<<

NASA/TP–2015–216648/REV1

Small Technology State of the Art

MissionDesignDivision AmesResearchCenter,MoffettField,

December2015 NASA STI Program ...in Profile

Sinceitsfounding,NASAhasbeendedicated CONFERENCEPUBLICATION. totheadvancementofaeronauticsand • Collectedpapersfromscientificand science.TheNASAscientificandtechnical technicalconferences,symposia,seminars, information(STI)programplaysakeypart orothermeetingssponsoredor inhelpingNASAmaintainthisimportant co-sponsoredbyNASA. role. SPECIALPUBLICATION.Scientific, • TheNASASTIProgramoperatesunderthe technical,orhistoricalinformationfrom auspicesoftheAgencyChiefInformation NASAprograms,projects,andmissions, Officer.Itcollects,organizes,providesfor oftenconcernedwithsubjectshaving archiving,anddisseminatesNASA’sSTI. substantialpublicinterest. TheNASASTIProgramprovidesaccessto TECHNICALTRANSLATION.English- theNASAAeronauticsandSpaceDatabase • anditspublicinterface,theNASATechnical languagetranslationsofforeignscientific ReportServer,thusprovidingoneofthe andtechnicalmaterialpertinentto largestcollectionofaeronauticalandspace NASA’smission. scienceSTIintheworld.Resultsare Specializedservicesalsoincludecreating publishedinbothnon-NASAchannelsand customthesauri,buildingcustomized byNASAintheNASASTIReportSeries, databases,andorganizingandpublishing whichincludesthefollowingreporttypes: researchresults. TECHNICALPUBLICATION.Reportsof FormoreinformationabouttheNASASTI • completedresearchoramajorsignificant Program,seethefollowing: phaseofresearchthatpresenttheresults ofNASAprogramsandincludeextensive AccesstheNASASTIprogramhomepage dataortheoreticalanalysis.Includes •

compilationsofsignificantscientificand athttp://www.sti.nasa.gov technicaldataandinformationdeemedto E-mailyourquestionviatheInternetto beofcontinuingreferencevalue.NASA • help@sti..gov counterpartofpeer-reviewedformal professionalpapers,buthavingless FaxyourquestiontotheNASASTIHelp stringentlimitationsonmanuscriptlength • Deskat443-757-5803 andextentofgraphicpresentations. PhonetheNASASTIHelpDeskat TECHNICALMEMORANDUM. • • Scientificandtechnicalfindingsthatare 443-757-5802 preliminaryorofspecializedinterest,e.g., Writeto: quickreleasereports,workingpapers,and • bibliographiesthatcontainminimal NASASTIHelpDesk annotation.Doesnotcontainextensive NASACenterforAeroSpaceInformation analysis. 7115StandardDrive Hanover,MD21076–1320 CONTRACTORREPORT.Scientificand • technicalfindingsbyNASA-sponsored contractorsandgrantees. NASA/TP–2015–216648/REV1

Small Spacecraft Technology State of the Art

MissionDesignDivision AmesResearchCenter,MoffettField,California

NationalAeronauticsand SpaceAdministration AmesResearchCenter MoffettField,California94035-1000

December2015 Theuseoftrademarksornamesofmanufacturersinthisreportisforaccuratereportinganddoesnot constituteanofficialendorsement,eitherexpressedorimplied,ofsuchproductsormanufacturersbythe NationalAeronauticsandSpaceAdministration.

Availablefrom: NASACenterforAeroSpaceInformation NationalTechnicalInformationService 7115StandardDrive 5301Shawnee Hanover,MD21076-1320 Alexandria,VA22312 443-757-5802 703-605-6000 Thisreportisalsoavailableinelectronicformat Abstract

This report provides an overview of the current state of the art of small spacecraft technology.It was firstcommissioned by NASA’sSmall SpaceraftTechnologyProgram(SSTP)in mid-2013 in response totherapidgrowthininterestinusingsmallspacecraftformanytypesofmissionsin andbeyond,andrevisedinmid-2015.Forthesakeofthisassessment,smallspacecraftaredefined tobespacecraftwithalessthan180kg. Thisreportprovidesasummaryofthestateof theartforeachofthefollowingsmallspacecrafttechnologydomains:CompleteSpacecraft,Power, , Guidance Navigation and Control, Structures, Materials and Mechanisms, Thermal Control,CommandandDataHandling,Communications,Integration,LaunchandDeployment, Ground Data Systems and Operations, and Passive Deorbit Devices. Due to the high market penetrationof,particularemphasisisplacedonthestateoftheartof-related technology.

1 Disclaimer

Thedocumentlistsordescribesmanyspecificproductsandtechnologiesasexamplesandreferences buttheirinclusiondoesnotimplyanyendorsementbyNASA.Failuretoincludeanyspecificprod- uctsortechnologiesthatmightbeconsideredrelevantunderaparticulartopicwasunintentional.

Acknowledgements

Thisreporthasbeenbasedlargelyondesktopresearchandpublisheddocumentsonsmallspace- crafttechnology,industryconsultationandparticipationatconferences. Helpfulsuggestionsand contributionswerealsoreceivedfromnumerouspeopleatNASAAmesResearchCenter,andinpar- ticulartheauthorswishtoacknowledgethereviewersJames,JoshBenton,MattD’Ortenzio, JoshForgione,VanessaKuroda,McIntosh,MarcMurbach,MattNehrenz,HugoSanchez, MattSorgenfrei,SarahThompson,EddieUribeandBruceYost. FromNASAGlennResearchCentertheauthorswouldliketothankthereviewersMattDeans, FredElliot, JoshFreeh, DavidJacobson, WilliamMarshall, FelixA.Miranda, TimSmithand BrandonWhite. Finally,theauthorswouldliketothankallofthecompaines,universitiesandorganizationswho providedinformationforthisreport.

2 NASA , Mission Design Division September, 2015

Division Chief: ChadFrost Project Manager: ElwoodAgasid

Editor: RoganShimmin Contributing Authors: ElwoodAgasid,RolandBurton,RobertoCarlino,GregoryDefouw,Andres DonoPerez,ArifGöktuğKaracalıoğlu,BenjaminKlamm,Abraham Rademacher,JamesSchalkwyk,RoganShimmin,JuliaTilles,SashaWeston

3 Contents

1 Introduction 14 1.1 Objective ...... 14 1.2 Scope ...... 14 1.3 Assessment ...... 14 1.4 Overview ...... 15

2 IntegratedSpacecraftPlatforms 18 2.1 Introduction ...... 18 2.2 State of the Art ...... 18 2.3 On the Horizon ...... 22 2.4 Conclusion ...... 23

3 Power 25 3.1 Introduction ...... 25 3.2 State of the art ...... 25 3.2.1 Power Generation...... 25 3.2.2 Power Storage...... 28 3.2.3 Power Management and Distribution ...... 32 3.3 On the horizon ...... 35 3.3.1 Power Generation...... 35 3.4 Conclusion ...... 38

4 Propulsion 40 4.1 Introduction ...... 40 4.2 State of the art ...... 41 4.2.1 Chemical Propulsion Systems ...... 41 4.2.2 Electric Propulsion Systems ...... 50 4.2.3 -less Systems ...... 57 4.3 On the Horizon ...... 57 4.4 Conclusion ...... 60

5 Guidance,NavigationandControl 63 5.1 Introduction ...... 63 5.2 State of the art ...... 63 5.2.1 Integrated Units ...... 63 5.2.2 Reaction Wheels ...... 64 5.2.3 Magnetorquers ...... 66 5.2.4 ...... 66 5.2.5 Trackers ...... 66 5.2.6 Magnetometers ...... 66 5.2.7 Sensors ...... 68 5.2.8 Earth Sensors ...... 69 5.2.9 Gyros ...... 69 5.2.10 GPS ...... 71 5.2.11 Deep Space Navigation...... 71 5.3 On the Horizon ...... 72 5.4 Conclusion ...... 72

4 6 Structures,MaterialsandMechanisms 74 6.1 Introduction ...... 74 6.2 State of the art ...... 74 6.2.1 Primary Structure ...... 75 6.2.2 Mechanisms ...... 76 6.3 On the Horizon ...... 78 6.4 Radiation Effects and Mitigation Strategies . . . . . . . . . . . . . . . . . . . . . . . 80 6.4.1 Shielding from the Space Environment ...... 80 6.4.2 Inherent Mass Shielding ...... 81 6.4.3 Ad Hoc Shielding ...... 82 6.5 Conclusion ...... 82

7 ThermalControlSystem 84 7.1 Introduction ...... 84 7.2 State of the Art ...... 84 7.2.1 Passive Systems...... 84 7.2.2 Active Systems ...... 88 7.3 On the Horizon ...... 93 7.4 Conclusion ...... 95

8 CommandandDataHandling 98 8.1 Introduction ...... 98 8.2 State of the art ...... 98 8.2.1 Form Factor ...... 98 8.2.2 On-Board Computing ...... 98 8.2.3 Memory and Electronic Components ...... 100 8.2.4 Bus Electrical Interfaces and I/O ...... 103 8.2.5 Electronic Power Supplies ...... 104 8.3 On the Horizon ...... 104 8.4 Radiation mitigation and tolerance schemes . . . . . . . . . . . . . . . . . . . . . . . 104 8.4.1 Radiationmitigationandtoleranceschemes . . . . . . . . . . . . . . . . . . . 105 8.4.2 Component Selection ...... 105 8.4.3 Protection Circuits ...... 105 8.4.4 Memory Protection ...... 106 8.4.5 Communication Protection ...... 106 8.4.6 Parallel Processing and Voting ...... 107 8.5 Open Source Spacecraft Software ...... 107 8.5.1 CFE/CFS ...... 107 8.5.2 COSMOS ...... 107 8.5.3 Linux ...... 107 8.6 Conclusion ...... 108

9 Communications 110 9.1 Introduction ...... 110 9.2 State of the art ...... 112 9.2.1 VHF and UHF ...... 112 9.2.2 L-band...... 112 9.2.3 S-band ...... 114

5 9.2.4 X-band ...... 114 9.2.5 Lasercom ...... 116 9.3 On the Horizon ...... 116 9.3.1 Ku- to Ka-band...... 116 9.3.2 Asymmetric communications ...... 117 9.3.3 Transparent Antennas ...... 118 9.3.4 IntercubesatCommunicationsandOperations. . . . . . . . . . . . . . . . . . 118 9.4 Conclusion ...... 118

10Integration,LaunchandDeployment 120 10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 10.2 State of the Art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 10.2.1 Launch Integration Services ...... 120 10.2.2 Dedicated Launchers of Small Spacecraft. . . . . . . . . . . . . . . . . . . . . 123 10.2.3 LaunchersWhichOfferRide-SharingOpportunitiesforSmallSpacecraft . . . 124 10.2.4 Dedicated Ride-Share ...... 129 10.2.5 Orbital Maneuvering Systems ...... 131 10.2.6 Orbital and Suborbital Rides ...... 132 10.2.7 Dispensers for Cubesats ...... 134 10.2.8 Other Adaptors for Small Spacecraft ...... 138 10.2.9 Separation Systems...... 141 10.3 On The Horizon ...... 143 10.3.1 Launch Integration Services ...... 143 10.3.2 Dedicated Launchers for Small Spacecraft . . . . . . . . . . . . . . . . . . . . 143 10.3.3 Orbital Maneuvering Systems ...... 154 10.4 Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

11GroundDataSystemsandMissionOperations 158 11.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 11.1.1 Small spacecraft ground data systems . . . . . . . . . . . . . . . . . . . . . . 158 11.1.2 AmateurandNon-AmateurGroundStations . . . . . . . . . . . . . . . . . . 161 11.2 State of the art ...... 161 11.2.1 Turnkey solutions...... 161 11.2.2 Antenna Components ...... 165 11.2.3 Ground Data Systems Hardware and Software. . . . . . . . . . . . . . . . . . 166 11.3 Alternative Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169 11.4 On the horizon ...... 169 11.5 Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

12PassiveDeorbitSystems 173 12.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173 12.2 State of the Art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173 12.2.1 Passive Deorbit Systems ...... 174 12.3 Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

13Conclusion 178

6 Preface

Atthetimethesmallspacecraftstateoftheartreportwasfirstpublishedin2013,therehadbeen 247cubesatsand105othersmallspacecraft(non-cubesatsunder50 kg)launched,with92cubesats launchedin2013alone. Sincethatpublication, therehavebeen201smallspacecraftlaunched, falling169shortofestimatesduetoanunfortunateseriesoflaunchfailures(Buchen,2015). Due tothisalmostdoublingofflightheritage,itwasdecidedtoreleaseaneweditionofthisreport. Arequestforinformation(RFI)wasreleasedintheFederalBusinessOpportunities(FBO)and NASAAcquisitionInternetSite(NAIS).Whileresponsetotheserequestswassubdued,research continuedusingjournalandconferencepapers,webresourcesandapublicsolicitationattheannual AIAA/USUConferenceonSmallinLogan,Utahon8-13August2015. Eachchapteremphasizesnewtechnologiesdevelopedsincethepreviouseditionofthereportwas released. Atableprovidesaconvenientsummaryofthetechnologiesdiscussed,withexplanations and references in the body text.We have attempted to isolate trends in the small spacecraft industry todiscusswhichtechnologiesmissionshavebeenusingandwhytheyareusedinpreferencetoolder technologies. A centralelementof the reportistolist state ofthearttechnologiesbytechnologyreadiness level (TRL).TheauthorshaveendeavoredtoindependentlyverifyTRLbycitingpublishedtestresults. Wherethesetestresultsdisagreewithvendors’ownadvertisedTRL,theauthorshaveengaged thevendorstodiscussthediscrepancy. Itisimportanttonotethatthisreporttakesabroader system-levelview;toattainahighTRL,thesubsystemmustbeinaflight-readyconfigurationwith allsupportinginfrastructuresuchasmountingpoints,powerconversionandcontrolalgorithmsin anintegratedunit. Insomecasesmultiplecompaniesaredevelopingsimilarproducts.Inthesecasesonlycompanies with the leading TRL will be identified in the tables. The TRL will be based purely on the technologyfulfillingtheTRLdefinitions,regardlessofspecificmissionrequirements. Forexample, averyimportantdesignfactorforsolarelectricpropulsionisthedurationofoperation,andthe applicabilityofpassivedeorbitdevicescanvarydrasticallyatdifferentaltitudes.Forthepurposes ofthisdocument,simplyhavingfunctionedintherelevantenvironmentissufficienttoachieveTRL. Furthermore,ifatechnologyhasflownonamissionwithoutworking,orwithoutprovidingvalid confirmationtotheoperator,that“flightheritage”willbediscounted. Thereportstructureisconsistentwiththepreviousedition,withafewnotableexceptions.As smallspacecrafthavematuredsincethepreviouseditionofthisreport,theyarenowbeingseriously consideredfordeepspacemissions.Thishasledtointensescrutinyovertheradiationprotectionin smallsatellites,especiallygiventhelow-cost,oftencommercialoff-the-shelf(COTS)paradigmthey occupy.Consequentlythisreporthasincludedradiationchambertestdatawhereavailableforthe subsystemssusceptibletohighenergyparticles. Additionalchapterswereconsideredforthereport.Duetotimeandavailableresources,theonly additionwaspassivedeorbitdevices,butitisimportantthatfutureeditionsofthisreportinclude therapidlygrowingfieldsofflightsoftware,assemblyintegration&testingservices,andmission modeling&simulation,allofwhicharenowextensivelyrepresentedatsmallspacecraftconferences. Itisacknowledgedthatthesefieldsarestillintheirinfancy,butjustastheincludedsubsystems haveevolvedandreliableconventionsandstandardshaveemergedsincethefirstedition,thesame isexpectedoverthecomingyearsforthesenewchapters. Duringourconsultationitwasalsopointedoutthatforallthecomponentsavailable,noengi- neeringprojectissuccessfulwithoutsolidengineeringmanagement. Giventhehighpercentageof universitiesnowattemptingtodesign,buildandlaunchcubesats,thisisanimportantconsidera- tion. Afutureeditionofthisreportwillhopefullyincludeachapteronbestpracticesandstateof

7 theartmanagement.

