Heated Nebulizer Microchips for Mass Spectrometry

Total Page:16

File Type:pdf, Size:1020Kb

Heated Nebulizer Microchips for Mass Spectrometry Recent Publications in this Series: for Mass Spectrometry Heated Nebulizer Microchips MARKUS HAAPALA 31/2009 Timo Sipilä Plasmids and Aromatic Degradation in Sphingomonas for Bioremediation - Aromatic Ring Cleavage Genes in Soil and Rhizosphere 32/2009 Jack C. Leo Structural and Functional Studies on Trimeric Autotransporters 33/2009 Päivi Uutela Liquid Chromatography-Tandem Mass Spectrometry in Studies of Neurotransmitters and Their Metabolites in the Brain 34/2009 Ranad Shaheen Bacillus Cereus Spores and Cereulide in Food-Borne Illness 35/2009 Katri Berg Heterotrophic Bacteria Associated with Cyanobacteria in Recreational and Drinking Water 36/2009 Aneta Skwarek-Maruszewska Actin Dynamics in Muscle Cells 37/2009 Laura Riihimäki-Lampén Interactions of Natural Products with β-Lactoglobulins, Members of the Lipocalin Family 38/2009 Miia R. Mäkelä The White-Rot Fungi Phlebia radiata and Dichomitus squalens in Wood-Based Cultures: Expression of Laccases, Lignin Peroxidases, and Oxalate Decarboxylase 39/2009 Esko Oksanen Enzyme Molecular Choreography - Studies of Soluble Inorganic Pyrophosphatases 40/2009 Maxim M. Bespalov GDNF Receptors: Veterans and Novices 1/2010 Taina Sten Stereoselectivity of the Human UDP-glucuronosyltransferases (UGTs); Studies on Androgens and Propranolol Glucuronidation 2/2010 Marika Suomalainen Fine-Tuning of The Signalling Network Controlling Morphogenesis and Stem Cell Development in Teeth Heated Nebulizer Microchips 3/2010 Kimmo Rantalainen Biochemical and Structural Properties of Potato virus A VPg for Mass Spectrometry 4/2010 Sanna Kaivosaari N-Glucuronidation of Drugs and Other Xenobiotics 5/2010 Johanna Mantela Role of Cell Cycle Regulators in Development of The Inner Ear 6/2010 Pinja Jaspers Stress and Developmental Responses in Arabidopsis Thaliana: Regulation Through The Transcription Factor –Interacting Protein RCD1 7/2010 Marika Pohjanoksa-Mäntylä Medicines Information Sources and Services for Consumers: A Special Focus on the Internet and People with Depression MARKUS HAAPALA 8/2010 Satu Lakio Towards Real-Time Understanding of Processes in Pharmaceutical Powder Technology 9/2010 Manu Eeva Division of Pharmaceutical Chemistry Plant Secondary Metabolites in Peucedanum palustre and Angelica archangelica and Their Plant Cell Cultures Faculty of Pharmacy 10/2010 Niina Kivikero Granulation in Miniaturised Fluid Bed Using Electrostatic Atomisation University of Helsinki 11/2010 Tiina Heikkilä Miniaturization of Drug Solubility and Dissolution Testings Helsinki 2010 ISSN 1795-7079 ISBN 978-952-10-6257-5 Dissertationes bioscientiarum molecularium Universitatis Helsingiensis in Viikki 12/2010 12/2010 Division of Pharmaceutical Chemistry Faculty of Pharmacy University of Helsinki Finland Heated Nebulizer Microchips for Mass Spectrometry by Markus Haapala ACADEMIC DISSERTATION To be presented, with the permission of the Faculty of Pharmacy of the University of Helsinki, for public examination in Auditorium 1041, Viikki Biocenter 2 (Viikinkaari 5), on May 21st, 2010, at 12 noon. Helsinki 2010 Supervisors: Professor Risto Kostiainen Division of Pharmaceutical Chemistry, Faculty of Pharmacy University of Helsinki Finland Professor Tapio Kotiaho Division of Pharmaceutical Chemistry, Faculty of Pharmacy and Laboratory of Analytical Chemistry, Department of Chemistry, Faculty of Science University of Helsinki Finland Reviewers: Professor Janne Jänis Department of Chemistry, Faculty of Science and Forestry University of Eastern Finland Finland Professor Elisabeth Verpoorte Department of Pharmacy, Faculty of Mathematics and Natural Sciences University of Groningen The Netherlands Opponent: Professor Frants Lauritsen Department of Pharmaceutics and Analytical Chemistry Faculty of Pharmaceutical Sciences University of Copenhagen Denmark © Markus Haapala 2010 ISBN 978-952-10-6257-5 (paperback) ISBN 978-952-10-6258-2 (PDF) ISSN 1795-7079 http://ethesis.helsinki.fi Helsinki University Print Helsinki 2010 CONTENTS PREFACE ................................................................................................................................................ 5 ABSTRACT.............................................................................................................................................. 6 LIST OF ORIGINAL PUBLICATIONS............................................................................................... 