Trailheads the Augusta Canal Begins Here

Total Page:16

File Type:pdf, Size:1020Kb

Trailheads the Augusta Canal Begins Here AUGUSTA CANAL NATIONAL HERITAGE AREA 2 Evans to Locks Rd. 1 1 Headgates Trailheads The Augusta Canal begins here. The V-shaped diversion dam directs 1 Headgates at Savannah Rapids 3 S Savannah River water into the headgates. 2 Water Pump Station A V From there the canal flows 13 miles 3 Lake Olmstead A through Augusta where it supplies the A N 4 Mill Village U N city with drinking water and powers G A 5 Discovery Center U H several small hydroelectric plants. S Old Turning Basin at 13th Street T 6 A R C I A V N E Trails R A L Towpath Stevens Creek Rd.Stevens Headgate Loop Old Fish Camp Path River Shoals Nature Trail SOUTH Mountain Bike Singletrack CAROLINA River Levee Trail Lake Olmstead Trail 20 Mill Village Trail Third Level Trail 4 River Watch Parkway S Places of Interest 104 5 A V EXIT 200 A 1 Savannah Rapids Park N N 2 Headgates, Locks and Gatehouse A H 3 Reed Creek Waterfall 4 Warren Lake GEORGIA R 5 The Clearing I 6 V E 6 Raw Water Pump Station Water 2 R Washington Rd. 7 Rae’s Creek Aqueduct, EXIT 199 28 Pump Tin House Gate, Station Olmstead Bulkhead A 8 Confederate Powder Works Chimney U Eisenhower Dr. G 9 Sibley and King Mills U S 10 Archibald Butt Memorial Bridge T A 11 Discovery Center at Enterprise Mill C 12 Petersburg Tour Boats A N 13 Old Turning Basin/ Gatehouse A 14 Davidson School/ Former Globe Mill L Augusta Canal 15 Old Coal Gas Plant Site A D 7 E T National Heritage Area S M L O 3 E K Lake Augusta Canal is a National Heritage Area, a place A L designated by the US Congress that best represents Olmstead Trailhead an important theme in American history. Augusta Canal tells the story of the Industrial Revolution in Milledge Rd. S the American South. Built in 1845 to harness A Mill Village 4 8 V A the water and power of the Savannah River, this John C. Calhoun Expy. N N 9 A H canal brought textile and other manufacturing to 25 R the region in the era before, during and after the I V E R American Civil War. Eve St. Discovery Center 10 Share and Enjoy 5 11 Broad St. Enjoy your time in the National Heritage Area. Walton Way 12 15 th St. Greene St. Explore on foot, by bicycle, canoe or kayak; fish 13 th St. 14 from the banks or watch for wildlife. 13 6 For everyone’s safety and enjoyment, please: Old Turning Basin SCALE 0 .25 .5 .75 1 MILE • Be polite and a good steward of your Canal. 8 th St. • Appreciate the wildlife and historic 78 structures; do not disturb. 15 • Remember, the trail is like a roadway; keep right and pass left. • Groups should not take up full width of trail. Augusta Canal • Faster users yield to slower users. National Heritage Area • Don’t litter. Take your trash with you 706-823-0440 when you leave. www.augustacanal.com • Keep animals leashed and under control Non-emergencies at all times; clean and remove animal waste; Richmond County Sheriff’s Office remind others to do so. 706-821-1080 Maintenance concerns Augusta Cares 311 Emergencies 911 IN PARTNERSHIP WITH THE National Park Service U.S. Department of the Interior.
