zoobank.org:pub:EE5688F1-3235-486C-B981-CBABE462E8A2 Species diversity of Rhinebothrium Linton, 1890 (Eucestoda: Rhinebothriidea) from Styracura (Myliobatiformes: Potamotrygonidae), including the description of a new species BRUNA TREVISAN1,2 & FERNANDO P. L. MARQUES1 1Laboratório de Helmintologia Evolutiva, Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, 101, travessa 14, Cidade Universitária, São Paulo, SP, 05508-090 2Corresponding author. E-mail: [email protected] Abstract The present study contributes to the knowledge of the cestode fauna of species of Styracura de Carvalho, Loboda & da Silva, which is the putative sister taxon of freshwater potamotrygonids—a unique group of batoids restricted to Neotro- pical freshwater systems. We document species of Rhinebothrium Linton, 1890 as a result of the examination of newly collected specimens of Styracura from five different localities representing the eastern Pacific Ocean and the Caribbean Sea. Overall, we examined 33 spiral intestines, 11 from the eastern Pacific species Styracura pacifica (Beebe & Tee-Van) and 22 from the Caribbean species S. schmardae (Werner). However, only samples from the Caribbean were infected with members of Rhinebothrium. Rhinebothrium tetralobatum Brooks, 1977, originally described from S. schmardae—as Hi- mantura schmardae (Werner)—off the Caribbean coast of Colombia based on six specimens is redescribed. This rede- scription provides the first data on the microthriches pattern, more details of internal anatomy (i.e., inclusion of histological sections) and expands the ranges for the counts and measurements of several features.
    [Show full text]
  • NOAA NOS Technical Memorandum CCFHR 1
    Characterization of Navassa National Wildlife Refuge: A preliminary report for NF-06-05 (NOAA ship "Nancy Foster", April 18-30, 2006) Item Type monograph Authors Piniak, Gregory A.; Addison, Christine M.; Degan, Brian P.; Uhrin, Amy V.; Viehman, T. Shay Publisher NOAA/National Ocean Service/National Centers for Coastal Ocean Science Download date 24/09/2021 19:38:17 Link to Item http://hdl.handle.net/1834/19919 Characterization of Navassa National Wildlife Refuge: A preliminary report for NF-06-05 (NOAA ship Nancy Foster, April 18-30, 2006) NOAA Technical Memorandum NOS NCCOS #38 This report has been reviewed by the National Ocean Service of the National Oceanic and Atmospheric Administration (NOAA) and approved for publication. Mention of trade names or commercial products does not constitute endorsement or recommendation for their use by the United States government. Citation for this Report Piniak G. A., C. M. Addison, B. P. Degan, A. V. Uhrin and T. S. Viehman. 2006. Characterization of Navassa National Wildlife Refuge: A preliminary report for NF-06- 05 (NOAA ship Nancy Foster, April 18-30, 2006). NOAA Technical Memorandum NOS NCCOS #38. 48 p. Characterization of Navassa National Wildlife Refuge: A preliminary report for NF-06-05 (NOAA ship Nancy Foster, April 18-30, 2006) Gregory A. Piniak Christine M. Addison Brian P. Degan Amy V. Uhrin T. Shay Viehman Center for Coastal Fisheries and Habitat Research NOAA/NOS/NCCOS 101 Pivers Island Road Beaufort, NC 28516 NOAA Technical Memorandum NOS NCCOS #38 September 2006 United States Department of National Oceanic and National Ocean Service Commerce Atmospheric Administration Carlos M.