8 ABBREVIATIONS................................................................................................................................ 10 1 INTRODUCTION .............................................................................................................................. 12 1.1 MINIATURIZATION OF ANALYTICAL DEVICES................................................................................. 12 1.1.1 Materials for microfabrication.............................................................................................. 13 1.1.2 Methods for microfabrication................................................................................................ 14 1.2. ATMOSPHERIC PRESSURE IONIZATION SOURCES AND THEIR MINIATURIZED VERSIONS.................. 15 1.2.1 Electrospray ionization ......................................................................................................... 16 1.2.2 Sonic spray ionization ........................................................................................................... 19 1.2.3 Atmospheric pressure chemical ionization............................................................................ 19 1.2.4 Atmospheric pressure photoionization .................................................................................. 21 1.2.5 Heated nebulizer microchips................................................................................................. 22 1.3 MINIATURIZATION OF CHROMATOGRAPHY .................................................................................... 25 1.4 AMBIENT MASS SPECTROMETRY .................................................................................................... 26 1.5 TEMPERATURE AND FLUIDIC MEASUREMENTS IN MICROSCALE ...................................................... 27 2 AIMS OF THE STUDY...................................................................................................................... 30 3 MATERIALS AND METHODS ....................................................................................................... 31 3.1 CHEMICALS AND MATERIALS ......................................................................................................... 31 3.2 INSTRUMENTATION ........................................................................................................................ 33 3.3 MICROCHIP FABRICATION .............................................................................................................. 36 3.3.1 Silicon–glass heated nebulizer microchips............................................................................ 36 3.3.2 All-glass heated nebulizer microchips................................................................................... 37 3.3.3 Integrated liquid chromatography – heated nebulizer microchips........................................ 38 3.4 EXPERIMENTAL SETUPS.................................................................................................................. 39 3.4.1 Thermal and fluidic measurements........................................................................................ 39 3.4.2 Chromatography and mass spectrometry.............................................................................. 41 4 RESULTS AND DISCUSSION ......................................................................................................... 44 4.1 THERMAL AND FLUIDIC PROPERTIES OF HEATED NEBULIZER MICROCHIPS ..................................... 44 4.1.1 Performance of the thermocouple sensor.............................................................................. 45 4.1.2 Thermal and fluidic characterization of heated nebulizer microchips.................................. 45 4.2 DIRECT INFUSION STUDIES ............................................................................................................. 50 4.2.1 Microchip atmospheric pressure photoionization – Fourier transform ion cyclotron resonance mass spectrometry................................................................................................ 51 4.2.2 Microchip sonic spray ionization ..........................................................................................55 4.3 CONNECTING HEATED NEBULIZER MICROCHIPS WITH CHROMATOGRAPHY .................................... 56 4.3.1 Gas chromatography – microchip atmospheric pressure photoionization – mass spectrometry ..........................................................................................................................57 4.3.2 Capillary liquid chromatography – microchip atmospheric pressure photoionization – mass spectrometry .................................................................................................................59 4.4 INTEGRATION OF CHROMATOGRAPHIC SEPARATION AND HEATED NEBULIZER ...............................61 4.4.1 Microchip structure and operation........................................................................................61 4.4.2. Liquid chromatography ........................................................................................................63 4.5 DESORPTION