References

Buchen,E.(2015).Spaceworkssmallreport:Trendsandmarketobservations.InProceed- ingsoftheAIAA/USUConferenceonSmallSatellites.Logan,Utah.

8 Executive Summary

IntegratedSpacecraftPlatforms Sincethelasteditionofthisreport,somevendorshavecompiledthesubsystemsrepresentedin thelaterchaptersintocomplete,integratedspacecraftplatforms,availableoff-the-shelfforrapid integrationanddelivery.Thusthestateoftheartperformanceiscommensuratewiththesubsystem performancelistedbelow. AvarietyofsmallspacecraftbusesareavailablefromMilleniumSpace Systems,andSpaceflightIndustriesintheUSA,andAstro- undFeinwerktechnikAdlershof,Berlin SpaceTechnologiesGmbHandSurreySatelliteTechnologyLtdin.Completecubesatbuses areavailablefromTyvakNanosatelliteSystemsInc.,BlueCanyonTechnologiesLLCandPumpkin Inc in the USA, and GomSpace ApS in Europe.There are many other vendors providing engineering servicestodesignaturnkeysmallspacecraftplatformcustomizedtomissionrequirements.

Power Eachyearsmallspacecraftpowersubsystemsbenefitfromimprovementsinsolarcellefficiency,bat- terychemistry,andthetrendofminiaturizationintheelectronicstechnology.Stateoftheartsolar cellsarereachingbetween29-33%efficiencyandadvancedlithium-ionandlithiumpolymerbatteries 1 canhavespecificenergyreaching250 Whkg . Powermanagementanddistributionsystemsare stilloftendesignedinhousebutthereareincreasingnumbersoflightweight,robust,commercially availablePMADsystemsfromavarietyofproducers. Consumerelectronicstrendsandimprove- mentsinsolartechnologydrivenbyanewfocusonterrestrialrenewableenergyarelargelytothank fortheseadvancesasthesmallspacecraftindustrymarketisstilltoosmalltodrivelarge-scale R&D. Therearemanypromisingphotovoltaictechnologiescurrentlyindevelopmentthatwillincrease theefficiencyand/orreducethecostandweightofsolarcells.Theseinclude46%four-junctioncells, lightweightflexiblesolarcellsat20%efficiency,andcellsthatmakeuseofcheaporganicelectronics. Whiletherecontinuetobeadvancesinthethermo-nuclearandfuelcellpower-generationareas, moredevelopmentneedstobedone(largelyinminiaturization)beforesomeofthesepromising technologiesbecomeavailableforuseonsmallspacecraft.

Propulsion Propulsionsystemsforsmallspacecrafthaveconsistentlyincreasedtheirmaturityandrobustness withrespecttothepreviousreport. Asignificanteffortinthedesign,developmentandtestingof miniaturizedthrustershavebeenperformedbyseveralinstitutions. Versionsoflargerspacecraft systemshavebeenadaptedsosatisfythepower,massandvolumeconstraintsthatarerequiredin smallbuses. Fundamentalcomponentssuchasregulators,valves,feedsystemsortankshavebeen alsore-designedand,currently,severalsystemshavehighTRLs. Regardingchemicalpropulsion systems,lowcomplexitytechnologiessuchascoldgassystemshavealreadystartedtobeflownin smallspacecraftandevencubesats. Otheroptionssuchasnon-toxicpropellantsystemsorsolid motorshavebeenincorporatedintoexisting50 150 kgclassspacecraftorarereadytobeflown intheyear. Electricpropulsionsystemshavebeenevolvedbyaseriesofcontinuoustesting campaignsforawiderangeoftechnologies. Electrosprays,Hall-EffectThrusters,Pulsed Thrustersandionarenownearlyreadytobecomefullyintegratedsubsystemsinsmall spacecraftmissionsinthenextfewyears.Inregardstosolarsails,recentsuccessfuldemonstrations andtestshaveindicatedapathtowardstheutilizationofthispropellant-lesstechnologyforboth LEOandinterplanetarymissions.

9 Guidance,NavigationandControl Thecurrentstateoftheartforsmallspacecraftguidance,navigationandcontrolperformanceis

1.5 monboardorbitalpositionaccuracy(usingGPS)andpointingtobetterthan0.1 usingreaction wheels,MEMSgyrosandastartracker. ComponenttechnologyforEarthorbitingmissionsis matureandallkeyGNCcomponentsareavailableatTRL9fromavarietyofvendors.Components fordeepspacesmallspacecraftmissionsarerelativelyimmaturebutareexpectedtoreachhighTRL withinthenexttwotothreeyears. InnovationinGNCisfocusedonminiaturizationofexisting technology and the development of single vendor integrated attitude determination and control units.

Structures,MaterialsandMechanisms Thestateoftheartforprimarystructuresusedforsmallspacecraft,largerthan12U,continuesto becustomin-housedesigns,orfortailoredsolutions,offeredbytheindustry,tomeetspecificmission requirements.Therehavebeenrecentattemptstoestablishastandardextensiblebusinthisclass ofspacecraft,andwithitastandard. However,thebenefitsofthisefforthaveyettobe realized.Inthesmallerthan12Uclassofspacecraft,therehasbeenseveraluniquesolutionsoffered byagrowingindustryforoff-the-shelf spacecraft structures and structural components. These off-the-shelfcomponentscomplementthestandardapproachofcustomdesignedframes(typically fabricatedusingmilledaluminum)enablingalargersetofsolutionsforspacecraftdesigners.Most oftherecentadditionstotheoff-the-shelfmarkethavebeeninthe3Uclassofcubesats. However, therearenowatleastafewrelativelymature(TRL6-7)off-the-shelf6Uchassisbeingoffered.This isaclassofspacecraftthathasjustnowbeguntoshowsignsofrapidinadoptionfor flightmissions. Thereareeven12Usolutionsbeingprovidedbymanyofthesevendors(asignof theindustry’sdesiretobereadyforthenextthing).3Dprintedprimarystructuresremainonthe horizon.Butwithseveralflightmissions,soontobelaunchedusingthesematerials,thehorizonon thistechnologyforprimarystructuresappearstobecloserthanever.

ThermalControl Thermalcontrolmanagementregulatesthefunctionaltemperaturerangerequiredthroughoutall spacecraftcomponents.Assmallspacecraftdesignmatures,thetechniquesthatcontrolthedefined thermalenvironmentmustbetomeetthesesmallervolumeandpowerconstraints.Traditional spacecraftthermalmanagementmayneedadditionaltestingandfabricationforsmallspacecraft application. Whileinsulation(MLI)andsurfacecoating(paint/tape)canstillbeappliedtosmallspacecraft, technologiessuchaspassivelouvers,nonmetallicthermalstraps,sunshadesandcryocoolersare beingdesignedforsmallerplatforms. Thisincreaseinspacecraftthermalmanagementabilitywill facilitate the expansion of small .Several thermal control mechanisms are currently beingproposed,testedandfabricatedforsmallspacecraftapplication:thermalstorageunitsforen- ergystorage;stowedanddeployablepassiveradiators;andminiaturizedcirculatorpumpsrequiring minimalpowerinput.

CommandandDataHandling Avionicssolutionsforsmallspacecraftandinparticular,cubesats,areabundant.Ongoingadvances intheembeddedsystemsindustryhaveprovidedhighlycapableplatformsandcomponentsthat

10 allowforrapidandlowcostdevelopmentofcommandanddatahandling(C&DH)systems. Em- beddedsystemshavepavedthewayforthedevelopmentofhighlyintegrated,lowmassandlow powerprocessingandcontrolsystems.Manyofthecommercialoff-the-shelf(COTS)hardwarehave successfullyflownintheLEOenvironmentovershortmissiondurations. Anumberofcommercial vendorsareprovidingcompleteintegratedavionicssystemonaPC/104boardorboards,incor- poratingcomputerprocessor, memory, I/OandEPS.Anumberofvendorssourcesystemsand componentsfromavarietyofmanufacturers,whichallowspacecraftdeveloperstopickandchoose componentsthatwillmeettheirdesignrequirements. Thereareopensourcesolutionsavailableto thosewhoareinterestedininvestigatinganentry-levelmeansofdevelopingspacecraftavionics. Asthecubesatclassofsmallspacecraftevolveintodeepspaceandextendeddurationmissions, therewillbeaneedtoaddresstheimpactofthespaceradiationenvironment.Itwillbenecessaryto developradiationtolerantsystemdesignstoensuremissionreliabilityandsuccess.Radiationhard- ened(rad-hard)hardwareisavailableforamajorityoftheelectroniccomponentsusedinC&DH systems. Howeverrad-harddevicescanbesignificantlymorecostlywhencomparedtostandard COTScomponents. Developerswillundoubtedlyutilizeacombinationofrad-hardcomponents, COTSdevices,shieldingandmitigationtechniquessuchaswatchdogtimersandmemoryscrub- bingtoreduceradiationenvironmentimpactsandimprovesystemreliabilityinanefforttokeep developmentcostsaslowaspossible.

Communications

CommunicationsystemsforcubesatshavelargelyutilizedtheVHFandUHF bands(primarilyusing whipantennas),orL- andS-bands(primarilyusingpatchantennas),whichhavebeenadequatefor lower-data-ratemissionsoperatinginLEO.CubesatmissionshavealsotakenadvantageofIridium andGlobalstartransponderstorelaydatatoEarthviacommercialconstellations,andoff-the-shelf radiossuchasBluetooth- andZigBee-compatibleradiosalsoshowpromiseforcubesatmissions. X-bandthroughKa-bandcommunicationisgainingmoretractionascubesatmissionsbecome moresophisticatedandrequirehigherdatathroughput,withmissionsbeingplannedbeyondLEO. Thehigherfrequenciesoffermorebandwidthandarelesscrowded,andthecorrespondingantennas canoffersimilargainbutwithasmalleraperture. Thedrawback, however, isthatthehigher frequenciesaremoreheavilyattenuatedbyEarth’satmosphere, requiringeithermorepowerto drivethesignalorahighernumberofgroundstations. Thedevelopmentofcubesat-compatible deployabledishantennasandotherhigher-gainantennasarealsoaddingtothesolution. Theadventofsoftware-definedradio(SDR)hasnottotallyreplacedhardware-definedradio. ThoughanSDRcanoperateatvariousfrequenciesandvariousmodulationschemeswithasimple changeinsoftwareandgenerallyhasasmallerfootprintthanhardware-definedradio,itgenerally consumes more power, which is a large drawback on power-constrained cubesats.However, a counter tothisdrawbackisthatasingleSDRunitcanfunctionasmultipleradiosatmultiplewavelengths, anditcanbereprogrammedin-flight. Lasercommunication(lasercom)forcubesatsisaTRL-8technologythatwillmost-likelybe demonstratedinspaceby2016. WhileonboardcubesatshavearelativelyhighTRLstatus, asymmetriclasercommunicationisalowerTRLconceptwherebythelaserishostedbyaground station,andthelasersignalismodulatedandpassivelyreflected(onboardthecubesat)backto Earth. ThedevelopmentofX-bandandKa-bandtransmitters,arrayedanddeployablehigh-gain antennasandlasercomsystemsrepresentthenewfrontierofcubesatcommunicationsystems.

11 Integration,LaunchandDeployment Moreandmoresmallspacecraftarelaunchedeveryyear. Technologiesinlaunch, inte- gration, anddeploymentsystemsarerespondingtothechangingsmallspacecraftmarket. The traditionalride-sharemethodwherethesmallspacecrafthitchesarideintheleftovermass,volume, andotherperformancemarginsisstilltheprimarywayofputtingsmallspacecraftintoorbit.But thenewtechnologicaladvancementsshowthatthepopularityofclassicalride-sharingmightslowly decreaseintheupcomingyears. Dedicatedride-sharing, whereanintegratorbooksacomplete launchmissionandsellstheavailablecapacitytomultiplespacecraftoperatorswithouttheneedof aprimarycustomer,isbecomingmorepopularinthesector.Usinganorbitalmaneuveringsystem whichactsasaninter-stageonalaunchandthenpropelsitselfafterseparationisanother newapproach. Furthermore,ISScargovehiclesaregainingadditionalcapabilitiestodeliversec- ondarytohigherthenISSaltitudeoncetheirprimarymissioniscomplete. Beside anyride-shareapproach,morethantwentyorbitallaunchvehiclesareunderdevelopmenttocarry payloads ranging from 5kg to 500kg to orbit.Some of these new systems propose to launch orbital payloadsfromairbornevehicles,suborbitalsystems,orevenhighaltitudeballoons.Awidevariety ofintegrationservicesanddeploymentsystemsarealsounderdevelopmenttokeepupwiththe increasinglaunchanddeploymentdemandofsmallspacecraft.

GroundDataSystemsandMissionOperations TransmittingtelemetryandscientificdatabacktoEarthinthespecifiedqualityandquantity,and trackingandcommandingthespacecrafttotakecertainactionsdependonreliabletelecommuni- cationswithgroundstations. Althoughinthepastamateurgroundstationshavebeenessential forcubesatmissions,currently,smallspacecraftandgroundsystemsarerapidlyshiftingtonon- amateurcommunications,aspowersystemsbecomemoreeffective,attitudecontrolsystemsmore accurateandahigherdatarateisneededforscienceornewtechnologymissions.Inthescenarioof smallspacecraftmissions,manycompaniesaredevelopingnewstateoftheartsystemsforground stations. Someofthemfocusmoreonsingleproducts(suchasantennas,transceiver,simulation software)thatarethecuttingedgetechnologyyettobevalidatedinspacemissions,othersconsoli- dateandextendtheirserviceswithturnkeysolutions,whichaddmorecapabilityandavailabilityto theiralreadydevelopedgroundsystems.Alternativestocommongroundsystemsareinter-satellite communications,whichrelaydatatothegroundthroughconstellationsofsatellites(suchasIrid- iumorGlobalstar).Still,therearealotofnewpromisingareasandtechnologiesthatgrounddata systemscanexploreanddevelopforfutureSmallSpacecraftmissions.

PassiveDeorbitSystems Therequirementfordeorbitcapabilityisimplementedtoconstraintheamountofgeneratedspace debrisorbitingEarth.Ifasmallspacecraftisunabletobeparkedinagraveyardorbitornaturally reenterEarth’satmosphereinunder25 year, adeorbitsystemmustbeintegrated. Inthepast decade, therehaveonlybeenafewadvancementsonpassivedeorbittechnologies, suchas sailsandelectromagnetictethers. NanoSail-D2,DeorbitSailandCanX-7areallcubesatplatforms thathavesuccessfullydemonstratedtheutilizationofdragsailsfordeorbitinginLowEarthOrbit within the 25 year post mission requirement. Terminator Tape is another deorbit option that uses electromagnetictethersthatiscurrentlybeingflownonAerocube-Vcubesat.