Recommended publications
  • Of Surface-Water Records to September 30, 1955
    GEOLOGICAL SURVEY CIRCULAR 382 INDEX OF SURFACE-WATER RECORDS TO SEPTEMBER 30, 1955 PART 2. SOUTH ATLANTIC SLOPE AND EASTERN GULF OF MEXICO BASINS UNITED STATES DEPARTMENT OF THE INTERIOR Fred A. Seaton, Secretary GEOLOGICAL SURVEY Thomas B. Nolan, Director GEOLOGICAL SURVEY CIRCULAR 382 INDEX OF SURFACE-WATER RECORDS TO SEPTEMBER 30,1955 PART 2. SOUTH ATLANTIC SLOPE AND EASTERN GULF OF MEXICO BASINS By P. R. Speer and A. B. Goodwin Washington, D. C., 1956 Free on application to the Geological Survey, Washington 25, D. C. INDEX OF SURFACE-WATER RECORDS TO SEPTEMBER 30,1955 PAET 2. SOUTH ATLANTIC SLOPE AND EASTERN GULF OF MEXICO BASINS By P. R Speer and A. B. Goodwin EXPLANATION This index lists the streamflow and reservoir stations in the South Atlantic slope and Eastern Gulf of Mexico basins for which records have been or are to be published in reports of the Geological Survey for periods prior to September 30, 1955. Periods of record for the same station published by other agencies are listed only when they contain more detailed information or are for periods not reported in publications of the Geological Survey. The stations are listed in the downstream order first adopted for use in the 1951 series of water-supply papers on surface-water supply of the United States. Starting at the headwater of each stream all stations are listed in a downstream direction. Tributary streams are indicated by indention and are inserted between main-stem stations in the order in which they enter the main stream. To indicate the rank of any tributary on which a record is available and the stream to which it is immediately tributary, each indention in the listing of stations represents one rank.
    [Show full text]
  • Physical Geography of Southeast Asia
    Physical Geography of Southeast Asia Creating an Annotated Sketch Map of Southeast Asia By Michelle Crane Teacher Consultant for the Texas Alliance for Geographic Education Texas Alliance for Geographic Education; http://www.geo.txstate.edu/tage/ September 2013 Guiding Question (5 min.) . What processes are responsible for the creation and distribution of the landforms and climates found in Southeast Asia? Texas Alliance for Geographic Education; http://www.geo.txstate.edu/tage/ September 2013 2 Draw a sketch map (10 min.) . This should be a general sketch . do not try to make your map exactly match the book. Just draw the outline of the region . do not add any features at this time. Use a regular pencil first, so you can erase. Once you are done, trace over it with a black colored pencil. Leave a 1” border around your page. Texas Alliance for Geographic Education; http://www.geo.txstate.edu/tage/ September 2013 3 Texas Alliance for Geographic Education; http://www.geo.txstate.edu/tage/ September 2013 4 Looking at your outline map, what two landforms do you see that seem to dominate this region? Predict how these two landforms would affect the people who live in this region? Texas Alliance for Geographic Education; http://www.geo.txstate.edu/tage/ September 2013 5 Peninsulas & Islands . Mainland SE Asia consists of . Insular SE Asia consists of two large peninsulas thousands of islands . Malay Peninsula . Label these islands in black: . Indochina Peninsula . Sumatra . Label these peninsulas in . Java brown . Sulawesi (Celebes) . Borneo (Kalimantan) . Luzon Texas Alliance for Geographic Education; http://www.geo.txstate.edu/tage/ September 2013 6 Draw a line on your map to indicate the division between insular and mainland SE Asia.
    [Show full text]
  • Imaging Laurentide Ice Sheet Drainage Into the Deep Sea: Impact on Sediments and Bottom Water
    Imaging Laurentide Ice Sheet Drainage into the Deep Sea: Impact on Sediments and Bottom Water Reinhard Hesse*, Ingo Klaucke, Department of Earth and Planetary Sciences, McGill University, Montreal, Quebec H3A 2A7, Canada William B. F. Ryan, Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY 10964-8000 Margo B. Edwards, Hawaii Institute of Geophysics and Planetology, University of Hawaii, Honolulu, HI 96822 David J. W. Piper, Geological Survey of Canada—Atlantic, Bedford Institute of Oceanography, Dartmouth, Nova Scotia B2Y 4A2, Canada NAMOC Study Group† ABSTRACT the western Atlantic, some 5000 to 6000 State-of-the-art sidescan-sonar imagery provides a bird’s-eye view of the giant km from their source. submarine drainage system of the Northwest Atlantic Mid-Ocean Channel Drainage of the ice sheet involved (NAMOC) in the Labrador Sea and reveals the far-reaching effects of drainage of the repeated collapse of the ice dome over Pleistocene Laurentide Ice Sheet into the deep sea. Two large-scale depositional Hudson Bay, releasing vast numbers of ice- systems resulting from this drainage, one mud dominated and the other sand bergs from the Hudson Strait ice stream in dominated, are juxtaposed. The mud-dominated system is associated with the short time spans. The repeat interval was meandering NAMOC, whereas the sand-dominated one forms a giant submarine on the order of 104 yr. These dramatic ice- braid plain, which onlaps the eastern NAMOC levee. This dichotomy is the result of rafting events, named Heinrich events grain-size separation on an enormous scale, induced by ice-margin sifting off the (Broecker et al., 1992), occurred through- Hudson Strait outlet.