Recommended publications
  • Multiplatform Investigation of Plasma and Tissue Lipid Signatures of Breast Cancer Using Mass Spectrometry Tools
    International Journal of Molecular Sciences Article Multiplatform Investigation of Plasma and Tissue Lipid Signatures of Breast Cancer Using Mass Spectrometry Tools 1, 2, 2 3 Alex Ap. Rosini Silva y, Marcella R. Cardoso y , Luciana Montes Rezende , John Q. Lin , Fernando Guimaraes 2 , Geisilene R. Paiva Silva 4, Michael Murgu 5, Denise Gonçalves Priolli 1, Marcos N. Eberlin 6, Alessandra Tata 7, Livia S. Eberlin 3 , Sophie F. M. Derchain 2 and Andreia M. Porcari 1,* 1 Postgraduate Program of Health Sciences, São Francisco University, Bragança Paulista SP 12916-900, Brazil; [email protected] (A.A.R.S.); [email protected] (D.G.P.) 2 Department of Gynecological and Breast Oncology, Women’s Hospital (CAISM), Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas SP 13083-881, Brazil; [email protected] (M.R.C.); [email protected] (L.M.R.); [email protected] (F.G.); [email protected] (S.F.M.D.) 3 Department of Chemistry, The University of Texas at Austin, Austin, TX 78712, USA; [email protected] (J.Q.L.); [email protected] (L.S.E.) 4 Laboratory of Molecular and Investigative Pathology—LAPE, Women’s Hospital (CAISM), Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas SP 13083-881, Brazil; [email protected] 5 Waters Corporation, São Paulo, SP 13083-970, Brazil; [email protected] 6 School of Engineering, Mackenzie Presbyterian University, São Paulo SP 01302-907, Brazil; [email protected] 7 Laboratorio di Chimica Sperimentale, Istituto Zooprofilattico Sperimentale delle Venezie, Viale Fiume 78, 36100 Vicenza, Italy; [email protected] * Correspondence: [email protected]; Tel.: +55-11-2454-8047 These authors contributed equally to this work.
    [Show full text]
  • Portable Mass Spectrometry
    Food Analytical Methods https://doi.org/10.1007/s12161-019-01666-6 Potential of Recent Ambient Ionization Techniques for Future Food Contaminant Analysis Using (Trans)Portable Mass Spectrometry Marco H. Blokland1 & Arjen Gerssen1 & Paul W. Zoontjes1 & Janusz Pawliszyn2 & Michel W.F. Nielen1,3 Received: 3 June 2019 /Accepted: 31 October 2019 # The Author(s) 2019 Abstract In food analysis, a trend towards on-site testing of quality and safety parameters is emerging. So far, on-site testing has been mainly explored by miniaturized optical spectroscopy and ligand-binding assay approaches such as lateral flow immunoassays and biosensors. However, for the analysis of multiple parameters at regulatory levels, mass spectrometry (MS) is the method of choice in food testing laboratories. Thanks to recent developments in ambient ionization and upcoming miniaturization of mass analyzers, (trans)portable mass spectrometry may be added to the toolkit for on-site testing and eventually compete with multiplex immunoassays in mixture analysis. In this study, we preliminary evaluated a selection of recent ambient ionization techniques for their potential in simplified testing of selected food contaminants such as pesticides, veterinary drugs, and natural toxins, aiming for a minimum in sample preparation while maintaining acceptable sensitivity and robustness. Matrix-assisted inlet ionization (MAI), handheld desorption atmospheric pressure chemical ionization (DAPCI), transmission-mode direct analysis in real time (TM-DART), and coated blade spray (CBS) were coupled to both benchtop Orbitrap and compact quad- rupole single-stage mass analyzers, while CBS was also briefly studied on a benchtop triple-quadrupole MS. From the results, it can be concluded that for solid and liquid sample transmission configurations provide the highest sensitivity while upon addition ofastationaryphase,suchasinCBS,evenlowμg/L levels in urine samples can be achieved provided the additional selectivity of tandem mass spectrometry is exploited.