12 1 Introduction

1.1 Objective The objective of this report is to assess and give an overview of the state of the art in small spacecraft technology.ItwasfirstcommissionedbyNASA’sSmallSpacecraftTechnologyProgram(SSTP)in mid-2013inresponsetotherapidgrowthininterestinusingsmallspacecraftformissionsbeyond LEO,andrevisedinmid-2015.Inadditiontoreportingonwhatiscurrentlyavailable,aprognosis isprovideddescribingtechnologiesonthehorizon. Informationinthisreporthasbeencollectedprimarilythroughdeskresearchandisnotin- tendedtobeexhaustive- nosuchassessmentcanbecomprehensive. Newtechnologyisdeveloped continuously,andemergingtechnologieswillmaturetobecomethestateoftheart. Theauthors intendtoregularlyupdatethisreport, andcurrenttechnologiesthatwereinadvertentlymissed willbeidentifiedandincludedinthenextversion. Thevaluableinputofreadersissolicitedat [email protected]- pleaseinclude“stateoftheartreport”inthesubjectline.

Figure1.1.Overviewofthevarietyofspacecraftthatfallintothesmallspacecraftcategory.

1.2 Scope Aspacecraftishereaftercalleda“smallspacecraft” whenitswetmassisbelow180 kg. Thisdef- initionadoptstheterminologysetoutbyNASA’sSmallSpacecraftTechnologyProgram(SSTP) (NationalAeronauticsandSpaceAdministration,2015a).Figure1.1givesanexampleofthevariety ofspacecraftthatfallintothesmallspacecraftcategory. AttheuppermasslimitthereareminisatelliteslikeFASTSAT(Fast,Affordable,Scienceand TechnologySatellite), NASA’sfirstminisatellitemissionlaunchedin2010withamassslightly below180 kg. Onthelowermassend,thereareprojectssuchasKickSat,whichaimedtodeploy picosatellitesthesizeofalargepostagestampandwithamassbelow10 grams. Spacecraftare

13 (a) Launch dates vs mass of the small spacecraft (b)Cubesatswithformfactorsof1U,3U,and6U, studiedinthisreport. respectively.Thevolumeofthe1Ubaseunitis100 ⇥ 100 100 mm. ⇥ Figure1.2.Cubesats generally grouped according to their mass, where small spacecraft include minisatellites with a massof100-500 kg,microsatelliteswithamassof10-100 kg,nanosatelliteswithamassof1-10 kg, andpicosatelliteswithamassbelow1 kg. Cubesatsareastandardforsmallspacecraftthatweighonlyafewkilogramsandarebasedon aformfactorofa100 100 100 mmcube. Cubesatscanbecomposedofasinglecube(a“1U” ⇥ ⇥ cubesat)orseveralcubescombinedforming,forinstance,3Uor6Uunits(seeFigure1.2). Dueto theirhighmarketpenetrationandtheirincreasedusageinrecenttimes,particularemphasisisput onthestateoftheartofcubesattechnologyinthisreport(seealsoFigure1.2). Thetechnology tablesshowninsubsequentsectionsarenotmeanttobecomprehensive. Theirgoalistoillustrate thecurrentstateoftheartbasedondeskresearchinalimitedamountoftime.

1.3 Assessment

Thestateoftheartassessmentofatechnologyisperformed using NASA’s TRL scale (see Figure 1.3). A technology is deemedstateoftheartwheneveritsTRLislargerthanor equalto6. ATRLof6indicatesthatthemodelorproto- typeisnearthedesiredconfigurationintermsofperformance, weight, andvolume, andhasbeentestedanddemonstrated inarelevantenvironment. Arelevantenvironmentiseithera high fidelity laboratoryenvironmentor asimulated operational environment(NationalAeronauticsandSpaceAdministration, 2015b). Atechnologyisconsiderednotstateoftheartwhen- everitsTRLislowerthanorequalto5. Inthiscategory,the technologyisconsideredtobe“onthehorizon”. Thisdefini- tionof“stateoftheart”hasbeenchosenbecauseofitsinherent simplicity.Clearly,oldandpossiblyobsoletetechnologyhasa TRLlargerthan6butcannotbeconsideredasstateofthe art. Thebiasinthedefinitionhasbeenrecognizedandcare Figure 1.3. NASA Technology hasbeentakeninthereporttoexcludeobsoletetechnology Readiness Levels (TRLs) (National fromthestudy. Aeronautics and Space Adminis- tration,2015b). 14 1.4 Overview Thisreportisstructuredasfollows:insection2thestateoftheartofsmallspacecrafttechnologyis addressedbyfocusingonthespacecraftsystemasawhole.Thecurrentbestpracticesofintegration arepresented.Then,insection3tosection11,thestateoftheartofthespacecraftsubsystemsare presentedinturn:

Power • Propulsion • Guidance,NavigationandControl(GN&C) • Structures,MaterialsandMechanisms • ThermalSystems • CommandandDataHandling(C&DH) • Communications • Integration,LaunchandDeployment • GroundDataSystemandOperations • PassiveDeorbitDevices • Conclusionsontheoverallstateoftheartofsmallspacecraftarepresentedinsection13.

References

National Aeronautics and Space Administration.(2015a).NASA’sSmallSatelliteMissions.http:// www.nasa.gov/mission_pages/smallsats/.(Accessed:2015-10-28) NationalAeronauticsandSpaceAdministration. (2015b). TechnologyReadinessLevel. http:// www.nasa.gov/content/technology-readiness-level.(Accessed:2015-10-28)

15 2 Integrated Spacecraft Platforms

2.1 Introduction

Asthemarketforsmallspacecraftandcubesatshasexpandedsincethelasteditionofthisreport, anichehasemergedforoff-the-shelfassembledspacecraftbuses. Thesebusesprovideintegrated platformsuponwhichacanbehostedandreadytoflyinaveryshortamountoftime.As theplatformmaybepurchasedforanyofawidevarietyofmissions,thesubsystemsaresizedto beasdiverseandcapableaspossible. Twotrendshaveemergedinthecubesatbusmarket: cubesatcomponentdeveloperswitha sufficientlydiverseportfolioofsubsystemsofferingpackagedeals,orcompaniestraditionallyoffering engineeringservicesforlargerbespokeplatformsminiaturizingtheirsubsystems.

2.2 StateoftheArt

Smallspacecraft MilleniumSpaceSystemshasbeendevelopingthesmallspacecraftplat- formundercontractfromDARPA(MilleniumSpaceSystems,Inc.,2015c).TheAltairisasmaller version of their Aquila series (up to 3000 kg) which has extensive flight heritage. So far the Altair hasundergoneballoontesting(MilleniumSpaceSystems,Inc.,2015a),thermalvacuumandvibra- tiontesting(MilleniumSpaceSystems,Inc.,2015b). Thefirstlaunchisscheduledfor2016onthe F-15AirborneLaunchAssistSpaceAccess(ALASA),alsosponsoredbyDARPA. Astro- und Feinwerktechnik Adlershof offers the TET-1 platform, which flew on a -FG/ launchin2012asasecondarypayload. TET-1islargerthanAltair,at670 580 880 mmbut ⇥ ⇥ offersthesame50 kgpayloadmass. TheTET-1attitudecontrolsystem,reusedfromtheBIRD (BispectralandInfraredRemoteDetection)DLRmissionin2001,provides2 arcminpointingand 10 arcsecknowledge(Astro- undFeinwerktechnikAdlershofGmbH,2015). BerlinSpaceTechnologiesproducesaseriesofsmallspacecraftnamedtheLEOS-30TRLX, LEOS-50TRLX,andLEOS-100. TheLEOSplatformsarebasedondesignsflownformultiple TUBSATandLAPANmissions(EuropeanSpaceAgency,2015a,2015b).TwoLEOS-50platforms willbedeliveredlaterthisyearastheKentRidgemissionwhileaLEOS-100willbedeliveredin mid-2016(Buhl,Danziger,&Segert,2015;Segert,2015). The LEOS-30 is a 20 kg spacecraft, allowing 5-8 kg payload capacity.UHF and S-band commu- nicationsareprovided,andthesystemisdesignedfora2 yearoperationallife.

Figure 2.2. The TET-1 bus. Image cour- Figure2.1. TheAltairbus. Imagecourtesy tesy ofAstro- und Feinwerktechnik Adlershof ofMilleniumSpaceSystems,Inc.(2015c). GmbH(2015).

16 Figure 2.3. The LEOS 50 bus. Image Figure 2.4. The SSTL-150 bus. Image courtesyofBerlinSpaceTechnologiesGmbH courtesyofSurreySatelliteTechnologyLtd. (2015). (2015).

TheLEOS-50isa50 kgspacecraft,allowing15-25 kgpayloadcapacity. UHFcommunications areprovidedfortelemetryandcontrol,whilea100 MbpsX-bandlinkisavailablefordatadownlink. TheADCSprovides1 arcminpointingaccuracyand10 arcsecpointingknowledgewitha10/sslew rate and less than 15 arcsec/s jitter.The vehicle is600 600 300 mm,providesanaverageof20 W ⇥ ⇥ payloadpowerwithinapayloadvolumeof400 400 200 mmandisdesignedforanoperational ⇥ ⇥ lifetimeof5 years. TheLEOS-100isalargerstructurereusingtheLEOS-50avionics. Duetothelargermassit provides1 arcminpointingaccuracyand2.5 arcsecpointingknowledgewitha5/sslewrateand less than 5 arcsec/s jitter.The vehicle is600 600 800 mmwithamassof65 kg,andthepayload ⇥ ⇥ volumeis500 500 500 mm with an allowance of 30-50 kg.The larger vehicle generates more solar ⇥ ⇥ powerandcanprovide60 Waveragepowertothepayload,whiletheX-bandcommunicationshave also been upgraded to 400 Mbps.The LEOS-100 also has options for 2 Gbps optical data downlink andcoldgasorelectricalpropulsion. SurreySatelliteTechnologyLimited(SSTL)hasalonglegacyofsmallspacecraftinorbit.There are8oftheSSTL-100inorbit,10oftheSSTL-150,andaversionmodifiedtofittheESPAring calledtheSSTL-150ESPA.Adown-speccedvariantontheSSTL-150calledSSTL-X50isinfinal testingforaforthcominglaunch.

Table2.1.Integratedsmallspacecraftplatforms

Product Manufacturer Status Radiationtesting Altair MilleniumSpace TRL8 LEOpartsheritage Systems TET-1 Astro- und TRL9 13 krad Feinwerktechnik LEOS30/50/100 BerlinSpace TRL8 LEOpartsheritage TechnologiesGmbH SpaceflightIndustries TRL8 15 krad SSTL-100/150/X SurreySatellite TRL9 5krad TechnologyLimited

17 Table2.2.Integratedsmallspacecraftplatformspecifications Product Vehiclesize Payloadmass Payload Pointing Pointing power control knowledge MSSAltair 300 300 50 kg 90 W 0.3 arcmin 10 arcsec ⇥ ⇥ 300 mm AFAdlershof 670 580 50 kg 2 arcmin 10 arcsec ⇥ ⇥ TET-1 880 mm BST 20 kg LEOS-30 BST 600 600 50 kg 20 W 1 arcmin 10 arcsec ⇥ ⇥ LEOS-50 300 mm BST 600 600 65 kg 60 W 1 arcmin 2.5 arcsec ⇥ ⇥ LEOS-100 800 mm SSTL-100 20 kg SSTL-150 600 600 50 kg 20 W 1 arcmin 10 arcsec ⇥ ⇥ 300 mm SSTL-150 600 600 65 kg 60 W 1 arcmin 2.5 arcsec ⇥ ⇥ ESPA 800 mm SSTL-X50 600 600 75 kg 60 W 1 arcmin 2.5 arcsec ⇥ ⇥ 800 mm SLISCOUT 400 460 55 kg 95 W 3 arcmin 18 arcsec ⇥ ⇥ 840 mm

Cubesats TyvakNanoSatelliteTechnologyInc.isreplacingtheirIntrepidplatformwiththenew Endeavourplatform, availableinavarietyofformfactorsfrom3Uto12U.Two3UEndeavour spacecraftarescheduledtoflyin2016asNASA’sCubesatProximityOperationsDemonstration (CPOD)(TyvakNanoSatelliteSystemsInc.,2015a,2015b). The3Uvariantweighs5.99 kgwith payload,allows2Upayloadvolume,andoffers15 Wpayloadaveragepower. TheADCSprovides

0.06 pointingcontroland25 arcsecpointingknowledge, 3 persecondslewrateusingreaction wheelsandtorquecoils. Endeavourgeneratesupto70 Wpower,andprovidesS-bandcommuni- cations of 10Mbps in addition to the UHF offering. Endeavour has been radiation tested for over 24monthsmissionlifetime(10 krad)incollaborationwithVanderbiltUniversity(Puig-Suari,2015; TyvakNanoSatelliteSystemsInc.,2012). ThesolarpanelsandradioflewonJPL’sIPEXmission in2013,andtheradioflewagainonCalPoly’sExocubemissionin2015. GomSpace ApS of Denmark produces a series of cubesats under the moniker GOMX. The avionicsprovide5 pointingknowledgeand10 pointingcontrol.Thereare1U,2Uand3Uvariants available, directlyaffectingthepayloadvolumeandmass. Thevariationinsurfaceareaaffects availablepowerfromthesolarpanels. AllthesesystemsincludeaUHF/VHFradiolink. The GOMX-1missionflownbyAalborgUniversitylauncheda2Uconfigurationonain2013, hostinganADSBreceiver. TheGOMX-2reflightwasdestroyedintheCRS-3launch. GOMX-3 hasdelivereda3UconfigurationtothespacestationviaaJapaneseH-IIBinAugust2015, buthasnotbeendeployedfromthestationyet(GomSpaceApS,2015). A1Uvariantwithan integrated 3MP optical imaging payload is available offthe shelf under the name NanoEye.Two of theseunitshavebeendeliveredforflightbuthavenotundergoneradiationtesting. 1 Blue Canyon Technologies LLC has pursued a smaller, modular form factor. The 2 U XB1 modulecanbestackedintolargercubesatformfactors. Supportingconfigurationsupto27U,the XB1centersaroundtwoXACTmoduleswithadditionalpower,thermalmanagement,payloadand

18 Figure2.5. TheEndeavourbusasusedin Figure 2.6.The GOMX bus from GomSpace. theCPODmission.ImagecourtesyofTyvak ImagecourtesyofGomSpaceApS(2015). NanoSatelliteSystemsInc.(2015a).