    [Show full text]
  • New York Talk and Speed Talk Abstracts
    Student Conference on Conservation Science - New York Talk and Speed Talk Abstracts October 9-12, 2012 SCCS-NY 2012 Talk Abstracts Rico Ancog University of the Philippines Los Baños, Los Baños, Laguna, Philippines Plant diversity and vulnerability analysis of philippine indigenous upland ecosystems This study provides an integrated vulnerability assessment of the traditional land-use systems of indigenous communities living at the lowland-to-upland environs of Mt. Halcon, a critical protected area in the island-province of Oriental Mindoro, Philippines. With the limited studies in Asia that analyze potential impacts of climate change on marginal sector, this study explores the utility of Principal Component Analysis and canonical correspondence analysis in understanding the socio-economic and biophysical determinants of vulnerability—defined as a function of exposure, sensitivity and adaptive capacity, while also aiming at providing empirical bases for specific policy options for adaptation. It is shown that degree of vulnerability is differentiated between and among the commonly perceived homogenous indigenous communities. With the projected increase of weather extremes such as typhoons and droughts in the coming years, the value of traditional peoples’ vast yet untapped indigenous knowledge systems (IKS) is indispensible in explaining their seemingly inherent high adaptive capacity. Central to this are the utilization of plant resources derived from their maintained agro-ecosystems totaling to about 130 species of about 1,255 individuals belonging to a total of 44 families and are providing various services such as food, medicine, infrastructure, weaving and adornments purposes. In contrast to implementing purely externally determined adaptation programs, there is a need to capitalize on indigenous peoples’ knowledge systems particularly on plant resources to reduce their vulnerability to weather extremes and other hazards related to climate change.
    [Show full text]
  • Effects of Scale and Habitat Distribution on the Movement of the Southern Stingray Dasyatis Americana on a Caribbean Atoll
    Vol. 482: 169–179, 2013 MARINE ECOLOGY PROGRESS SERIES Published May 22 doi: 10.3354/meps10285 Mar Ecol Prog Ser Effects of scale and habitat distribution on the movement of the southern stingray Dasyatis americana on a Caribbean atoll Alexander Tilley1,2,*, Juliana López-Angarita2, John R. Turner1 1School of Ocean Sciences, Bangor University, Menai Bridge LL58 8AB, UK 2Environment Department, University of York, York YO10 5DD, UK ABSTRACT: The structure of animal movement paths at varying spatial scales allows insight into the importance of habitat distribution and their response to scale in heterogeneous landscapes. Home-ranging animals typically exhibit constrained random movements at large spatial scales, with small-scale orientation reflecting responses to sensory stimuli. The southern stingray Dasy- atis americana is an abundant demersal elasmobranch found in coastal systems throughout the Caribbean, yet very little is known of its movement ecology. Twelve southern stingrays were man- ually tracked at Glovers Reef (Belize) for up to 32 non-continuous hours to evaluate movement structure and activity space. Response to spatial scale was analysed using fractal analysis, and domains of scale were compared to habitat spatial characteristics. Mean stingray activity space was relatively small (<0.5 km2) with daytime activity space significantly larger than nighttime activity space. Movement paths showed significant straightening correlated with increasing size in females. Stingray movement structure exhibited 2 distinct domains: at scales of <100 m, paths were more dispersed than a correlated random walk (CRW), and at scales >100 m, paths were more constrained than CRW, indicating directed movement at scales up to 100 m.
    [Show full text]
  • Hasan ALKUSAIRY 1, Malek ALI 1, Adib SAAD 1, Christian REYNAUD 2, and Christian CAPAPÉ 3*
    ACTA ICHTHYOLOGICA ET PISCATORIA (2014) 44 (3): 229–240 DOI: 10.3750/AIP2014.44.3.07 MATURITY, REPRODUCTIVE CYCLE, AND FECUNDITY OF SPINY BUTTERFLY RAY, GYMNURA ALTAVELA (ELASMOBRANCHII: RAJIFORMES: GYMNURIDAE), FROM THE COAST OF SYRIA (EASTERN MEDITERRANEAN) Hasan ALKUSAIRY 1, Malek ALI 1, Adib SAAD 1, Christian REYNAUD 2, and Christian CAPAPÉ 3* 1 Marine Sciences Laboratory, Faculty of Agriculture, Tishreen University, Lattakia, Syria 2 Centre d’Ecologie Fonctionnelle et Evolutive – CNRS UMR 5175, 1919 route de Mende, 34293, Montpellier, France 3 Laboratoire d’Ichtyologie, Université Montpellier II, Sciences et Techniques du Languedoc, 34095 Montpellier cedex5, France Alkusairy H., Ali M., Saad A., Reynaud C., Capapé C. 2014. Maturity, reproductive cycle, and fecundity of spiny butterfly ray, Gymnura altavela (Elasmobranchii: Rajiformes: Gymnuridae), from the coast of Syria (eastern Mediterranean). Acta Ichthyol. Piscat. 44 (3): 229–240. Background. Captures of Gymnura altavela from the Syrianmarine waters allowed to improve knowledge of size at first sexuality of males and females, reproductive period and fecundity. Materials and methods. In all, 114 specimens were measured for disk width (DW) and weighed. Sexual matu- rity was determined in males from the length of claspers and aspects of the reproductive tract, and in females from the condition of ovaries and the morphology of the reproductive tract. Hepatosomatic index (HSI), gonado- somatic index (GSI) were calculated in males and females, and their variations related to size were considered in all categories of specimens. To investigate the embryonic development and the role of the mother during gesta- tion, a chemical balance of development (CBD) was determined, based on the mean dry mass of fertilized eggs and fully developed oocytes.