    [Show full text]
  • 1 Introduction of Mass Spectrometry and Ambient Ionization Techniques
    1 1 Introduction of Mass Spectrometry and Ambient Ionization Techniques Yiyang Dong, Jiahui Liu, and Tianyang Guo College of Life Science & Technology, Beijing University of Chemical Technology, No. 15 Beisanhuan East Road, Chaoyang District, Beijing, 100029, China 1.1 Evolution of Analytical Chemistry and Its Challenges in the Twenty-First Century The Chemical Revolution began in the eighteenth century, with the work of French chemist Antoine Lavoisier (1743–1794) representing a fundamental watershed that separated the “modern chemistry” era from the “protochemistry” era (Figure 1.1). However, analytical chemistry, a subdiscipline of chemistry, is an ancient science and its metrological tools, basic applications, and analytical processes can be dated back to early recorded history [1]. In chronological spans covering ancient times, the middle ages, the era of the nineteenth century, and the three chemical revolutionary periods, analytical chemistry has successfully evolved from the verge of the nineteenth century to modern and contemporary times, characterized by its versatile traits and unprecedented challenges in the twenty-first century. Historically, analytical chemistry can be termed as the mother of chemistry, as the nature and the composition of materials are always needed to be iden- tified first for specific utilizations subsequently; therefore, the development of analytical chemistry has always been ahead of general chemistry [2]. During pre-Hellenistic times when chemistry did not exist as a science, various ana- lytical processes, for example, qualitative touchstone method and quantitative fire-assay or cupellation scheme have been in existence as routine quality control measures for the purpose of noble goods authentication and anti-counterfeiting practices. Because of the unavailability of archeological clues for origin tracing, the chemical balance and the weights, as stated in the earliest documents ever found, was supposed to have been used only by the Gods [3].
    [Show full text]
  • Construction of a Versatile High Precision Ambient Ionization Source for Direct Analysis and Imaging
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Construction of a Versatile High Precision Ambient Ionization Source for Direct Analysis and Imaging Jason S. Sampson, Adam M. Hawkridge, and David C. Muddiman W. M. Keck FT-ICR Mass Spectrometry Laboratory, Department of Chemistry, North Carolina State University, Raleigh, North Carolina, USA The design and construction of a high precision ambient ionization source matrix-assisted laser desorption electrospray ionization (MALDESI) are described in full detail, including a complete parts list. The computer controlled high precision motion control system and high repetition rate Explorer laser are demonstrated during MALDESI-FT-ICR analysis of peptides and proteins ranging from 1 to 17 kDa. The high stability ionization source platform described herein demonstrates both the advantages of the new MALDESI source and versatility for application to numerous desorption and ionization techniques. (J Am Soc Mass Spectrom 2008, 19, 1527–1534) © 2008 American Society for Mass Spectrometry he introduction and development of hybridMS/MS am- analysis where peak widths (i.e., analysis bient ionization sources such as laser desorptiontimes) are about 10 to 30 s. Tatmospheric pressure ionization (LDAPI)[1, 2], The advancement and acceptance of MALDESI and fused droplet electrospray ionization/extraction elec-related hybrid ionization techniques are critically de- trospray (FD-ESI, EESI)[3, 4], direct analysis in realpendent on the widespread dissemination of detailed time (DART)[5] , desorption electrospray ionizationsource designs such that results can be reproduced and (DESI) [6], electrospray assisted laser desorption ioniza-improved in a variety of laboratories.
    [Show full text]
  • Ambient Mass Spectrometry for Forensic Analysis
    Central Annals of Forensic Research and Analysis Bringing Excellence in Open Access Review Article *Corresponding author Huanwen Chen, Department of Applied Chemistry, East China Institute of Technology, 56 Xuefu Road, Fuzhou Ambient Mass Spectrometry for 344000, China, Submitted: 13 February 2015 Forensic Analysis Accepted: 10 August 2015 Published: 03 October 2015 1 2 1 1 2 Lijun Xie , Huian Zhao , Peng Zhou , Tenggao Zhu , Yongzi Liu ISSN: 2378-9476 and Huanwen Chen1* Copyright 1Department of Chemistry, East China Institute of Technology, China © 2015 Chen et al. 2Jiangxi Institute of Forensic Science, Nanchang, China OPEN ACCESS Abstract Keywords • Ambient ionization Ambient mass spectrometry has emerged as a significant tool to facilitate forensic • Mass spectrometry investigation considering its well-known advantages of rapid, direct, nondestructive, • Forensic analysis high-throughput detection of a broad range of raw samples, as well as its potential capability of miniaturization and automation. New mass spectrometry technologies include more versatile ionization sources, allowing the next generation of instrumentation to be more multipurpose and adaptable to the needs of the discipline. This review assesses and highlights forensic applications of ambient mass spectrometry. In addition, the instrumentation and principles of some popular and promising ambient ionization techniques are summarized. INTRODUCTION procedures. Forensic science has been developed in the twentieth century maintaining sampleThese integritydrawbacks and maketraceability. it difficult to analyze and came to be recognized by the courts and law enforcement. forensic with high efficiency and effectively, leaving problems in Forensic analysis and investigation capabilities are vital in criminal and civil cases, national security, environmental allows for direct and rapid analysis of raw sample in their native Recently, ambient mass spectrometry (ambient MS), which illicit drugs and counterfeiting of legitimate pharmaceuticals, new in sample preparation, has aroused blooming interest.