Table2.3.GomSpaceGOMXconfigurations. Size Mass(beforepayload) Availablevolume Availablepayloadpower 1U 725 g 0.4U 1.3 Waverage 2U 1200 g 1.4U 2.48 Waverage 3U 1500 g 2.3U 3.68 Waverage propulsioninterfacessupportedwithBCTflightsoftware.ThetwoXACTunitsdeliverapointing accuracyof0.002,apointingstabilityof1 arcsec/sec,andaslewrateof10 deg/secforatypical 3Ucubesat.TheXB1Avionicshasbeenthroughafullqualificationtestprogramanda3Uversion isflyingin2016aspartofAPL’sRAVANmission. A6Uversionisflyinginlate2016aspartof thePlanetIQGPSROConstellation,andtheXB1avionicswillflyontheNASAGoddard missionalsoin2016(Stafford,2015). Surrey Satellite Technology Ltd. from the UK is focusing on their larger form factors (50+ kg) (Eisele,2015),buttheyalsooffertwocubesatplatforms. TheCube-XandNano-Xplatformsare availablein3U,6U,12Uand24U,resultinginatotallaunchmassof5to20 kg. SomemanufacturerssuchasPumpkinInc.offerapackagedealofcomponents.Forexample,the

Figure2.8. TheNano-Xbusasusedinthe Figure2.7.TheXB1bus.Imagecourtesyof STRaND-1mission. ImagecourtesyofSur- BlueCanyonTechnologies(2015). reySatelliteTechnologyLtd.(2015).

19 Figure2.9.TheCompleteCubesatbus.Im- Figure2.10.TheNukakbus.Imagecourtesy agecourtesyofInnovativeSolutionsInSpace ofSequoiaSpace(2015). B.V.(2015).

Table2.4.Integratedcubesatplatforms

Product Manufacturer Status Radiationtesting Endeavour TyvakNano-Satellite TRL8 10krad SystemsInc GOMX GomSpaceApS TRL9 10krad XB1 BlueCanyon TRL8 TechnologiesLLC CompleteCubeSat PumpkinInc N/A(nosingle LEOpartsheritage Kits configuration) Nukak SequoiaSpace Unknown Unknown

MISC2MkIIprovidesa3Ustructureallowing100 100 165 mmpayloadvolume,withpointing ⇥ ⇥ providedbytheMAI-100ADACSfromMarylandAerospaceInc. TheMISC3alsoprovidesa3U structureallowing100 100 175 mmpayloadvolume,withtheoptionofpointingfromaMAI-400 ⇥ ⇥ ADACSfromMarylandAerospaceInc. oraBCTXACTADCSfromBlueCanyonTechnologies (Pumpkin,Inc.,2015). Otherlarge-scaleproducerssuchasClydeSpacefromScotland(ClydeSpaceLtd.,2015)and ISISfromtheNetherlands(InnovativeSolutionsInSpaceB.V.,2015)offertailoredsolutions.The individualcomponentrytheyofferhas flight heritage, but will be addressedindividuallyinthe subsequent chapters of this report. As they offer no standard packages they are not discussed furtherinthischapter.

2.3 OntheHorizon Asspacecraftbusesarecombinationsofthesubsystemsdescribedinlaterchapters,itisunlikely there will be any revolutionary changes in this chapter that are not preceded by revolutionary changesinsomeotherchapter. Aslaunchservicesbecomecheaperandmorecommonplacethe marketwillexpand,allowinguniversitiesandresearchersinterestedinsciencemissionstopurchase anentirespacecraftplatformasanalternativetodevelopingandintegratingitthemselves.Assub- systemsmaturetheywillbeincludedinfutureplatformsofferedbyvendors.Thelargervendorswill

20 gainmoreflightheritageandtweaktheirplatformstoimproveperformance,whilesmallervendors willemergeintothemarket. Forexample,SSTLhastwonewofferingsindevelopmentcalledthe NextGenerationMicrosatelliteandtheFeatherCraft,bothstillatTRL3(SurreySatelliteTech- nologyLtd.,2015). TheNextGenerationMicrosatelliteprovidesalowerpricepointcomparedto theexistingplatforms,whiletheFeatherCraftfeaturessignificantlyincreasedpropulsioncapability withavof150 m/s. Onekeydevelopmentlikelyastheindustrymaturesisradiationtoleranceandradiationhard- ening,especiallyassmallspacecraftstartventuringintodeepspace. Subsystemsdescribedlater inthisreportincludedetailsonradiationtesting,butthecombinationofsubsystemmeantime betweenfailures(MTBF)intooverallsystemreliabilitywillbecomeakeydesigncriterionasthe samplegroupsbecomelargeenoughtobestatisticallysignificant.

2.4 Conclusion

IntheparadigmoflargerGEObuses,anumberofvendorshavepre-designed,fullyintegratedsmall spacecraftbusesavailableforpurchase.Duetothesmallmarkettheywillofcoursecooperatewith customerstocustomizetheplatform. Thisparadigmiscontinuedinthecubesatformfactor,but anewdesignconceptalsoemerges: duetothecubesatstandardinterfaces, manystandardized componentsareavailable,leveragingconsumerelectronicsstandardstoapproachtheplugandplay philosophyavailableforterrestrialPCsandcomputerservers. Inparticular, sincetheprevious editionofthisreportcubesatcommunicationsandguidance, navigationandcontrolsubsystems have matured significantly. At present software is lagging behind hardware in modularity and reusability,andrepresentsthelargesthurdletodeliveringcubesatmissions.

References

Astro- undFeinwerktechnikAdlershofGmbH.(2015).TET-1SatelliteBus.http://www.astrofein .com/2728/dwnld/admin/33_Prospekt_TET-1.pdf.(Accessed:2015-09-14) BerlinSpaceTechnologiesGmbH. (2015). http://www.berlin-space-tech.com/index.php_id= 33.html.(Accessed:2015-07-30) BlueCanyonTechnologies. (2015). http://bluecanyontech.com/space-missions/#spacebuses. (Accessed:2015-07-30) Buhl,M.,Danziger,B.,&Segert,T.(2015).SmallSatellitesMadeinBerlin(Tech.Rep.).Berlin, Germany:BerlinSpaceTechnologiesGmbH. ClydeSpaceLtd.(2015).http://www.clyde-space.com/cubesat_shop.(Accessed:2015-07-30) Eisele,S.(2015).Personalcorrespondence.(2September2015) European Space Agency. (2015a). LAPAN-A2 - eoPortal Directory - Satellite Missions. https://directory.eoportal.org/web/eoportal/satellite-missions/l/lapan-a2. (Ac- cessed:2015-10-05) EuropeanSpaceAgency. (2015b). TUBSAT- eoPortalDirectory- SatelliteMissions. https:// directory.eoportal.org/web/eoportal/satellite-missions/t/tubsat.(Accessed:2015- 10-05) GomSpaceApS. (2015). http://gomspace.com/index.php?p=products-platforms. (Accessed: 2015-07-30) Innovative Solutions In Space B.V. (2015). http://www.cubesatshop.com/index.php?page= shop.product_details&flypage=flypage.tpl&product_id=38&category_id=9&option= com_virtuemart&Itemid=71.(Accessed:2015-07-30)

21 Millenium Space Systems, Inc. (2015a). http://digitalcommons.usu.edu/smallsat/2014/ AdvTechI/2/.(Accessed:2015-09-14) MilleniumSpaceSystems,Inc. (2015b). http://www.millennium-space.com/platforms.html# altair.(Accessed:2015-07-30) Millenium Space Systems, Inc. (2015c). http://www.millennium-space.com/pressreleases/ ALTAIR01-20150805.pdf.(Accessed:2015-09-14) Puig-Suari, J. (2015). TyvakNanosatelliteSystemsResponsetoNASARFI:NNA15ZRD001L (Tech.Rep.).Irvine,California:TyvakNanoSatelliteSystemsInc. Pumpkin,Inc.(2015).http://www.cubesatkit.com/.(Accessed:2015-07-30) Segert,T.(2015).Personalcorrespondence.(1September2015) Sequoia Space. (2015). http://www.sequoiaspace.com/en/satellite-missions/. (Accessed: 2015-07-30) Stafford,G.(2015).Personalcorrespondence.(5August2015) Surrey Satellite Technology Ltd. (2015). http://www.sstl.co.uk/Products/EO---Science -Platforms.(Accessed:2015-07-30) TyvakNanoSatelliteSystemsInc.(2012).Endeavour:Theproductsuitefornextgenerationcubesat mission. http://mstl.atl.calpoly.edu/~bklofas/Presentations/SummerWorkshop2012/ MacGillivray_Endevour.pdf.(Accessed:2015-09-14) TyvakNanoSatelliteSystemsInc.(2015a).CubeSatProximityOperationsDemonstration(CPOD) Overview.http://www.nasa.gov/sites/default/files/files/A_Williams-A_Tsuda-CPOD _Overview.pdf.(Accessed:2015-09-14) TyvakNanoSatelliteSystemsInc. (2015b). http://tyvak.com/endeavour/. (Accessed: 2015-07- 30)

22 3 Power

3.1 Introduction Theelectricalpowersystem(EPS)manageselectricalpowergeneration,storageandmanagement andcommonlymakesupone-thirdoftotalspacecraftmass.Powergenerationtechnologiesinclude photovoltaiccells,solarpanelsandarrays,andradioisotopeorotherthermonuclearpowergener- ators. Powerstoragetakesplaceinbatteries,whichcaneitherbeprimarybatterieschargedonce beforelaunch,orrechargeablesecondarybatteries. Powermanagementanddistribution(PMAD) systemsallowoperatorstocontroltheflowofpowertothespacecraftinstrumentsandsubsystems. PMADsystemstakeavarietyofformsandareoftencustomdesignedtomeetspecificmission requirements.Engineersoftenfocusonpowergenerationandstoragetechnologiesthathaveahigh 1 specificpowerorpower-to-massratio(W h kg )toensurelaunchmassisminimized.

3.2 Stateoftheart 3.2.1 PowerGeneration SolarCells Themajorityofsmallspacecraftmissionsexploitthephotoelectriceffecttogenerate electricalcurrentduringtheirmission.Photovoltaiccells,orsolarcells,aremadeoutofthinwafers ofsemiconductorsthatproduceelectriccurrentwhenexposedtolight.Solarintensityvariesasthe inversesquareofthedistancefromtheSunandtheprojectedsurfaceareaofthepanelsexposed totheSunvariesasacosineoftheanglebetweenthepanelandtheSun.Mostcellsmanufactured todayforterrestrial applications are singlejunctioncells,usinga single material thatisresponsiveto aparticularportionofsolarradiationspectrum,wherethephoton’senergyishigherthantheband gapofthecellmaterial. Whilesinglejunctioncellsarecheaptomanufacture,theyareassociated with a relatively low efficiency, usually less than 20%. To increase the efficiency of solar cells, multiplelayersofmaterialswithdifferentbandgapsarecombinedinmulti-junctioncells,which canuseawiderspectrumofsolarradiation.Thetheoreticalefficiencylimitforaninfinite-junction cellis86.6%inconcentratedsunlight(Green,2003,p. 65). However,intheaerospaceindustry, triplejunctioncellsarecommonlyusedduetotheirhighefficiency-to-costratiocomparedtoother cells.Whilesolarcellsareutilizedonmostsmallspacecraftmissions,limitationsincludediminished efficacyasafunctionofdistancefromtheSun,inabilitytofunctionduringeclipseperiods,high surfaceareaandmass,degradationovertimeandhighcost. Figure3.1illustratestheavailable technologiesplottedbyenergyefficiency. Thissectionwilldiscussindividualsolarcellsandfully integratedsolarpanelsandarraysseparatelythatareapplicableonsmallspacecraft. Table3.1 describessmallspacecraftsolarpanelefficiencyfordifferentavailablemanufacturers. AzurSpace’ssingle-junctionSiliconSolarSpaceCellS32hasunremarkableenergyefficiencyat only16.9%andthemasspersurfacearearatioislessthanhalfofanythingelselistedatonly 2 32 mg cm . Additionally,AzurSpaceisofferinganumberofothercellsranginginefficiencyfrom 28-30%.Thesolarcellsareequippedwithanintegratedbypassdiode(AZURSPACE,2015). SpectroLaboffersseveralsolarcellsinthe26-30%efficiencyrange. Themostefficientcellsare 29.3% and are available in 26.62cm2,59.65 cm2 and customizable.All of SpectroLabs triple-junction cellshavehadtheiron-orbitperformancevalidatedto 1.5%ofgroundtestresults(Spectrolab, ± 2015). Emcore produces two triple-junction solar cells with 28.5% and 29.5% efficiency that are available instandardandcustomsizes.Thesesecondandthirdgenerationcellshaverichflightheritageand theZTJcellswereflownonNASA’smission.(EMCORE,2012,2015) Oneofthehighest-efficiencycellsonthemarkettodayismanufacturedfromSolAeroat33%

23 Figure3.1.SolarCellEfficiency

2 efficiency.The cell mass is only 49 mg cm ,which is around 40% less than traditional multi-junction solarcells. However,itshighcostandlowTRL(spacequalificationisstillinprocess)makeitless appealingforsmallspacecraftdesignerstoday.SolAeroalsomanufactures29%and29.5%efficiency solarcellsbothofwhicharefullyspacequalified forsmallspacecraftmissions(SolAeroTechnologies, 2015b).

Solar Panels & Arrays SolAero’s COBRA and COBRA-1U are designed for small spacecraft applications and use SolAero’s advanced triple junction 29.5% efficiency cells mentioned above. The COBRA’s stowed power for launch is upwards of 3 1 30 kW m andclaimstobethe“lowestmass(>7 g W )available inaself-contained,plug-and-playdesignsuitableforallorbitalen- vironments” (SolAero Technologies, 2015a). The cubesat-specific COBRA-1Ucanbeusedoncubesats1U-3Uinsizeorlarger,see Figure 3.2. SolAero’s CO- Figure3.2. BRAandCOBRA-1U.Image DHVTechnologyfabricates100 100 mm1Usolarpanelsthat ⇥ courtesy of (SolAero Tech- weigh 39 g and produce 2.24 W that can be seen in Figure 3.3.As- nologies,2015a). semblieswithcoverglasscanreachupto30%efficiencyifrequired. DHValsoproduces3U(132 g)and3U-deployablepanelsproducing 8.48 W.Inadditiontocustomizablepanels,DHVmanufacturesa50 50 mm“qubesat”panelwhich ⇥ weighs23 gandproduces272 mW(DHV,2015). GomSpaceproducestwoNanoPowerpowersystemsforcubesats,bothuse30%efficientcells and include Sun sensors and gyroscopes.The customizable panels have a maximum output of 6.2 W

24 Figure3.3.DHV’srangeofsmallsatellitesolarpanels.ImagecourtesyofDHV(2015). and 7.1 W and include a magnetotorquer.The cubesat panel weighs 26-29 g without an integrated magnetorqueror56-65 gwithoneandproduces2.3-2.4 W(GomSpace,2013). Clyde Space produces 0.5U-12U solar panels, as well as deployable solar panels for 1U and 3Ucubesatswherealternativesolarcellspreviouslymentionedareused. Boththemountedand deployablepanelshaveflownonsmallspacecraft(ClydeSpace,2015b). SpectroLab’sspacesolarpanelshaveflownonmultiplespace- craftinLEO andGEO. Theyareavailable in smallsizes (30 cm2) anduseSpectroLab’sImprovedTripleJunction(ITJ),UltraTriple Junction(UTJ)orNeXtTripleJunction(XTJ)cells(SpectroLab, 2010). MMADesign’sHaWK(HighWattsperKilogram)solararrayis designedfor3U-12Uplatformspacecraftandisdeployableandgim- baled with peak power of 36W and voltage of 14.2V (MMA, 2015b). TheeHaWKsolararrayisamodular,scalablesystemdesignedfor Figure 3.4. MMA’s HAWK 6Ucubesatsandlargerbuses. TheeHaWKstartsat72 W,uses solararrayontheCube SpectrolabUTJ28.3%cellsandweighsapproximately600 g(MMA, One (MarCO) cubesat.Image 2015a).BothofthesetechnologiesarecurrentlyaroundTRL7with courtesyofMMA(2015b). theHaWKscheduledtolaunchontheNASA’sBioSentinelmission andJPL’sMarCOmissionin2016andtheeHAWKcurrentlyundergoingenvironmentaltesting, seeFigure3.4.