    [Show full text]
  • Early Miocene Chondrichthyans from the Culebra Formation, Panama: a Window Into Marine Vertebrate Faunas Before Closure the Central American Seaway
    Journal of South American Earth Sciences 42 (2013) 159e170 Contents lists available at SciVerse ScienceDirect Journal of South American Earth Sciences journal homepage: www.elsevier.com/locate/jsames Early Miocene chondrichthyans from the Culebra Formation, Panama: A window into marine vertebrate faunas before closure the Central American Seaway Catalina Pimiento a,b,c,*, Gerardo Gonzalez-Barba d, Austin J.W. Hendy a,b, Carlos Jaramillo a, Bruce J. MacFadden b, Camilo Montes a,e, Sandra C. Suarez a, Monica Shippritt f a Smithsonian Tropical Research Institute, Box 2072, Balboa, Panama b Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA c Department of Biology, University of Florida, Gainesville, FL 32611, USA d Museo de Historia Natural, Area de Ciencias del Mar, La Paz, Universidad Autonoma de Baja California Sur, AP 23080, Mexico e Universidad de los Andes, Geociencias, Carrera 1A #18A-10, Bogotá, Colombia f Universidad Nacional de Panamá, Department of Biology, Apartado 3366, Panama article info abstract Article history: The newly described chondrichthyan fauna of the early Miocene Culebra Formation of Panama provides Received 29 July 2012 insight into the marine vertebrates occupying shallow seas adjacent to the Central American Seaway, Accepted 21 November 2012 prior to the rise of the Isthmus of Panama. This study takes advantage of a time-limited and unique opportunity to recover fossil from renewed excavations of the Panama Canal. The chondrichthyan fauna Keywords: of the Culebra Formation is composed of teeth and vertebral centra representing 12 taxa. The species Batoids found possessed a cosmopolitan tropical and warm-temperate distribution during the early Neogene and Depth preferences are similar to other assemblages of the tropical eastern Pacific and southern Caribbean.
    [Show full text]
  • Rapid Assessment of Sustainability for Ecological Risk of Shark and Other
    Rapid assessment of sustainability for ecological risk of shark and other chondrichthyan bycatch species taken in the Southern and Eastern Scalefish and Shark Fishery Terence I. Walker, John D. Stevens, J. Matias Braccini, Ross K. Daley, Charlie Huveneers, Sarah B. Irvine, Justin D. Bell, Javier Tovar‐Ávila, Fabian I. Trinnie, David T. Phillips, Michelle A. Treloar, Cynthia A. Awruck, Anne S. Gason, John Salini, and William C. Hamlett Project No. 2002/033 Rapid assessment of sustainability for ecological risk of shark and other chondrichthyan bycatch species taken in the Southern and Eastern Scalefish and Shark Fishery Terence I. Walker, John D. Stevens, J. Matias Braccini, Ross K. Daley, Charlie Huveneers, Sarah B. Irvine, Justin D. Bell, Javier Tovar‐ Ávila, Fabian I. Trinnie, David T. Phillips, Michelle A. Treloar, Cynthia A. Awruck, Anne S. Gason, John Salini, and William C. Hamlett July 2008 Project Number 2002/033 Rapid assessment of sustainability for ecological risk of shark and other chondrichthyan bycatch species taken in the Southern and Eastern Scalefish and Shark Fishery FRDC Report 2002/033 Terence I. Walker, John D. Stevens, J. Matias Braccini, Ross J. Daley, Charlie Huveneers, Sarah B. Irvine, Justin D. Bell, Javier Tovar‐ Ávila, Fabian I. Trinnie, David T. Phillips, Michelle A. Treloar, Cynthia A. Awruck, Anne S. Gason, John Salini, and Hamlett, W. C. Published by Department of Primary Industries, Fisheries Research Brand, Queenscliff, Victoria, 3225. © Fisheries Research and Development Corporation, and Fisheries Victoria. 2008 This work is copyright. Except as permitted under the Copyright Act 1968 (Cth), no part of this publication may be reproduced by any process, electronic or otherwise, without the specific written permission of the copyright owners.