    [Show full text]
  • Mass Spectrometry Imaging, an Emerging Technology in Neuropsychopharmacology
    Neuropsychopharmacology REVIEWS (2014) 39, 34–49 & 2014 American College of Neuropsychopharmacology. All rights reserved 0893-133X/14 ............................................................................................................................................................... REVIEW 34 www.neuropsychopharmacology.org Mass Spectrometry Imaging, an Emerging Technology in Neuropsychopharmacology Mohammadreza Shariatgorji1, Per Svenningsson2 and Per E Andre´ n*,1 1 Department of Pharmaceutical Biosciences, Biomolecular Imaging and Proteomics, National Laboratory for Mass Spectrometry Imaging, Uppsala University, Uppsala, Sweden; 2Department of Neurology and Clinical Neuroscience, Centre for Molecular Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden Mass spectrometry imaging is a powerful tool for directly determining the distribution of proteins, peptides, lipids, neurotransmitters, metabolites and drugs in neural tissue sections in situ. Molecule-specific imaging can be achieved using various ionization techniques that are suited to different applications but which all yield data with high mass accuracies and spatial resolutions. The ability to simultaneously obtain images showing the distributions of chemical species ranging from metal ions to macromolecules makes it possible to explore the chemical organization of a sample and to correlate the results obtained with specific anatomical features. The imaging of biomolecules has provided new insights into multiple neurological diseases,
    [Show full text]
  • The Accutof™-DART® 4G: the Ambient Ionization Toolbox™
    The AccuTOF™-DART® 4G: The Ambient Ionization Toolbox™ Introduction JEOL introduced the AccuTOF-DART in 2005 as the first commercially available ambient ionization mass spectrometer system. The atmospheric pressure ionization interface (API) for the AccuTOF system, originally designed as a simple, rugged and reliable LC/MS interface, became the ideal platform for developing the Direct Analysis in Real Time (DART) ion source. Because the DART ion source can be positioned directly in front of the AccuTOF sampling orifice without additional interface hardware, a variety of ambient ionization techniques are available to the AccuTOF-DART operator without removing the DART ion source. The third-generation AccuTOF-DART 4G system is an “ambient ionization toolbox” that allows the analyst to choose ionization methods that are best matched to the samples to be analyzed. DART The DART ion source can be operated on the AccuTOF-DART 4G in several different modes to provide complementary information about substances to be analyzed. Helium DART: moderately polar small molecules In positive-ion mode, helium DART[1] generally produces protonated molecules [M + H]+ for compounds with a basic site, a heteroatom, or a site of unsaturation. In negative-ion mode, helium DART produces deprotonated molecules [M – H]- for compounds such as carboxylic acids or phenols that have a labile proton. Samples are introduced directly into the DART gas stream. By heating the helium gas, DART can detect volatile and semi-volatile compounds. Compounds with a molecular weight below 1000 can generally be detected by helium DART. Some compounds with molecular weights in excess of 2000 can be detected if they are sufficiently volatile.
    [Show full text]
  • Imaging Mass Spectrometry for Natural Products Discovery: a Review of Ionization Methods
    Natural Product Reports Imaging mass spectrometry for natural products discovery: a review of ionization methods Journal: Natural Product Reports Manuscript ID NP-HIG-06-2019-000038.R1 Article Type: Highlight Date Submitted by the 21-Jul-2019 Author: Complete List of Authors: Spraker , Joseph ; Hexagon Bio Luu, Gordon; University of Illinois at Chicago, Department of Pharmaceutical Sciences Sanchez, Laura; University of Illinois at Chicago, Department of Pharmaceutical Sciences Page 1 of 22 Natural Product Reports Imaging mass spectrometry for natural products discovery: a review of ionization methods Joseph E Spraker,1 Gordon T Luu,2 Laura M Sanchez2 1. Hexagon Bio, 1505 Adams Drive, Suite A, Menlo Park, CA 94025 2. Department of Pharmaceutical Sciences, University of Illinois at Chicago, 833 S Wood St, Chicago IL, 60612 Abstract Over the last decade, methods in imaging mass spectrometry (IMS) have progressively improved and diversified toward a variety of applications in natural products research. Because IMS allows for the spatial mapping of the production and distribution of biologically active molecules in situ, it facilitates phenotype and organelle driven discovery efforts. As practitioners of IMS for natural products discovery, we find one of the most important aspects of these experiments is the sample preparation and compatibility with different ionization sources that are available to a given researcher. As such, we have focused this mini review to cover types of ionization sources that have been used in natural products discovery applications and provided concrete examples of use for natural products discovery while discussing the advantages and limitations of each method. We aim for this article to serve as a resource to guide the broader natural product community interested in IMS toward the application/method that would best serve their natural product discovery needs given the sample and analyte(s) of interest.