3.2.2 PowerStorage

Solarpowergenerationisnotalwaysavailableforspaceflightoperations;theorbit,missionduration, distancefromtheSunorrequiredpeakinstrumentpowermayneedstoredon-boardenergy. Pri- maryandsecondarybatteriesareusedforpowerstorageandclassifiedaccordingtotheirdifferent electrochemistries.Asprimarytypebatteriesarenotrechargeable,theyareusedonlyforrealshort missiondurations(around1day,upto1week). Silver-zincaretypicallyusedastheyareeasier

25 Table3.1.SolarPanelEfficiency

Product Manufacturer Efficiency SolarCellsUsed Status SolarPanel ClydeSpace 28.3% SpectroLabUTJ TRL9 (0.5-12U); DeployableSolar Panel(1U,3U) SolarPanel ClydeSpace 29.5% SpectroLabXTJ TRL9 (0.5-12U); DeployableSolar Panel(1U,3U) SolarPanel ClydeSpace 30.0% AzurSpace TRL9 (0.5-12U); 3G30A DeployableSolar Panel(1U,3U) SolarPanel DHV 30.0% Unkn. TRL8 (5x5cm,1U,3U, custom) NanoPower GomSpace 30.0% AzurSpace TRL9 (CubeSatand 3G30A custom) HAWK MMA 28.3% SolAeroZTJ TRL7 eHAWK MMA 28.3% SolAeroZTJ TRL7 COBRA SolAero 29.5% SolAeroZTJ Unkn. COBRA-1U SolAero 29.5% SolAeroZTJ Unkn. SpaceSolar Spectrolab 26.8% SolAeroITJ TRL9 Panel SpaceSolar Spectrolab 28.3% SolAeroUTJ TRL9 Panel SpaceSolar Spectrolab 29.5% SolAeroXTJ TRL9 Panel tohandleanddischargeatahigherrate,howeverthereisalsoavarietyoflithium-basedprimary batteriesthathaveahigherenergydensityincluding: lithiumsulphurdioxide(LiSO2), lithium carbonmonofluoride(LiCFx)andlithiumthionylchloride(LiSOCl2)(Nelson,199). Secondarytypebatteriesincludenickel-cadmium(NiCd),nickel-hydrogen(NiH2),lithium-ion (Li-ion)andlithiumpolymer(Li-po)andhavebeenusedextensivelyinthepastonsmallspacecraft. Lithium-basedsecondarybatteriesarecommonlyused inportableelectronicdevicesbecause oftheir rechargeability,lowweightandhighenergyandhavebecomeubiquitousonspacecraftmissions. Theyaregenerallyconnectedtoaprimaryenergyprovidersuchasasolararrayandareableto providepowerondemandandrecharge.Eachbatterytypeareassociatedwithcertainapplications thatdependonperformanceparameters,includingenergydensity,cyclelifeandreliability(Nelson, 199).AcomparisonofenergycanbeseeninFigure3.5andFigure3.6andalistofbattery energydensitypermanufacturerisinTable3.2. Thissectionwilldiscusstheindividualchemicalcellsaswellaspre-assembledbatteriesofmul-

26 Figure3.5.Theenergydensitiesofvariousbatterytypes.ImagecourtesyofWagner(2006). tipleconnectedcellsofferedfrommultiplemanufacturers.Duetosmallspacecraftmassandvolume requirements,thebatteriesandcellsinthissectionwillbearrangedaccordingtoenergydensity. Thereare,however,anumberofotherfactorsworthconsidering,someofwhichwillbediscussed below(Jung&Manzo,2010). Duetotheextremeshortmissiondurationwithprimarycells,the currentstateoftheartenergystoragesystemsuselithiumion(Li-ion)orlithiumpolymer(Li-po) secondarycells,andthissubsequentsectionwillfocusonlyonthoseelectrochemicalcomposition.

Figure3.6.BatteryCellEnergyDensity

SecondaryLi-ionandLi-pobatteries Typically,Li-ioncellsdeliveryanaveragevoltageof 1 3.6 Vwhilethehighest specific energy obtainediswellinexcess of150 W h kg (Jung&Manzo, 2010). EaglePicherproducesanumberofcellsformilitaryandaerospaceapplicationsincludingtwo advancedLi-ioncellsandaRechargeableSpaceBattery.Bothcellshaveahighenergydensityand

27 Figure3.7. ABSLCommercial-off-the- Figure3.8. Vectronic’sVLB-4,-8,-16 shelfLi-ionBattery. Imagecourtesyof Li-ionBatteryPack. Imagecourtesyof ABSL(2007). VectronicAerospace(2014).

1 a TRL of 9.Their integrated Space Battery has an energy density of 153.5 W h kg andproduces anominalvoltageof28.8 VbuthasaslightlylowerTRLof7. SAFTisanotherbatterymanufacturerwithalonghistoryofsupplyingtheaerospaceindustry. 1 TheirLi-ionrangeincludeenergyincludescellsrangingfrom126-165 W h kg (SAFT,2013). 1 ABSL’sLi-ion18650cellshaveanenergydensityrangeof90-243 W h kg . ABSL’stopof thelinemilitaryandspacegradecellshaveprovenlong-termreliabilityandcharging, safety& protectioncircuitbuiltintothebatterycells(ABSL,2007),seeFigure3.7. TheVLB-16Li-ionbatterypackofferedfromVectronicAerospaceisspecificallydesignedfor useonsmallspacecraftandusessmallspacecraft-qualifiedSAFTcells.Thisbatterypackintegrates current,voltageandtemperaturemeasurementfunctionsandincludesdynamicbalancingthatcan bedeterminedthroughadigitalcontrolinterface(VectronicAerospace,2014),seeFigure3.8. GomSpace offers a range of cubesat subsystems including Li-ion batteries.Their NanoPower BP4 Quad-Battery-PackisdesignedtointegrateseamlesslywiththeirP-seriesPMADs. Itisstackable andavailableinanInternationalSpaceStationcompliantversion.NanoPowerBP4hasaTRLof9, havingflownonboardtheGOMX-1mission.TheBPXseriesallowsawiderangeofparallel/series combinationsandconnectionsofuptosixteencells(GomSpace,2015b). LG’sICR18650B3Li-ioncellshaveanenergy191 W h/kgandhaveflownonNASA’sPhoneSat spacecrafthousedina2S2PbatteryholderfromBatterySpace(LGChem,2007). 1 Panasonic produces the 18650B (3400 mA h) Li-ion cells have a high energy density of 243 W h kg that has a flight heritage on small spacecraft missions including NASA’s GeneSat, SporeSat, O/OREOS andPharmaSat(Panasonic,2012). MolicelmanufacturerstheICR18650HLi-ioncellwithahigh 1 energydensityof182 W h kg whichrequirepackcontrolcircuitry (Molicel,2015). BatterySpace.comsellsaLi-Ion18650BatteryHolder(2S2P) thatwasusedonNASA’sEDSNmissioninconjunctionwithLG ICR18650B3Li-ioncells. Canon’sBP-930sbatterypack,seeFigure3.9,isanaffordable, flight-proven option for power storage (Canon, 2011). The pack containsfour18650Li-cellsandhasflownsuccessfullyonNASA’s TechEdSatmissions. Figure3.9.CanonBP-930Li- ClydeSpacehasdesignedtwoLi-polymerbatteriesspecifically ionbatterypack.Imagecour- forsmallspacecraftandcubesats.Withanenergydensityofupto tesyof(Canon,2011). 1 150 W h kg andvoltageof8.2-32 V,batterytemperature,voltage,

28 current and telemetry can be monitored via integrated digital interface.They also have an integrated heater which maintains battery temperatures above 0C. The use of Li-polymer cells allows the Clyde Spaceflat-packedbatteriestobemassandvolumeefficient.Accordingtothemanufacturer,Clyde Spacebatteriesareusedonmorecubesatmissionsthananyotherprovider’s.

Table3.2.BatteryenergyDensity

Product Manufacturer EnergyDensity CellsUsed Status

1 COTS18650Li ABSL 90 W h kg - Sony,MoliCell, TRL8 1 ionbattery 243 W h kg LG,Sanyo, Samsung 1 BP-930s Canon 132 W h kg four18650Liion TRL9 cells 1 Li-Polymer, ClydeSpace 150 W h kg ClydeSpaceLi TRL9 8.2V,1.25 A h- Polymer 20 A h 1 Li-Polymer,32V, ClydeSpace 150 W h kg ClydeSpaceLi TRL8 6.25 A h Polymer 1 Rechargeable EaglePicher 153.5 W h kg EaglePicherLi TRL7 SpaceBattery ion (NPD-002271) 1 NanoPowerBP4 GomSpace 160 W h kg GomSpace TRL9 NanoPowerLi ion 1 NanoPowerBPX GomSpace 157 W h kg - GomSpace TRL9 1 171 W h kg NanoPowerLi ion Li-IonBattery Vectronic Unkn. SAFTLi-ion Unkn. BlockVLB-X

3.2.3 PowerManagementandDistribution

Powermanagementanddistribution(PMAD)systemscontroltheflowofpowertospacecraftsub- systemsandinstrumentsandareoftencustomdesignedbymissionengineersforspecificspacecraft powerrequirements. However,severalmanufacturershavebeguntoprovideavarietyofPMAD devicesforinclusioninsmallspacecraftmissions. SeveralmanufacturerssupplyElectricalPower Systems(EPS)whichtypicallyhaveamainbatterybusvoltageof8.2Vbutcandistributeareg- ulated5.0Vand3.3Vtovarioussubsystems.TheEPSalsoprotectstheelectronicsandbatteries fromnon-nominalcurrentandvoltageconditions. Aselectronicsvendorssettleonstandardvolt- ages,PMADwillbecomemorestandardized. Well-knownproducersofPMADsystemsthatfocus onthesmallspacecraftmarketincludePumpkin,GomSpace,StrasSpaceandClydeSpace. How- ever,anumberofnewproducershavebeguntoenterthePMADmarketwithavarietyofproducts, someofwhicharelistedbelow.Table3.3listsPMADsystemmanufacturesanditshouldbenoted thatthislistisnotexhaustive. ÅAC Microtec provides three Distributed Power and Control Units equipped with different userinterfaces(I2C,USB,SpaceWire),seeFigure3.10. Theyaredesignedforeasyintegrationof

29 Figure 3.10. ÅAC Microtec Flight Figure3.11. ClydeSpaceSmallSatel- modelDPCU-2112. Imagecourtesyof litePMADsystem. Imagecourtesyof AACMicrotec(2011). (ClydeSpace,2015a). payloads,sensorsandsub-systemsonadvancedsmallsatellites(AACMicrotec,2011). BlueCanyonTech’sBCTCubeSatElectricalPowerSystemincludesfunctionalityforsolararray inputpower,on-boardorexternalbatteries,chargecontrol,powerregulationanddistribution,and dataacquisition(BlueCanyonTech,2015). ClydeSpaceproducesaPMADandanEPStargetedspecificallyatsmallsatellites,seeFig- ure3.11. ThePMADincludesarangeoftopologiesandarchitecturesincludingDETandPPT, COTS,hybrid,andrad-hardcomponentsandhasatTRLof9.Theirthird-generationEPSfor1U- 12UcubesatshasaTRLof8whilethesecondgenerationEPSisaveteranofmanysmallspacecraft missions(ClydeSpace,2015a). CrystalspacemanufacturesaP1Upowersupplythatisoptimizedfor1Uand2Ucubesats.The batteryoutputtravelsthoughduplicatedconvertersthatcanprovide3.3 V,5 Vand12 VCrystal Space(2015). DesignNetEngineeringmakesaPMADsystemandanEnergyStorageModule(ESM).The PMAD system is designedto have highly configurable energy storage,battery chemistryand number ofpanels.TheESMconvertsbatterypowerintoalocallymanagedbrickofenergythatcanaccept chargefromanynumberofpowersourcesandprovidepowertospacecraftsubsystems. GomSpace’sNanoPowerP31usPMADsystemisdesignedforsmallspacecraftrequiringpower betweenoneand30 W,seeFigure3.12(GomSpace,2015a). Modular Devices, Inc. makes a 7.5-20 W Hybrid DC-DC power converter specifically designed forcubesatapplicationsinaradiationenvironment,TID>100 kRad(Si)(ModularDevicesInc.,

Figure 3.12. GomSpace NanoPower Figure3.13.SurreyLEOPCDUm.Im- P31us.. Image courtesy of GomSpace agecourtesyof(SurreySatelliteTech- (2015a). nologyltd.,2015).

30 2015). StrasSpace’sDrop-InPowerConverterisdesignedforenclosedandeasymounting. It hasawideinputvoltagerangeof3.3 V-40 Vandoperateswithatypicalefficiencyof90%(Stras Space,2015). SurreySatelliteTechnologysellsafullPMADsystemintheformoftheirLEOPCDU.Itis basedonamodulardesignthatisintendedtobescalableandcustomizable.ThePCDUsystemis madeupofabatteryconditioningmoduleandapowerdistributionmodule. Ithasflownonover 30missions(SurreySatelliteTechnologyltd.,2015).SeeFigure3.13 Vectronic’s Power Control and Distribution Unit is one of a range of space power systems designedforsmallspacecraft. ThePCDUmonitorsoutputfrombatteryandsolarpowersources, andswitchesindividualsubsystemsinresponsetoatelecommandoratomicallyintheeventofan overloadorshort-cutcondition.TherearecurrentlyeightVectronicPCADunitsonorbit.

Table3.3.PowerManagementandDistributionSystems

Product Manufacturer TechnologyType Status DPCU-2100,-2200, ÅACMicrotec PMAD Unkn. -2300 BCTCubeSat BlueCanyonTech EPS Unkn. ElectricalPower System SmallSatellitePCDU ClydeSpace PMAD TRL9 NanosatelliteEPS ClydeSpace EPS TRL8 P1U"Vasik" Crystalspace EPS TRL8 DNEEnergyStorage DesignNet ESM Unkn. Module Engineering NanoPowerP31us GomSpace PMAD Unkn. Series3699DC-DC ModularDevicesInc. PowerConverter Unkn. Converter Drop-InPower StrasSpace PowerConverter TRL9 Converter LEOPCDU Surrey PMAD TRL9 VectronicPCDU Vectronic PMAD Unkn.

3.3 Onthehorizon 3.3.1 PowerGeneration Newtechnologiescontinuetobedevelopedforspacequalifiedpowergeneration. Promisingtech- nologiesapplicabletosmallspacecraftincludeadvancedmulti-junction,flexibleandorganicsolar cells,hydrogenfuelcellsandavarietyofthermo-nuclearandatomicbatterypowersources.