    [Show full text]
  • Baseline Ecological Inventory for Three Bays National Park, Haiti OCTOBER 2016
    Baseline Ecological Inventory for Three Bays National Park, Haiti OCTOBER 2016 Report for the Inter-American Development Bank (IDB) 1 To cite this report: Kramer, P, M Atis, S Schill, SM Williams, E Freid, G Moore, JC Martinez-Sanchez, F Benjamin, LS Cyprien, JR Alexis, R Grizzle, K Ward, K Marks, D Grenda (2016) Baseline Ecological Inventory for Three Bays National Park, Haiti. The Nature Conservancy: Report to the Inter-American Development Bank. Pp.1-180 Editors: Rumya Sundaram and Stacey Williams Cooperating Partners: Campus Roi Henri Christophe de Limonade Contributing Authors: Philip Kramer – Senior Scientist (Maxene Atis, Steve Schill) The Nature Conservancy Stacey Williams – Marine Invertebrates and Fish Institute for Socio-Ecological Research, Inc. Ken Marks – Marine Fish Atlantic and Gulf Rapid Reef Assessment (AGRRA) Dave Grenda – Marine Fish Tampa Bay Aquarium Ethan Freid – Terrestrial Vegetation Leon Levy Native Plant Preserve-Bahamas National Trust Gregg Moore – Mangroves and Wetlands University of New Hampshire Raymond Grizzle – Freshwater Fish and Invertebrates (Krystin Ward) University of New Hampshire Juan Carlos Martinez-Sanchez – Terrestrial Mammals, Birds, Reptiles and Amphibians (Françoise Benjamin, Landy Sabrina Cyprien, Jean Roudy Alexis) Vermont Center for Ecostudies 2 Acknowledgements This project was conducted in northeast Haiti, at Three Bays National Park, specifically in the coastal zones of three communes, Fort Liberté, Caracol, and Limonade, including Lagon aux Boeufs. Some government departments, agencies, local organizations and communities, and individuals contributed to the project through financial, intellectual, and logistical support. On behalf of TNC, we would like to express our sincere thanks to all of them. First, we would like to extend our gratitude to the Government of Haiti through the National Protected Areas Agency (ANAP) of the Ministry of Environment, and particularly Minister Dominique Pierre, Ministre Dieuseul Simon Desras, Mr.
    [Show full text]
  • First Observation on the Mating Behaviour of the Marbled Ray, Taeniurops Meyeni, in the Tropical Eastern Pacific
    Environ Biol Fish https://doi.org/10.1007/s10641-018-0818-z First observation on the mating behaviour of the marbled ray, Taeniurops meyeni, in the tropical Eastern Pacific C. Arnés-Urgellés & E. M. Hoyos-Padilla & F. Pochet & P. Salinas-de-León Received: 11 May 2018 /Accepted: 28 September 2018 # Springer Nature B.V. 2018 Abstract Elasmobranch reproductive behaviour re- males swim in a close formation chasing an individual mains understudied, particularly for batoids (rays). Most female; (2) pre-copulatory biting: oral grasping of the of the information available originates from opportunistic female’s posterior pectoral fin by the males, with anterior observations of mating scars in the wild and/or from bending of one clasper and rotation of the pelvic region individuals held in captivity. Here we describe the first towards the female’s cloaca; (3) copulation/ insertion of complete mating sequence of the marbled ray the male’s clasper followed by ‘ventral to ventral’ position (Taeniurops meyeni) in the wild. The event was filmed and energetic thrusting of the male’s pelvic region; (4) at Isla del Coco National Park in Costa Rica, in the post-copulatory behaviour: the male removes its clasper Tropical Eastern Pacific. The complete sequence lasted from the female’s cloaca while releasing her posterior approximately 3 hrs and is defined by the following pectoral fin and (5) separation: the male sets the female behaviours: (1) close following or chasing: a group of free and separates himself from the group. The mating behaviour described here shares some similarities with the few other studies of batoids in the wild and highlights Electronic supplementary material The online version of this the need to further understand their mating system to article (https://doi.org/10.1007/s10641-018-0818-z)contains guide conservation plans for this vulnerable species.