    [Show full text]
  • 0306010606 Augusta Canal-Savannah River HUC 8 Watershed: Middle Savannah
    Georgia Ecological Services U.S. Fish & Wildlife Service 2/9/2021 HUC 10 Watershed Report HUC 10 Watershed: 0306010606 Augusta Canal-Savannah River HUC 8 Watershed: Middle Savannah Counties: Burke, Columbia, Richmond Major Waterbodies (in GA): McBean Creek, Savannah River, Butler Creek, Boggy Gut Creek, Reed Creek, Newberry Creek, Rocky Creek, Phinizy Swamp, Fort Gordon Reservoir, Bennock Millpond, Lake Olmstead, Millers Pond Federal Listed Species: (historic, known occurrence, or likely to occur in the watershed) E - Endangered, T - Threatened, C - Candidate, CCA - Candidate Conservation species, PE - Proposed Endangered, PT - Proposed Threatened, Pet - Petitioned, R - Rare, U - Uncommon, SC - Species of Concern. Shortnose Sturgeon (Acipenser brevirostrum) US: E; GA: E Occurrence; Please coordinate with National Marine Fisheries Service. Atlantic Sturgeon (Acipenser oxyrinchus oxyrinchus) US: E; GA: E Occurrence; Please coordinate with National Marine Fisheries Service. Wood Stork (Mycteria americana) US: T; GA: E Potential Range (county); Survey period: early May Red-cockaded Woodpecker (Picoides borealis) US: E; GA: E Occurrence; Survey period: habitat any time of year or foraging individuals: 1 Apr - 31 May. Frosted Flatwoods Salamander (Ambystoma cingulatum) US: T; GA: T Potential Range (county); Survey period: for larvae 15 Feb - 15 Mar. Canby's Dropwort (Oxypolis canbyi) US: E; GA: E Potential Range (soil type); Survey period: for larvae 15 Feb - 15 Mar. Relict Trillium (Trillium reliquum) US: E; GA: E Occurrence; Survey period: flowering 15 Mar - 30 Apr. Use of a nearby reference site to more accurately determine local flowering period is recommended. Updated: 2/9/2021 0306010606 Augusta Canal-Savannah River 1 Georgia Ecological Services U.S.
    [Show full text]
  • Spatial Variability of Levees As Measured Using the CPT
    2nd International Symposium on Cone Penetration Testing, Huntington Beach, CA, USA, May 2010 Spatial Variability of Levees as Measured Using the CPT R.E.S. Moss Assistant Professor, Cal Poly, San Luis Obispo J. C. Hollenback Graduate Researcher, U.C. Berkeley J. Ng Undergraduate Researcher, Cal Poly, San Luis Obispo ABSTRACT: The spatial variability of a soil deposit is something that is commonly discussed but difficult to quantify. The heterogeneity as a function of lateral distance can be critical to the design of long engineered structures such as highways, bridges, levees, and other lifelines. This paper presents a methodology for using CPT mea- surements to quantifying the spatial variability of cone tip resistance along a levee in the California Bay Delta. The results, presented in the form of a general relative va- riogram, identify the distance at which the maximum spatial variability is achieved for a given soil strata. This information helps define minimally correlated stretches of levee for proper failure and risk analysis. Presented herein are methods of interpret- ing, calculating, and analyzing CPT data to arrive at the quantified spatial variability with respect to different static and seismic failure modes common to levee systems. 1 INTRODUCTION Spatial variability of engineering properties in soil strata is inherent to the nature of soil. Spatial variability is controlled primarily by the depositional environment where high energy systems usually deposit materials with high spatial variability (e.g. al- luvial gravels) and low energy systems usually deposit materials with low spatial va- riability (e.g. lacustrine clays). This spatial variability is generally taken into account in geotechnical design in a qualitative empirical manner through appropriately spaced borings to assess the changing subsurface conditions.