Multi-junctionSolarCells Afour-junctionsolarcell,developedbyFraunhoferSociety,iscur- rently reaching 46% efficiency under laboratory conditions and concentrated sunlight, although itisunclearwhetherthepower-to-weightratioremainsthesameascurrenttriple-junctioncells

31 (FraunhoferSociety,2014). Additionally,BoeingSpectrolabshasbeenexperimentingwith5- and 6-junctioncellswithatheoreticalefficiencyashighas70%(King,2009).

FlexibleSolarCells Flexibleandthin-filmsolarcellshave anextremelythinlayerofphotovoltaicmaterialplacedona substrateofglassorplastic.Traditionalphotovoltaiclayersare around350micronsthick,whilethin-filmsolarcellsuselayers justonemicronthick. Thisallowsthecellstobeflexibleand lightweightand,becausetheyuselessrawmaterial,cheapto manufacture.In 2014, FirstSolar announced a flexible solar cell designwithanefficiencyof20.4%,closingthegaponsingle- junctionsolarcells(Casey,2014), showninFigure3.14. A flexible solar cell designed specifically for space applications isavailablefromUnitedSolarandhasanefficiencyof8%on 1 1 milpolymergivingthemaspecificpowerof750-1100 W kg (Beerninketal.,2007). Additionally,MITresearchershavedevelopedasolarcell materialthatcanbeprintedontopaperandfoldedmultiple timeswithoutlossoffunction. Whilestillinitsinfancy,this technologyhastheabilitytomassivelyreducethecostofsolar Figure 3.14. A series-connected cellproductionwhileincreasingthedurabilityofcells(Barret stringofproduction-sizedcellson al.,2011;Chandler,2011). 1milpolymerpartiallyrolledonto atube. ImagecourtesyofCasey (2014). OrganicSolarCells Anotheron-the-horizonphotovoltaic technologyusesorganicor“plastic” solarcells. Theseuseor- ganicelectronicsororganicpolymersandmoleculesthatabsorblightandcreateacorresponding charge.Asmallquantityofthesematerialscanabsorbalargeamountoflightmakingthemcheap, flexibleandlightweight. Currentlytheyarelimitedbyanefficiencyoflessthan4%(Scharber& Sariciftci,2013).

FuelCells Hydrogenfuelcellsareappealingduetotheirsmall,lightandreliablequalitiesand haveahighenergyconversionefficiency. Theyalsoallowmissionstolaunchwithasafe,storable, lowpressureandnon-toxicfuelsource. AnexperimentalfuelcellfromtheUniversityofIllinois thatisbasedonhydrogenperoxideratherthanwaterhasdemonstratedanenergydensityofover 1 1 1000 W h kg andhasatheoreticallimitofover2580 W h kg (Luoetal.,2008). Thismakes them more appealingfor interplanetary missions and during eclipse periods,however unlike chemical cells,theycannotberechargedonorbit. Regenerativefuelcellsarecurrentlybeingresearchedfor spacecraftapplication.Today,fuelcellsareprimarilybeingproposedforsmallspacecraftpropulsion systemsratherthanforpowersub-systems(Ethier,Paritsky,Moser,Slostad,&Hoyt,2013).

NuclearPower Anothersourceofspacecraftpowercomesfromharnessingtheenergyreleased during radioactive decay. Radioisotope Thermoelectric Generators (RTGs) are associated with longerlifetimes,highreliabilityandpredictablepowerproduction,andaremoreappealingthan relyingonbatteriesandsolarpanelswhensurpassingMarsorbit(>3 AU).AfullsizeRTG,suchas onNewHorizons,hasamassof56 kgandcansupply300 W(6.3%efficiency)atthebeginningofits life(NationalAeronauticsandSpaceAdministration,2015).Althougharadioisotopepowersystem hasnotyetbeenintegratedonasmallspacecraft,theycanstillbeconsideredwhensmallspacecraft

32 missions traverse interplanetary space. Additional testing and fabrication may be required for smallerplatforms.

TPV A thermo-photovoltaic (TPV) battery consists of a heatsourceorthermalemitterandaphotovoltaiccellwhich transformsphotonsintoelectricalenergy.Thermophotovoltaic powerconvertersaresimilartohighTRLthermoelectriccon- verters,withthedifferencethatthelatterusesthermocouples andtheformerusesinfrared-tunedphotovoltaiccells. In a paper given at the Photovoltaic Specialists Confer- encein2011,entitled“soda-cansizedthermophotovoltaicbat- teryreplacement”,aTPVwithaconversionefficiencyof10% wasdescribedthatwouldhaveaspecificenergyofapproxi- 1 mately 1000W h kg . Thisisapproximately6.5timeshigher thanthespecificenergyforaLi-ionbatterymakingitavery Figure3.15. SmallportableTPV exciting alternative power source, see Figure 3.15. The au- battery with adjacent fuel cylin- thors have not produced a physical prototype (Fraas et al., der.ImagecourtesyofFraasetal. 2011).Thermophotovoltaics are technically challenging as they (2011). requireradioisotopefueltohaveatemperatureofmorethan 1273 Kforhighinfraredemission,whilealsomaintainingtemperaturesuitableforphotovoltaiccells (lessthan323 K)forefficientelectricalconversion.

Alpha- andBeta-voltaics Alpha- andbeta-voltaicpowerconversionsystemsuseasecondary materialtoabsorbtheenergeticparticlesandre-emittheenergythrough. These photonscanthenbeabsorbedviaphotovoltaiccells. Methodsforretrievingelectricalenergyout of radioactive sources include beta-voltaic, alpha-voltaic, thermophotovoltaic, piezoelectric, and mechanicalconversions.Thistechnologyiscurrentlyinthetesting/researchphase.

3.4 Conclusion

Drivenlargelybyweightandsizelimitations,smallspacecraftareusingadvancedpowergeneration andstoragetechnologysuchas>29%efficientsolarcellsandlithium-ionbatteries.Thehigherrisk toleranceofthesmallspacecraftcommunityhasallowedboththeearlyadoptionoftechnologies likeflatlithium-polymercellsaswellascommercial-off-the-shelfproductsnotspecificallydesigned forspaceflight. Thisdramaticallyreducescostandincreasesflexibilityofmissiondesign. Inthis way,powersubsystemsarebenefitingfromthecurrenttrendofminiaturizationinthecommercial electronicsmarketaswellasfromimprovementsinphotovoltaicandbatterytechnology. Despitethesedevelopments,thesmallspacecraftcommunityhasbeenunabletoutilizeother, morecomplextechnologies. Thisislargelybecausethesmallspacecraftmarketisnotyetlarge enoughtoencouragetheresearchanddevelopmentoftechnologieslikeminiaturizednuclearenergy sources.Smallspacecraftpowersubsystemswouldalsobenefitfromgreateravailabilityofflexible, standardized power management and distribution systems so that every mission need not be designed fromscratch. Inshort,today’spowersystemsengineersareeagerlyadoptingcertaininnovative Earth-basedtechnology–likelithiumpolymerbatteries–while,atthesametime,patientlywaiting forimportantheritagespacetechnology–likefuelcellsandRTGs–tobeadaptedandminiaturized.

33 References

AACMicrotec. (2011). Bp-930materialsafetydatasheet (Tech.Rep.). Author. http://www .aacmicrotec.com/images/Products/Components/RIA/AAC_DPCU_www.pdf. (Accessed: 11 November2015) ABSL. (2007). Absl?s cots li-ion cell suite development (Tech. Rep.). Au- . https://batteryworkshop.msfc.nasa.gov/presentations/14_ABSL_COTS_Li-Ion _Cell_Suite_Dev_TMax.pdf.(Accessed:4November2015) AZURSPACE.(2015).AZURSPACESpaceSolarCells.http://www.azurspace.com/index.php/ en/products/products-space/space-solar-cells.(Accessed:12October2015) Barr, M. C., Rowehl, J. A., Lunt, R. R., Xu, J., Wang, A., Boyce, C. M.,. . .Gleason, K. K. (2011). Directmonolithicintegrationoforganicphotovoltaiccircuitsonunmodifiedpaper.Advanced Materials,23 .doi:10.1002/adma.201101263 Beernink, K., Guha, S., Yang, J., Banerjee, A., Lord, K., DeMaggio, G., . . . Wolf, D. (2007). Lightweight,flexiblesolarcellsonstainlesssteelfoilandpolymerforspaceandstratospheric applications. In 19th Space Photovoltaic Research and Technology Conference. http:// www.researchgate.net/publication/237442007_LIGHTWEIGHT_FLEXIBLE_SOLAR_CELLS _ON_STAINLESS_STEEL_FOIL_AND_POLYMER_FOR_SPACE_AND_STRATOSPHERIC_APPLICATIONS. (Accessed:26October2015) BlueCanyonTech. (2015). Bp-930materialsafetydatasheet (Tech.Rep.). Author. http:// bluecanyontech.com/wp-content/uploads/2015/05/EPS-Data-Sheet_1.0.pdf. (Accessed: 16October2015) Canon. (2011). Bp-930 material safety data sheet (Tech. Rep.). Canon Asia. http://support-asia.canon-asia.com/fuseaction/support/safetyinformation/pdf/ digitalcamera/BP-930-(Rev27May11)-SO.pdf.(Accessed:11November2015) Casey,T. (2014). Firstsolarknocksitoutoftheparkwithnewsolarcellefficiencyrecord. Clean Technica . http://cleantechnica.com/2014/02/27/first-solar-knocks-park-new-solar -cell-efficiency-record/.(Accessed:26October2015) Chandler,D.L.(2011).Whileyou’reup,printmeasolarcell.MITNews.http://news.mit.edu/ 2011/printable-solar-cells-0711.(Accessed:26October2015) ClydeSpace.(2015a).ClydeSpaceThird-Generation(3G)EPSRange.http://www.clyde-space .com/3g_eps_range.(Accessed:3December2015) ClydeSpace.(2015b).CubeSatLab.http://www.clyde-space.com/cubesat_shop.(Accessed:20 September2015) Crystal Space. (2015). Crystalspace P1U ?Vasik? Power Supply. http://crystalspace.eu/ products/crystalspace-p1u-vasik-power-supply/.(Accessed:3December2015) DHV. (2015). Solar panels for aerospace applications (Tech. Rep.). DHV Technol- ogy. http://dhvtechnology.com/wp-content/uploads/2013/04/DHV-Tech-Solar-Panel -TDS-2015-v2-june-2015web-version.pdf.(Accessed:23September2015) EMCORE. (2012). Ztj photovoltaic cell (Tech. Rep.). Author. http://www.emcore.com/ wp-content/uploads/ZTJ-Cell.pdf.(Accessed:1October2015) EMCORE. (2015). BTJSpaceSolarCell. http://www.emcore.com/btj-space-solar-cell/. (Accessed:1October2015) Ethier,V.,Paritsky,L.,Moser,T.,Slostad,J.,&Hoyt,R.(2013).Developmentofacubesatwater- electrolysispropulsionsystem. http://digitalcommons.usu.edu/smallsat/2013/all2013/ 30/.(Accessed:26October2015) Fraas,L.,Avery,J.,Minkin,L.,&Huang,H. (2011). Soda-cansizedthermophotovoltaicbattery replacement. In37thIEEEPhotovoltaicSpecialistsConference(PVSC). Seattle,WA. doi:

34 10.1109/PVSC.2011.6186356 Fraunhofer Society. (2014). New world record for solar cell efficiency at 46 percent French-German cooperation confirms competitive advantage of European photovoltaic in- dustry. https://www.ise.fraunhofer.de/en/press-and-media/press-releases/press -releases-2014/new-world-record-for-solar-cell-efficiency-at-46-percent. (Ac- cessed:26October2015) GomSpace. (2013). Nanopower p110 series solar panels datasheet (Tech. Rep.). Au- thor. http://nativesat.com/wp-content/uploads/2014/07/P110-Series-Solar-Panels .pdf.(Accessed:21September2015) GomSpace. (2015a). GomSpace NanoPower Modules. http://gomspace.com/index.php?p= products-p31us.(Accessed:1November2015) GomSpace. (2015b). NanoPowerModules. http://gomspace.com/index.php?p=products-bpx. (Accessed:6December2015) Green,M.A. (2003). Thirdgeneration:Advancedsolarenergyconversion(Vol.12). Springer.doi:10.1007/b137807 Jung,D.S.,&Manzo,M.A. (2010). NASAAerospaceFlightBatteryProgram(NESC-RP-08-75 ed.)(No.NASA/TM-2010-216728/VolumeI). http://ntrs.nasa.gov/archive/nasa/casi .ntrs.nasa.gov/20100027573.pdf.(Accessed:26October2015) King,R.(2009).RaisingtheEfficiencyCeilinginMultijunctionSolarCells.InStanfordPhotonics ResearchCenterSymposium. Stanford,CA. http://www.spectrolab.com/DataSheets/PV/ pv_tech/msce.pdf.(Accessed:2015-11-06) LG Chem. (2007). Product specification rechargeable lithium ion battery model : Icr18650 b3 2600mah (Tech.Rep.). LG. http://lib.store.yahoo.net/lib/theshorelinemarket/LG -18650-2600.pdf.(Accessed:4December2015) Luo,N.,Miley,G.H.,Shrestha,P.J.,Gimlin,R.,Burton,R.,Rusek,J.,&Holcomb,F. (2008). Hydrogen-peroxide-basedfuelcellsforspacepowersystems. JOURNALOFPROPULSION ANDPOWER,24 (3).doi:10.2514/1.31522 MMA.(2015a).E-HAWK(PAT.)NANOSATSOLARARRAYS.http://www.mmadesignllc.com/ products/hawk-and-e-hawk-nanosat-solar-arrays.(Accessed:20September2015) MMA. (2015b). HAWK(PAT.)CUBESATSOLARARRAYS. http://www.mmadesignllc.com/ products/hawk-and-e-hawk-nanosat-solar-arrays.(Accessed:13September2015) ModularDevicesInc. (2015). Series36997.5? 20watthybridforcubesatsandminiaturized satellites (Tech.Rep.). Author http://www.mdipower.com/content/SelectionTree/pdf/ 3699-Series.pdf.(Accessed:4November2015) Molicel. (2015). Panasoniclithiumionncr18650b(Tech.Rep.). Author. http://www.meircell .co.il/files/Moli%20ICR18650H.pdf.(Accessed:2November2015) NationalAeronauticsandSpaceAdministration. (2015). RadioisotopePowerSystems(RPS)Pro- gram.https://tec.grc.nasa.gov/rps/.(Accessed:26October2015) Nelson, R. A. (199). Spacecraft battery technology. http://www.aticourses.com/sampler/ Spacecraft_Battery_Technology.pdf.(accessed:18November2015) Panasonic. (2012). Panasoniclithiumionncr18650b(Tech.Rep.). Author. http://industrial .panasonic.com/lecs/www-data/pdf2/ACA4000/ACA4000CE417.pdf. (Accessed:2 December 2015) SAFT. (2013). MarketSolutions: Space. http://www.saftbatteries.com/market-solutions/ space.(Accessed:20September2015) Scharber,M.,&Sariciftci,N.(2013).Efficiencyofbulk-heterojunctionorganicsolarcells(Vol.38). doi:10.1016/j.progpolymsci.2013.05.001 SolAeroTechnologies. (2015a). IntegratedSolarProducts. http://solaerotech.com/products/