    [Show full text]
  • Ecological Impacts of Declining Global Elasmobranch Populations Due to Anthropogenic Influences Amanda Flannery Miami University Oxford, OH April 19, 2017
    Ecological Impacts of Declining Global Elasmobranch Populations Due to Anthropogenic Influences Amanda Flannery Miami University Oxford, OH April 19, 2017 Abstract In the past century, marine ecosystems worldwide have seen sharp declines in elasmobranch populations. Recent assessments by the International Union for Conservation of Nature (IUCN) revealed nearly 25% of elasmobranchs are vulnerable to extinction. They exhibit k-species characteristics which leave them highly susceptible to anthropogenic influences. Human influences, such as habitat degradation or loss, climate change, as well as fishing and finning, are the most likely causes of the steep population declines in elasmobranchs over the past century. Physical destruction of habitats leaves juveniles vulnerable to predation and starvation from low prey availability. Due to elasmobranchs’ slower life history characteristics they are the most vulnerable to climate change effects, especially those residing in estuarine and reef habitats. With prices for shark fins increasing to nearly US$400 per kilogram on the Hong Kong market and increased demand from the Asian markets, sharks are ​ harvested for their fins alone. It is estimated that if fishing mortality rates increase to 20% of the initial population per year, some species could decline to 1% of their population in the next 10 to 39 years. There have been documented cases of trophic cascades and meso-predator release as marine ecosystems have seen sharp declines in large bodied elasmobranch populations. Keywords: elasmobranchii, elasmobranchs, ecology, conservation, population decline, ​ ​ sharks, rays, climate change, habitat destruction, fishing, finning, apex predator, meso-predator, trophic cascade Introduction Elasmobranchii is a subclass of Chondrichtyes, or cartilaginous fishes, which include sharks, skates, and rays that debuted in the fossil record in the Devonian era nearly 400 million years ago (Fowler et al., 2005).
    [Show full text]
  • The Conservation Status of North American, Central American, and Caribbean Chondrichthyans the Conservation Status Of
    The Conservation Status of North American, Central American, and Caribbean Chondrichthyans The Conservation Status of Edited by The Conservation Status of North American, Central and Caribbean Chondrichthyans North American, Central American, Peter M. Kyne, John K. Carlson, David A. Ebert, Sonja V. Fordham, Joseph J. Bizzarro, Rachel T. Graham, David W. Kulka, Emily E. Tewes, Lucy R. Harrison and Nicholas K. Dulvy L.R. Harrison and N.K. Dulvy E.E. Tewes, Kulka, D.W. Graham, R.T. Bizzarro, J.J. Fordham, Ebert, S.V. Carlson, D.A. J.K. Kyne, P.M. Edited by and Caribbean Chondrichthyans Executive Summary This report from the IUCN Shark Specialist Group includes the first compilation of conservation status assessments for the 282 chondrichthyan species (sharks, rays, and chimaeras) recorded from North American, Central American, and Caribbean waters. The status and needs of those species assessed against the IUCN Red List of Threatened Species criteria as threatened (Critically Endangered, Endangered, and Vulnerable) are highlighted. An overview of regional issues and a discussion of current and future management measures are also presented. A primary aim of the report is to inform the development of chondrichthyan research, conservation, and management priorities for the North American, Central American, and Caribbean region. Results show that 13.5% of chondrichthyans occurring in the region qualify for one of the three threatened categories. These species face an extremely high risk of extinction in the wild (Critically Endangered; 1.4%), a very high risk of extinction in the wild (Endangered; 1.8%), or a high risk of extinction in the wild (Vulnerable; 10.3%).
    [Show full text]