    [Show full text]
  • Streamlined Multimodal DESI and MALDI Mass Spectrometry Imaging on a Singular Dual-Source FT-ICR Mass Spectrometer
    H OH metabolites OH Article Streamlined Multimodal DESI and MALDI Mass Spectrometry Imaging on a Singular Dual-Source FT-ICR Mass Spectrometer Kevin J. Zemaitis 1 , Alexandra M. Izydorczak 1, Alexis C. Thompson 2 and Troy D. Wood 1,* 1 Department of Chemistry, Natural Sciences Complex, University at Buffalo, State University of New York, Buffalo, NY 14260, USA; [email protected] (K.J.Z.); [email protected] (A.M.I.) 2 Department of Psychology, Park Hall, University at Buffalo, State University of New York, Buffalo, NY 14260, USA; [email protected] * Correspondence: [email protected] Abstract: The study of biological specimens by mass spectrometry imaging (MSI) has had a profound influence in the various forms of spatial-omics over the past two decades including applications for the identification of clinical biomarker analysis; the metabolic fingerprinting of disease states; treatment with therapeutics; and the profiling of lipids, peptides and proteins. No singular approach is able to globally map all biomolecular classes simultaneously. This led to the development of many complementary multimodal imaging approaches to solve analytical problems: fusing multiple ion- ization techniques, imaging microscopy or spectroscopy, or local extractions into robust multimodal imaging methods. However, each fusion typically requires the melding of analytical information from multiple commercial platforms, and the tandem utilization of multiple commercial or third- party software platforms—even in some cases requiring computer coding. Herein, we report the use of matrix-assisted laser desorption/ionization (MALDI) in tandem with desorption electrospray Citation: Zemaitis, K.J.; Izydorczak, ionization (DESI) imaging in the positive ion mode on a singular commercial orthogonal dual-source A.M.; Thompson, A.C.; Wood, T.D.
    [Show full text]
  • Guide to the Zarelab
    GUIDE TO THE ZARELAB May 2014 Department of Chemistry, Stanford ~Welcome to the ZARELAB~ This booklet has been prepared to make your visit with us more rewarding by presenting a survey of our recent research activities. Each section was written by those members pursuing the work described therein. Please feel free to ask the members of my Dick Zare and the rocket test. group to discuss any project. Enjoy your visit! ~Inside this Guide~ Table of Contents 2 Stanford University Research Activities 3-16 Department of Chemistry – Mudd Bldg. 333 Campus Drive – Room 133 Publications 17 Stanford, CA 94305 Zarelab Contact List 18 (650) 723-4313 Zarelab Group Members 19 Website: Maps of Stanford Campus & Vicinity 20 http://www.stanford.edu/group/Zarelab/ 1 TABLE OF CONTENTS 3 HIGH RESOLUTION MASS SPECTROMETRIC IMAGING USING LASER DESORPTION/IONIZATION DROPLET DELIVERY MASS SPECTROMETRY AND NANOAMBIENT IONIZATION MASS SPECTROMETRY - - - Jae Kyoo Lee and Samuel Kim 4 DESORPTION ELECTROSPRAY IONIZATION MASS SPECTROMETRY IMAGING IN BIOMEDICAL RESEARCH - - - Livia S. Eberlin 5 STATE-TO-STATE REACTION DYNAMICS - - - Mahima Sneha and Hong Gao 6 COMPOSITE ORGANIC POLYMERS FOR BIOANALYSIS - - - Maria T. Dulay and Livia S. Eberlin 7 STRATEGY FOR HIGH-THROUGHPUT SINGLE-CELL GENOMIC SEQUENCING - - - Yuan Zou and Samuel Kim 8 TWO-STEP LASER MASS SPECTROMETRY OF TERRESTRIAL AND EXTRATERRESTRIAL MATERIALS - - - Qinghao Wu 9 PROTOTYPIC MICROFLUIDIC DEVICE FOR A ANTIMICROBIAL SUSCEPTIBILITY TEST - - - Stefano Blanco and Samuel Kim 10 DESIGN OF NANOPARTICLES FOR
    [Show full text]
  • 1 Construction and Testing of an Atmospheric-Pressure