35 integrated-solar-products/.(Accessed:3October2015) SolAero Technologies. (2015b). Space Solar Cells / Coverglass Interconnected Cells (CIC). http://solaerotech.com/products/space-solar-cells-coverglass-interconnected -cells-cic/.(Accessed:3October2015) SpectroLab. (2010). Spectrolabspacesolarpanels(Tech.Rep.). Author. http://www.spectrolab .com/DataSheets/Panel/panels.pdf.(Accessed:3September2015) Spectrolab. (2015). SpectrolabSpaceProducts: Cells. http://www.spectrolab.com/solarcells .htm.(Accessed:7October2015) StrasSpace.(2015).Strasspacedropinpowerconverter(Tech.Rep.).Author.http://www.stras -space.com/strasspace-products.(Accessed:14November2015) SurreySatelliteTechnologyltd.(2015).Leopcdu(Tech.Rep.).Authorhttp://www.sstl.co.uk/ getattachment/fb984708-a8d0-4cc5-9253-49541bf85151/Power-Control-Distribution -Unit-PCDU.(Accessed:12November2015) Vectronic Aerospace. (2014). Li-Ion Battery Block VLB-4/ -8 /-16. http://www.vectronic -aerospace.com/space.php?p=battery.(Accessed:4November2015) Wagner, R. (2006). Battery fuel gauges: Accurately measuring charge level (Tech. Rep. No. 3958). MaximIntegrated. https://www.maximintegrated.com/en/app-notes/index.mvp/ id/3958.(Accessed:26October2015)

36 4 Propulsion

4.1 Introduction

Therearecurrentlyawiderangeoftechnologiesforpropulsionsystems,howevertheminiaturization ofthesesystemsforsmallspacecraftisaparticularchallenge. Thepurposeofthischapteristo identifyandanalyzethecurrentstatusofthemainpropulsiontechnologiesforsmallspacecraftand topresentanoverviewoftheavailablesystems. Performancetestsandtechnologydemonstrations wereconsideredinordertoassessthematurityandrobustnessofeachsystem.Someofthecurrent systemsareadaptabletoalargevarietyofsmallerbuses. While cold gas or pulsed plasma systems are targeted for small-v (v) application,modules thatcanprovidemoredemandingmaneuversneedstilldevelopment. Smallspacecraftbusesother thancubesatshavemoreflexibilitytoaccommodatesystemswithseveralthrusterunitstoprovide more attitude control and also large single axis maneuvers. Missions have demonstrated these technologiessuccessfullyandperformancedatagatheredhaspavedthewayforfuturemodifications oftheexistinghardwareinordertore-adaptthedesignstosatisfydemandingconstraints.Table4.1 showsasummaryofthecurrentstateoftheartfordifferentpropulsionmethods. Electricandchemicalsystemshaveexperiencedasignificantmaturationprocesswithrespectto thepreviousreport.standmeasurementsinvacuumandlifetimetestshavebeenperformed foranextensivevarietyofdevicesandaseriousefforthasbeenmadebyseveralcompanies,agencies andinstitutionstosatisfysmallspacecraftrequirements. FundamentalcomponentssuchasPower ProcessingUnits(PPUs)andparticularmass,powerandvolumeconstraintshavebeenadjustedto smallerbuses. Hazardousintroducehandlingandsafetychallengesandincreasethetotalcostof themission,whileseveralnon-toxicpropellantsalsoprovidelesssafetyandhandlingrequirements andalsohigherspecificimpulseanddensity,whichisbeneficialforvbudgets.Electricpropulsion devices have beenminiaturized to successfully adapt to small busesand low thrust options for cubesats, suchaselectrospraysorPulsedPlasmaThrusters(PPT),enableeasyintegrationdue totheirlowdegreeofcomplexity. Formoreambitiousmissionconceptsthatrequirehigherv technologiessuchasHallEffectandionsystem,arestillbeingdeveloped. Finally,inregardsto propellant-lesssystems,therecentlaunchofLightSailhasadvancedthestateoftheartofsolar sailsforsmallspacecraft. TheTRLforsmallspacecraftpropulsionisusuallylowercomparedtoothersubsystems. This sectionconsiderssystemsthathavebeenflownorareactivelybeingdevelopedinthelastfewyears toaccountforthemostrecentadvancesinthetechnology. Thechapterisdividedinthreemain categories:chemical,electricandpropellant-lesssystems,whicharedividedintosmallersubsections dependingonthetypeofthrustgeneration. Wheneverpertinent,thisreportconsiderscomplete propulsionsystemscomposedofthrusters,feedsystems,propellantstorageandPowerProcessing Unitsbutnotincludingelectricalpowersupply. Inaddition,forsomesubsections,singlethruster headsarealsointroduced.

4.2 StateoftheArt

4.2.1 ChemicalPropulsionSystems

Chemicalpropulsionsystemsaredesignedtosatisfyhighthrustimpulsivemaneuvers. Theyare associatedwithlowerspecificimpulsecomparedtotheirelectriccounterparts,buthavesignificantly higherthrusttopowerratios.

37 Table4.1.Propulsionsystemtypesforsmallspacecraft

Product Thrust SpecificImpulse Status Hydrazine 0.5-4 N 150-250 s TRL6 ColdGas 10 mN-10 N 65-70 s GN2/ButaneTRL9 Non-toxicPropulsion 0.1-27 N 220-250 s HANTRL8,ADN TRL6 PulsedPlasmaand 1-1300µN 500-3000 s TeflonTRL8, VacuumArc TitaniumTRL7 Thrusters Electrospray 10-120 µN 500-5000 s TRL6 propulsion HallEffectThrusters 10-50 mN 1000-2000 s XenonTRL8,iodine TRL4 Ionengines 1-10 mN 1000-3500 s XenonTRL8,Iodine TRL4 SolarSails 0.25-0.6 mN N/A TRL6(85 m2)TRL7 (35 m2)

Hydrazinepropellant Thereareasignificantnumberofmaturehydrazinepropulsionsystems usedinlargespacecraftthatpresentagenerallyreliableoptionasthecharacteristicsintermsof massandvolumeofthesecompactsystemsallowthemtobeasuitablefitforsomesmallspacecraft buses. Thrustersthatperformsmallcorrectionmaneuversandattitudecontrolinlargespacecraft maybelargeenoughtoperformhighthrustmaneuversforsmallspacecraftandcanactasmain propulsionsystem.Hydrazinepropulsionsystemstypicallyincorporateadoublestageflowcontrol valvethatregulatesthepropellantsupplyandacatalystbedheaterwiththermalinsulation.Typi- cally,theyhavetheadvantageofbeingqualifiedformultiplecoldstartswhichmaybebeneficialfor power-limitedbusesifthelifespanofthemissionisshort. Typically,hydrazineachievablespecific impulses are in the 150-250 s range.Because hydrazine systems are so widely used for large satellites, robustecosystemcomponentsexist,andhydrazinepropulsionsystemsarecustom-designedforspe- cificapplicationsusingavailablecomponents. Thissectionconsidersbothcommercialoff-the-shelf (COTS)hydrazinethrustersandintegratedcompletepropulsionsystems. DefenseandSpacehasdevelopeda1 Nclasshydrazinethrusterthathasextensiveflight heritage, including use on the small spacecraft, ALSAT-2. has leveraged existing designswithflightheritagefromlargespacecraftthatmaybeapplicabletosmallbuses,suchas MR-103thrusterusedonNewHorizonsforattitudecontrolapplications(Stratton,2004). Other AerojetRocketdynethrusterspotentiallyapplicabletosmallspacecraftincludetheMR-111andthe MR-106(AerojetRocketdyne,2015). TheCubesatHigh-ImpulseAdaptableModularPropulsionSystem(CHAMPS)projectlever- agestheminiaturizationeffortperformedforprevioussmallhydrazinethrusterstodevelopcubesat monopropellantpropulsionsystems.Thesemodulessatisfyawiderangeofmaneuversfromstation- keepingandorbittransferstomanagement. Therearevariousconfigurations,suchas theMPS-120,thatsupportuptofour1 Nhydrazinethrustersconfiguredtoprovidepitch,yaw,and rollcontrolaswellassingleaxisthrustingvector.AdditionalversionsoftheMPSseriesareunder developmentthatutilizevariousthrustertechnologiessuchascoldgas(MPS-110),non-toxicAF-

38 M315Epropellant(MPS-130)orelectricpropulsiondevices(MPS-160)(AerojetRocketdyne,2015). TheMPS-120wasselectedandfundedbyNASAtogothroughextensivetesting. The3Dprinted titaniumisolationandtanksystemsweredemonstratedinmid-2014andoneperformeda hotfiretestinlate2014(Carpenter,Schmuland,Overly,&Masse,2014). AerojetRocketdyneis alsodevelopingintegratedmodularpropulsionsystemsforlargersmallspacecraft. TheMPS-220 consistoftwo22 Nprimaryenginesandeight1 Nauxiliarythrusterthatusehydrazineaspropellant (AerojetRocketdyne,2015). MoogISPhasextensiveexperienceinthedesignandtestingofpropulsionsystemsandcompo- nentsforlargespacecraft.Thesemayalsoapplyforsmallerplatformsassomeoftheirflight-proven thrustersarelight-weightandhavemoderatepowerrequirements.TheMONARCH-5thrusterflew inNASAJPL’sSoilMoistureActivePassive(SMAP)spacecraftin2015andprovided4.5 Nof steadystatethrust. Otherthrusterspotentiallyapplicableintosmallspacecraftbusesincludethe MONARC-1andtheMONARC-22series(MoogISP,2014).

Non-ToxicPropellant Non-toxicpropellantsaredesignatedgreenastheyhaveareducedtox- icityduetothelowerdangerofcomponentchemicalsandreducedvaporpressureascompared tohydrazine. Thisresultsinlesssafetyrequirementsforhandlingthesepropellants,potentially includingthelackofrequiredSCAPEsuit(selfcontainedatmosphericprotectiveensemble)and reducesoperationaloversightbysafetyandemergencypersonnel. Fuelingforthesemayalsobe consideredaparalleloperationorhavealesssignificantrequiredexclusionaryzone,allowingforthe accelerationoflaunchreadinessoperations.Non-toxicpropellantsarelesslikelytoexothermicallly decomposeatroomtemperatureeveninthepresenceofacatalyst. Thereforetheyrequirelessin- hibitsresultinginlessvalveseatstopower,includingalessstringenttemperaturerequirementwith lesssystemheaterpower. Non-toxicpropellantsalsoprovidehigherperformancethanthecurrent stateoftheartfuelandhavehigherdensity-specificimpulseachievingimprovedmassfractions. Asamajorityofthesenon-toxicpropellantsareindevelopment,systemsusingthesepropellants presenttechnicalchallengesincludingincreasedpowerconsumptionandtheselectionofmaterials duetohighercombustiontemperatures. Theprimaryionicliquidpropellantswithflightheritage orupcomingspaceflightplansareLMP-103SandAF-M215E.Table4.2liststhecurrentstateof theartingreenpropellants. The Ecological Advanced Propulsion Systems, Inc. (ECAPS)HighPerformanceGreenPropulsion(HPGP) system,shown in Figure 4.1,uses ammonium dinitramide- based LMP-103S as propellant. Its density is slightly 3 3 higherthanhydrazine(1.24 g cm vs1.02 g cm ). The PRISMAmissionincorporatedsuccessfullythe1 Nver- sionofthissystemin2010. Furthermore,SkyboxImag- ingconductedatradestudyofvariouspropulsionalter- nativesforapplicationinspacecraftconstellationsandse- Figure 4.1. ECAPS HPGP thruster. lectedthissystem(Dyer,Dinardi,&Anflo,2013).HPGP ImagecourtesyofECAPSSSCECAPS systemsarebeingimplementedinSkySatmissionssuch (2015). asSkySat-3,andSkySatblock-I.HPGPsystemsarecur- rently developed for three different thrust magnitudes:1 N, 5 N and 22 N, with higher thrust systems indevelopment(Persson,2015)(Dinardi,Beckel,&Dyer,2013). VACCOpartneredwithECAPS todesignaself-containedunitthatcandeliverupto1808 N softotalimpulseandcanbeadapted fordifferentsizes,0.5Uto1U.TheVACCO/ECAPSMicroPropulsionSystem(MiPS)isdesigned tomeetthespecificcubesatstandardsandhasfour100 mNADN-propellantthrusters. Eachen-

39 gineisthrottlableinordertohavevectorcontrol. Thisunithasalsoanalternativehybridversion thatincorporatesone100 mNADNthrusterandfour10 mNcoldgasthrustersforattitudecontrol, providingupto1036 N softotalimpulseformainvapplicationsand69 N sforRCS(VACCO Industries,2015). Another non-toxic propellant in development is the U.S. Air developed AF-M315E, a hydroxylammoniumnitrate(HAN)basedmonopropellant. AerojetRocketdyneiscurrentlydevel- 3 opingpropulsionsystemsutilizingthispropellant. TheAF-M315Ehasadensityof1.47 g cm (about45%morethanhydrazine)andaspecificimpulseof230- 250 scanbeachievedbyusingthis propellant.Whilesomecomponentshaveheritagefromprevioushydrazinesystems,othersthatare compatiblewithAF-M315Epropellant,suchasvalvesandfilters,areatTRL6(Spores,Masse, Kimbrel,&McLean,2014). Thepropulsionsystemwillbeflownasatechnologydemonstration ontheNASAGreenPropellantInfusionMission(GPIM),scheduledtolaunchin2016.Thissmall spacecraftisdesignedtotesttheperformanceofthispropulsiontechnologyinspacebyusingfive 1 Nclassthrusters(GR-1)forsmallattitudecontrolmaneuvers(McLeanetal.,2015). Aerojet completedahot-firetestoftheGR-1versionin2014andfurthertestsin2015. Initialplansto incorporatetheGR-22thruster(22-Nclass)ontheGPIMmissionweredeferredinmid-2015in ordertoallowformoredevelopmentandtestingoftheGR-22.Asaresult,theGPIMmissionwill onlycarry1-NclassGR-1unitswhenlaunchedin2016(Masseetal.,2015).TheTRLiscurrently 6fortheGR-1(Figure4.2),and5forthelargerGR-22(Figure4.3). The AF-M315E propellant is used by a 0.5 N thruster that is being developed by . This devicewasplacedonaninverted-pendulumtypethruststandforatestcampaign. Threeperfor- manceprofilesweredemonstrated:steadystate,longandshortdurationpulses.Foroperatingthe thruster,thereisacatalystpre-heatrequirementof12 Wforabouteightminutes. Inaddition, thethrusteriscombinedwithapiezo-actuatedmicro-valvethatissuitableforlong-termpropellant compatibility.Whileintegratedsystemtestingofthethrusterandmicrovalvehaveoccurred,further developmentisrequiredbeforeraisingtheTRLoftheintegratedsystem. Theintegratedtesting demonstratedminimumimpulsebitsof36mN.Afulldutycycletestofthewholesystemisincluded infutureactivities(Tsay,Frongillo,Lafko,&Zwahlen,2014). TethersUnlimited,Inc. isdevelopingawaterelectrolysispropulsionsystemcalledHYDROS, illustratedinFigure4.4thatfitsinto1Uvolumeanduseswateraspropellant. On-orbit,water iselectrolyzedintooxygenandhydrogenandthesepropellantsarecombustedasinatraditional bi-propellantthruster.Thissystemisdesignedtobeintegratedintoanycubesatconfigurationdue

Figure4.2.GR1thruster.Imagecourtesyof Figure4.3. GR22thruster. Imagecourtesy AerojetRocketdyneMasseetal.(2015). of AerojetRocketdyneMasseetal.(2015).