    [Show full text]
  • Rule 391-3-6-.03. Water Use Classifications and Water Quality Standards
    Presented below are water quality standards that are in effect for Clean Water Act purposes. EPA is posting these standards as a convenience to users and has made a reasonable effort to assure their accuracy. Additionally, EPA has made a reasonable effort to identify parts of the standards that are not approved, disapproved, or are otherwise not in effect for Clean Water Act purposes. Rule 391-3-6-.03. Water Use Classifications and Water Quality Standards ( 1) Purpose. The establishment of water quality standards. (2) W ate r Quality Enhancement: (a) The purposes and intent of the State in establishing Water Quality Standards are to provide enhancement of water quality and prevention of pollution; to protect the public health or welfare in accordance with the public interest for drinking water supplies, conservation of fish, wildlife and other beneficial aquatic life, and agricultural, industrial, recreational, and other reasonable and necessary uses and to maintain and improve the biological integrity of the waters of the State. ( b) The following paragraphs describe the three tiers of the State's waters. (i) Tier 1 - Existing instream water uses and the level of water quality necessary to protect the existing uses shall be maintained and protected. (ii) Tier 2 - Where the quality of the waters exceed levels necessary to support propagation of fish, shellfish, and wildlife and recreation in and on the water, that quality shall be maintained and protected unless the division finds, after full satisfaction of the intergovernmental coordination and public participation provisions of the division's continuing planning process, that allowing lower water quality is necessary to accommodate important economic or social development in the area in which the waters are located.
    [Show full text]
  • New York State Canal Corporation Flood Warning and Optimization System
    K19-10283720JGM New York State Canal Corporation Flood Warning and Optimization System SCOPE OF SERVICES K19-10283720JGM Contents 1 Background of the Project........................................................................................................... 3 2 Existing FWOS features ............................................................................................................... 5 2.1 Data Import Interfaces ............................................................................................................ 5 2.2 Numeric Models ...................................................................................................................... 5 2.2.1 Hydrologic Model............................................................................................................. 6 2.2.2 Hydraulic Model .............................................................................................................. 6 2.3 Data Dissemination Interfaces .................................................................................................. 6 3 Technical Landscape ................................................................................................................... 7 3.1 Software ................................................................................................................................. 7 3.1.1 Systems......................................................................................................................... 7 3.1.2 FWOS Software ..............................................................................................................
    [Show full text]
  • Part 629 – Glossary of Landform and Geologic Terms
    Title 430 – National Soil Survey Handbook Part 629 – Glossary of Landform and Geologic Terms Subpart A – General Information 629.0 Definition and Purpose This glossary provides the NCSS soil survey program, soil scientists, and natural resource specialists with landform, geologic, and related terms and their definitions to— (1) Improve soil landscape description with a standard, single source landform and geologic glossary. (2) Enhance geomorphic content and clarity of soil map unit descriptions by use of accurate, defined terms. (3) Establish consistent geomorphic term usage in soil science and the National Cooperative Soil Survey (NCSS). (4) Provide standard geomorphic definitions for databases and soil survey technical publications. (5) Train soil scientists and related professionals in soils as landscape and geomorphic entities. 629.1 Responsibilities This glossary serves as the official NCSS reference for landform, geologic, and related terms. The staff of the National Soil Survey Center, located in Lincoln, NE, is responsible for maintaining and updating this glossary. Soil Science Division staff and NCSS participants are encouraged to propose additions and changes to the glossary for use in pedon descriptions, soil map unit descriptions, and soil survey publications. The Glossary of Geology (GG, 2005) serves as a major source for many glossary terms. The American Geologic Institute (AGI) granted the USDA Natural Resources Conservation Service (formerly the Soil Conservation Service) permission (in letters dated September 11, 1985, and September 22, 1993) to use existing definitions. Sources of, and modifications to, original definitions are explained immediately below. 629.2 Definitions A. Reference Codes Sources from which definitions were taken, whole or in part, are identified by a code (e.g., GG) following each definition.