    Construction and Testing of an Atmospheric-Pressure Transmission-Mode Matrix Assisted Laser Desorption Ionisation Mass Spectrometry Imaging Ion Source with Plasma Ionisation Enhancement Rory T. Steven†,*, Michael Shaw¥,τ, Alex Dexter†, Teresa Murta†, Felicia M. Green†, Kenneth N. Robinson†, Ian S. Gilmore†, Zoltan TakatsΩ, and Josephine Bunch†, Ω, * †: National Centre of Excellence in Mass Spectrometry Imaging (NiCE-MSI), Analytical Science Division, National Physical Laboratory (NPL), Teddington, UK, TW11 0LW, UK ¥: Biotechnology Group, Analytical Science Division, National Physical Laboratory, Teddington, TW11 0LW, UK τ: UCL Touch lab, Department of Computer Science, University College London, Gower Street, London, WC1 6BT, UK Ω: Imperial Collage London, Faculty of Medicine, Department of Surgery & Cancer, London, SW7 2AZ, UK *: Corresponding authors: Rory Steven, email: [email protected], telephone: +44 (0)2089 436 420; Josephine Bunch: email: [email protected], telephone: +44 (0)2089 436 509 1 Abstract Matrix assisted laser desorption ionisation mass spectrometry (MALDI-MS) at atmospheric pressure (AP) is, with a few notable exceptions, overshadowed by its vacuum based forms and AP transmission mode (TM) MALDI-MS lacks the up-take its potential benefits might suggest. The reasons for this are not fully understood and it is clear further development is required to realise the flexibility and power of this ionisation method and geometry. Here we report the build of a new AP- TM-MALDI-MSI ion source with plasma ionisation enhancement. This novel ion source is used to analyse a selection of increasingly complex systems from molecular standards to murine brain tissue sections. Significant enhancement of detected ion intensity is observed in both positive and negative ion mode in all systems, with up to 2000 fold increases observed for a range of tissue endogenous species.
    [Show full text]
  • Desorption Electrospray Ionisation
    Desorption Electrospray Ionization in Combination with Liquid Chromatography John Jeff Hardy* Department Of Chemical Sciences, City University of New York, New York *Corresponding author: John Jeff Hardy, Department of Chemical Sciences, City University of New York; E- Mail: [email protected] Received: January 2, 2021; Accepted: January 19, 2021; Published: January 30, 2021 Liquid Chromatography Coupled to Desorption Electrospray Ionization A Fluid Chromatography/Mass Spectrometry (LC/MS) strategy utilizing Desorption Electrospray Ionization (DESI) as a flexible interface has been set up, which permits a wide scope of elution stream rates, online derivatization by means of receptive DESI, and further blend with electrochemistry. LC/MS is a scientific method that joins the actual partition ability of LC with the mass investigation force of MS [1]. In light of its unmatched ability in blend investigation, the meaning of LC/MS is difficult to exaggerate and the coupling of LC with MS was acknowledged by utilizing different ionization techniques like Substance Ionization (CI), Thermospray Ionization (TSP), Environmental Pressing Factor Compound Ionization (APCI) and overwhelmingly Electrospray Ionization (ESI) [2]. A new forward leap in the field of MS is the coming of surrounding mass spectrometry, for example, Desorption Electrospray Ionization (DESI) and Direct Examination Continuously (DART) which furnishes direct ionization of analytes with practically zero example planning. As of late, the coupling of LC to DART-MS has been accounted for, which showed that DART is viable with eluents containing phosphate cradles at high elution stream rates. Be that as it may, the blend of LC with MS utilizing DESI has not been acknowledged up until this point, in light of the fact that conventional DESI manages the examination of strong examples on surfaces.
    [Show full text]