    [Show full text]
  • Owyhee High Plateau Major Land Resource Area (MLRA)
    MLRA 25 – Owyhee High Plateau (Utah portion) MLRA 25 – Owyhee High Plateau (Utah portion) Ecological Zone Upland Mountain High Mountain Subalpine Precipitation (inches) 12-17 inches 16-22 inches 16-22 inches 20-27 inches Elevation 5,000 -7,000 6,000 – 8,600 8,000-9,000 9,000 - 9,300 Soil Moisture Regime Typic Xeric Typic Xeric Typic Xeric Udic Soil Temp Regime Mesic Frigid Cryic Cryic Freeze free Days 80-120 60 - 90 30 - 40 20 -35 Mountain mahogany, Sagebrushes and Mountain big Aspen, Mountain big Subalpine Fir, browse Notes sagebrush sagebrush Subalpine sagebrush 300 – 500 and 1,100-2,100 and 2,400-2,500 lbs/ac 800 – 1000 lbs.ac 400-600 lbs/ac All values in this table are approximate and should be used as guidelines. Different combinations of temperature, precipitation and soil type can place an ecological site into different zones. Major Land Resource Area (MLRA) D25 D25 - Owyhee High Plateau E47A - and Ui D28A 030 60 120 Miles Great Salt 1:3,000,000 Lake Area 25—Owyhee High Plateau This area is in Nevada (52 percent),Idaho (29 percent), Oregon (16 percent), and Utah (3 percent). It makes up about 28,930 square miles (74,960 square kilometers). The city of Elko, Nevada, which is along Interstate 80, occurs in this MLRA. The Humboldt-Toiyabe and Sawtooth National Forests and numerous wilderness study areas also occur in this MLRA. Most of the wilderness study areas are in the high desert canyon lands of southern Idaho. The Duck Valley, South Fork, Ruby Valley, and Te-Moak Indian Reservations are in this area.
    [Show full text]
  • The Effect of Different Confluence Confirmation Strategies on the Obturation of Vertucci Type II Canal: Micro-CT Analysis
    Restor Dent Endod. 2021 Feb;46(1):e12 https://doi.org/10.5395/rde.2021.46.e12 pISSN 2234-7658·eISSN 2234-7666 Research Article The effect of different confluence confirmation strategies on the obturation of Vertucci type II canal: micro-CT analysis Seungjae Do , Min-Seock Seo * Department of Conservative Dentistry, Wonkwang University Daejeon Dental Hospital, Daejeon, Korea Received: Apr 8, 2020 Revised: Jun 7, 2020 ABSTRACT Accepted: Jun 17, 2020 Objectives: The present study aims to compare the obturation quality of 2 confluence Do S, Seo MS confirmation techniques in artificial maxillary first premolars showing Vertucci type II root canal configuration. *Correspondence to Min-Seock Seo, DDS, PhD Materials and Methods: Thirty artificial maxillary premolars having Vertucci type II root Associate Professor, Department of canal configuration were made. They were divided into 3 groups according to the confluence Conservative Dentistry, Wonkwang University confirmation technique as follows. Gutta-percha indentation (GPI) group (confluence Daejeon Dental Hospital, 77 Dunsan-ro, Seo- confirmation using a gutta-percha cone and a K file); electronic apex locator (EAL) group gu, Daejeon 35233, Korea. (confluence confirmation using K files and EAL); and no confluence detection (NCD) E-mail: [email protected] group. In the GPI group and the EAL group, shaping and obturation were performed with Copyright © 2021. The Korean Academy of the modified working length (WL). In the NCD group, shaping was performed without WL Conservative Dentistry adjustment and obturation was carried out with an adjusted master cone. Micro-computed This is an Open Access article distributed tomography was used before preparation and after obturation to calculate the percentage under the terms of the Creative Commons of gutta-percha occupied volume (%GPv) and the volume increase in the apical 4 mm.
    [Show full text]
  • Documentation of Design Deficiencies Santa Clara River Levee System (Scr-1) 1
    DOCUMENTATION OF DESIGN DEFICIENCIES SANTA CLARA RIVER LEVEE SYSTEM (SCR-1) 1. Project Description and Watershed Characteristics The Santa Clara River Levee (SCR-1) system is located in the city of Oxnard, in Ventura County, California. It is approximately 4.72 miles long, extending along the southeast bank of the Santa Clara River from Highway 101, at its downstream terminus, to the community of Saticoy, at its upstream terminus (see Figure 1). SCR-1 was originally designed in 1958 by the U.S. Army Corps of Engineers (Corps) to control the Corps’ predicted Standard Project Flood peak discharge of 225,000 cubic feet per second (cfs), a peak emanating from a partially regulated 1,600-square-mile Santa Clara River watershed. The height of SCR-1 varies from approximately 4 feet to 13 feet. The compacted fill embankment that forms SCR-1 has a top width of 18 feet. The levee embankment slopes are 2 horizontal to 1 vertical (2H:1V), on both the landward side and the riverward side. The riverward side of the embankment has a 1.5- to 2- foot-thick rock revetment, with a concrete facing at and near highway bridges. The rock revetment extends from the top of the embankment to varying depths. The lowest depth of the rock revetment is hereinafter referred to as the “toedown.” Construction of the SCR-1 project was completed in 1961. The levee was constructed adjacent to the active channel of the Santa Clara River. A review of historical aerial photography, dating as far back as 1927, indicates that before construction of the SCR-1, there were numerous locations along the project reach where the primary braid of the Santa Clara River impinged directly on the east and west banks of the river at rather abrupt flow angles.
    [Show full text]
  • Umbrella Empr: Flood Control and Drainage
    I. COVERSHEET FOR ENVIRONMENTAL MITIGATION PLAN & REPORT (UMBRELLA EMPR: FLOOD CONTROL AND DRAINAGE) USAID MISSION SO # and Title: __________________________________ Title of IP Activity: __________________________________________________ IP Name: __ __________________________________________________ Funding Period: FY______ - FY______ Resource Levels (US$): ______________________ Report Prepared by: Name:__________________________ Date: ____________ Date of Previous EMPR: _________________ (if any) Status of Fulfilling Mitigation Measures and Monitoring: _____ Initial EMPR describing mitigation plan is attached (Yes or No). _____ Annual EMPR describing status of mitigation measures is established and attached (Yes or No). _____ Certain mitigation conditions could not be satisfied and remedial action has been provided within the EMPR (Yes or No). USAID Mission Clearance of EMPR: Contracting Officer’s Technical Representative:__________ Date: ______________ Mission Environmental Officer: _______________________ Date: ______________ ( ) Regional Environmental Advisor: _______________________ Date: ______________ ( ) List of CHF Haiti projects covered in this UEMPR (Flood Control and Drainage) 1 2 1. Background, Rationale and Outputs/Results Expected: According to Richard Haggerty’s country study on Haiti from 1989, in 1925, 60% of Haiti’s original forests covered the country. Since then, the population has cut down all but an estimated 2% of its original forest cover. The fact that many of Haiti’s hillsides have been deforested has caused several flooding problems for cities and other communities located in critical watershed and flood-plain areas during recent hurricane seasons. The 2008 hurricane season was particularly devastating for Haiti, where over 800 people were killed by four consecutive tropical storms or hurricanes (Fay, Gustav, Hanna, and Ike) which also destroyed infrastructure and caused severe crop losses. In 2004, tropical storm Jeanne killed an estimated 3,000 people, most in Gonaives.
    [Show full text]