40 Table4.2.GreenPropellantPropulsionSystems

Product Manufacturer Thrust SpecificImpulse Status GR-1 Aerojet 0.26-1.42 N 231 s TRL6 Rocketdyne GR-22 Aerojet 5.7-26.9 N 248 s TRL5 Rocketdyne 1 NHPGP ECAPS 0.25-1.00 N 204-235 s TRL8 HYDROS Tethers 0.2-0.6 N 258 s TRL5 UnlimitedInc. BGT-X5 Busek 0.5 N 220 s TRL5 toamodularanditsinjectordesign. AgroundtestcampaignbetweenTethersUnlimited 1 andtheAirForceInstituteofTechnology(AFIT)measuredthrustandspecificimpulseforthe2 U version(James,Moser,Conley,Slostad,&Hoyt,2015).

ColdandWarmGas Coldgassystemsarerelativelysim- plesystemsthatprovidelimitedspacecraftpropulsivecapa- bilityandareoneofthemostmaturetechnologiesforsmall spacecraft. Thrustisproducedbytheexpulsionofaninert, non-toxicpropellantwhichcanbestoredinhighpressuregas orsaturatedliquidforms. Warmgassystemshavebeenused inseveralmissionsforpressurizationandusethesamebasic principleyieldingmorespecificimpulseperformancethancold gas. Warmandcoldgasesaresuitableforsmallbusesdueto Figure4.4. HYDROSengineering theirverylowgradeofcomplexityandareinexpensiveandro- unit. Image courtesy of Tethers bust. Theycanbeusedwhensmalltotalimpulseisrequired. Unlimited,Inc.Jamesetal.(2015). Primaryadvantagesincludesmallimpulsebitforattitudecon- trolapplicationsandtheassociationofsmallvolumeandlowweight. Recently,newdesignshave improvedtherelativelyhighpowerrequirementofthesesystemsandtherearecurrentlythrusters thatcanbeimplementedintosmallbusessuchas3 Ucubesats. Table4.3showscurrentstateof theartforcoldandwarmgaspropulsionsystemsthataresmallspacecraftapplicable. AcoldgasthrusterdevelopedbyMarotta(Figure4.5)flewontheNASAST-5missionforfine attitudeadjustmentmaneuvers. Itincorporateselectronicdriversthatcanoperatethethrusterat apoweroflessthan1 W.Ithaslessthan5 msofresponsetimeanditusesgaseousnitrogenas propellant(Schappell,Scarduffa,Smith,&Solway,2005). SurreySatelliteTechnologyLtd. (SSTL)hasabutanepropulsionsystemincludedinseveral smallspacecraftmissionsforawiderangeofapplicationsinLowEarthOrbit(LEO)andMedium EarthOrbit(MEO).Inthissystem,propellanttanksarecombinedwitharesistojetthrusterand operationiscontrolledbyaseriesofsolenoidvalves,Figure4.6.Ituseselectricalpowertoheatthe thrusterandimprovethespecificimpulseperformancewithrespecttothecoldgasmode. Ithas beenthroughmorethanfiveyearsofdesignlifeanditusesaRS-422interface(Gibbon,2010). In June 2014, the Institute for Aerospace Studies in Toronto (UTIAS) launched two small spacecraftof15 kgeachtodemonstrateformationflying. TheCanadianNanosatelliteAdvanced

41 PropulsionSystem(CNAPS),showninFigure4.7,consistedoffourthrustersfueledwithliquid sulfurhexafluoride. Thisnon-toxicpropellantwasselectedsinceithashighvaporpressureand densitywhichisimportantformakingaself-pressurizingsystem.Thispropulsionmoduleisanovel versionofthepreviousNanoPSthatflewintheCanX-2missionin2008(Boninetal.,2015). Another recently flight-demonstrated propulsion system was flown in the POPSAT-HIP1 cubesat missionandwasdevelopedbyMicrospaceRapidPteLtdinSingapore. Itconsistedofatotalof eightmicro-thatprovidedthreerotationaxescontrolandsingle-axisthrustfortranslational applications. The total v has been estimated from laboratory data to be between 2.25 and 1 3.05 m s .Each thruster has 1 mN of nominal thrust by using propellant.An electromagnetic microvalvewithaveryshortopeningtimeof1 msoperateseachthruster(Manzoni&Brama,2015). NanoSpacehasdevelopedacompleteMicroelectromechanicalsystems(MEMS)coldgaspropul- sionsystemforcubesats(Figure4.8)thatprovidesaccuratethrustcontrolbyusingfourthrusters withbutanepropellant.Whilethrustiscontrolledinaclosedloopsystemwithmagnitudereadings, eachthrustercanprovideathrustmagnitudefromzerotofullcapacity(1 mN)with5 µNresolution. Thedrymassofthesystemis220 gandaveragepowerconsumptionis2 Wduringoperation(Kvell etal.,2014). Thissystemisbasedonaflight-proventechnologyflownonthePRISMAmission, launchedin2010. Here,twothrusterpodswithfourthrusterseachweretestedusingNitrogenas thepropellantandeachthrusterprovidedupto8 mN(Rangstenetal.,2012). Additionally,the MEMScoldgassystemwasincludedintothebusoftheTW-1cubesat,launchedinSeptember2015 (RuiC.Barbosa,NASASpaceflight.com,n.d.). TheCubeSatProximityOperationsDemonstration(CPOD)isamissionledbyTyvakNano- SatelliteSystems. ItincorporatesacoldgaspropulsionsystembuiltbyVACCOIndustriesthat provides up to 186 N s of total impulse. This module operates at a steady state power of 5 W and delivers40 sofspecificimpulsewhilethenominalthrustis25 mN(VACCOIndustries,2015). It usesself-pressurizingR134apropellanttofireatotalofeightthrustersdistributedinpairsatthe fourcornersofthemodule. IthasgonethroughextensivetestingattheUSAirForceResearch Lab.Endurancetestsconsistedonmorethan70000firings(Bowen,Villa,&Williams,2015)

Solidmotors Solidrockettechnologyistypicallyutilizedforimpulsivemaneuverssuchasorbit insertionorquickde-orbiting.Duetothesolidpropellant,theyachievemoderatespecificimpulses andhighthrustmagnitudesthatarecompactandsuitableforsmallbuses.Therearesomeelectri- callycontrolledsolidthrustersthatoperateinthe mNrange. Thesearerestartable,havesteering capabilitiesandaresuitableforsmallspacecraftapplications,unlikelargerspacecraftsystemsthat providedtoomuchacceleration. Table4.4showscurrentstateoftheartinsolidmotorsforsmall

Figure4.5.Marottacoldgasthruster.Image Figure4.6.SSTLbutanepropulsionsystem. courtesyofMarotta. Imagecourtesyof SSTLGibbon(2010).

42 Figure4.7. CNAPSspacecraftwithUTIAS propulsion modules. Image courtesy of Figure4.8. NanoSpaceMEMScoldgassys- UTIASwebsite. tem.ImagecourtesyofNanoSpace.

Table4.3.ColdandWarmGasPropulsionSystems

Product Manufacturer Thrust Specific Propellant Status Impulse Micro- Marotta 0.05-2.36 N 65 s Nitrogen TRL9 Thruster Butane SSTL 0.5 N 80 s Butane TRL9 Propulsion System MEMS NanoSpace 0.01–1 mN 50-75 s Butane TRL8 POPSAT- MicroSpace 0.083-1.1 mN 32-43 s Argon TRL8 HIP1 CNAPS UTIAS/SFL 12.5-40 mN 40 s Sulfur TRL9 hexafluoride CPOD VACCO 25 mN 40 s R134a TRL6

43 Figure4.9. SpinSatMissiondeployingfrom International Space Station (SpinSat top Figure4.10.ModuleofDSSPthrusters.Im- center). Image courtesy of National Aero- agecourtesyof DSSPNicholasetal.(2013). nauticsandSpaceAdministratio. spacecraft.Thesethrustvectorcontrolsystemscanbecoupledwithexistingsolidrocketmotorsto providecontrollablehighvinrelativelyshorttime. Aflightcampaigntestedtheabilityofthese systemstoeffectivelycontroltheattitudeofsmallrocketvehicles. Someofthesetestswereper- formedbyusingstateoftheartsolidrocketmotorssuchastheISP30 secdevelopedbyIndustrial SolidPropulsion(Zondervanetal.,2014). SPINSAT,a57 kgspacecraftlaunchedin2014,incorporatedasetofsolidmotors(Figure4.9 andFigure4.10)whichwerepartoftheattitudecontrolsystemandweredevelopedbyDigital SolidStatePropulsionLLC(DSSP).ThesystemwasbasedonasetofElectricallyControlledSolid Propellant(ESP)thrustersthatconsistedoftwocoaxialelectrodesseparatedbyathinlayerof electricsolidpropellant.Thismaterialishighlyenergeticbutnon-pyrotechnicandallowforbetter burncontrol. Theyareonlyignitedifanelectriccurrentisapplied,thelackofmovingpartsand durationcontrolmakethesystemsuitableforsmallspacecraft. Intotal,72thrustersformedthepropulsionsystemofthespacecraft.Sixofthemwereincluded ineachofthetwelveplugsstrategicallylocatedaroundthebus. Performancecharacterizationis donebyfiringthethrustersinpairsandmeasuringthechangesinthespinratebybothon-board andon-groundassets(Nicholasetal.,2013).

Table4.4.SolidRocketMotors

Product Manufacturer TotalMass Average Specific Status Thrust Impulse ISP30 sec Industrial 0.95 kg 37 N 187 s TRL7 motor Solid Propulsion STAR4G OrbitalATK 1.5 kg 258 N 277 s TRL6 CAPS-3 DSSP 2.33 kg 0.3 N Upto900 s TRL8

44 4.2.2 ElectricPropulsionSystems Electricpropulsionhasexperiencedsignificantimprovementintermsofavailablesystemsandma- turityofcomponents. Formanysmallspacecraftconcepts,highspecificimpulsesarenecessaryto complywithvbudgets. Dependingonthrustertechnology,specificimpulseforelectricpropul- sioncanrangebetween700-3000 s. However,thrustislowmeaninglongmaneuvertimes. Some thrustersaremoresuitableforsmallcorrectionmaneuversandattitudecontrolapplicationsdue tolowimpulsebitswhileothersaredesignedtoachievehighforinterplanetaryspiral trajectories. Awidespectruminpropellantsisofferedwithelectricpropulsion. Iodineisproposed forsometechnologiesduetoitsveryhighdensitythatallowhighvmaneuversfortransfertrajec- tories. Forsmallervapplications,solidstatematerialssuchaspolytetrafluoroethylene(PTFE) areusedinmostPulsedPlasmaThrusters(PPTs)whileelectrospraysusevariousformsofionic liquid.

Resistojets Resistojets are the simplest form of electric propulsion.Thrust is produced by heating thepropellantbyelectricalmeanssothattheresultinggascanbeexpandedandexpelledatlarge outofthenozzle.Table4.5listscurrentstateoftheartResistojetsdesignsthataresmall spacecraftapplicable. SurreySatelliteTechnologyLtd.(SSTL)hasdevelopedaresistojetpropulsionsystemthathas flowninseveralmissions. Itcanworkwithdifferenttypesofpropellantsuchasxenon,butaneor nitrogen. Thrust can be up to 100 mN and the specific impulse varies with the selected propellant ranging from 48 s for xenon to 99 s for nitrogen.The system uses power from 30 to 50 W and does notrequireaPPUsinceitworksdirectlyfromthebusvoltageinput. CUAerospaceandVACCOhavebuiltaPropulsionUnitforCubesats(PUC).Itconsistofa fullintegratedsystemthatincludescontroller,PPU,valves,sensorsandaMicro-CavityDischarge (MCD)thruster. Highdensityandselfpressurizingliquidsareusedaspropellantsbyusingthe MCDheatingtechnologytogetherwithanoptimizedlowmassflownozzle(Carrolletal.,2015). CUAerospaceandVACCOIndustrieshavealsodevelopedaCubesatHighImpulsePropulsion System(CHIPS).Thismoduleincorporatesamainmicro-resistojetplusfourequallydistributed coldgasthrustersactingasa3-axisattitudecontrolsystem. ByleveragingVACCO’scompact friction-lessvalvetechnologyandutilizinganinertandnon-toxicR-134apropellant,thissystem achieves a high total impulse to volume ratio.It occupies a 1 U+ space in order to target 2U and 6U spacecraftbuses.Afullyintegratedsystemwithflowandpowercontrolhasbeendemonstratedat theElectricPropulsionLaboratoryattheUniversityofUrbana-Champaign,Illinois.Testsincluded

Table4.5.ResistojetPropulsionSystems

Product Manufacturer Thrust Power Specific Status Impulse Lowpower Busek 13 mNat 100-300 W 1390 s XenonTRL resistojet 200 W 8,Iodine TRL4 PUC CU 0.45 N 70 s Sulfurdioxide TRL6 Aerospace orR-134a andVACCO CHT UTIASSFL 6.2 mN 200 W 1139 s XenonTRL5

45 thrustandspecificimpulsemeasurementsthatestimated82 sforthewarmfiremodeand47 sfor the cold fire mode.It can provide up to 563Ns of total impulse and a throttleable thrust of 30mN inwarmfiremode,whichisusedforprimarypropulsion. Thecoldgasmodeisusedforthethree axisattitudecontrolandprovides323 N softotalimpulseand19 mNofthrust. TheTRLofthe integratedsystemis5andasecondphaseiscurrentlyindevelopment(Hejmanowski,Woodruff, Burton,Carroll,&Cardin,2015). Busek Co Inc. has leveraged previous flight and design efforts to miniaturize fundamental componentssuchasvalvesandPPUsforamicro-resistojet. Thissystemusesnon-toxicammonia propellantanddeliversatotalimpulseof404 N sformainvapplicationsand23NsforACS (BusekCo.Inc.,2015).

Electrosprays Electrospraypropulsionsystemsusetheprincipleofelectrostaticextractionand accelerationofionsfromapropellantconsistingofanegligiblevaporpressureconductivesalt.One ofthebiggestadvantagesofthistechnologywithrespecttoothertraditionalelectricpropulsion systemsisthatnogas-phaseionizationisrequired.Thepropellantdoesnotneedtobepressurized forstoragesinceitflowsviacapillaryactionduetotheionevaporationprocess.Theemissioncanbe controlledbymodulationofthevoltageinputinaclosedloopfeedbackwithcurrentmeasurements. Inaddition, in some cases, both species of negative and positive ions can be utilized, avoiding theneedforaneutralizerwhichsimplifiesthedesignandoperationofthesystem. Expelledions achieveveryhighvelocitieswhichtranslatesintohighspecificimpulse. Typically,themostwidely usedpropellantinelectrospraysistheionicliquid1-Ethyl-3-Methyl-ImidazoliumTetrafluoroborate (EMI-BF4). NASA’sAdvancedIn-SpacePropulsion(AISP)projecthascreatedaportfoliothat includesthedevelopmentofMicrofluidicElectrosprayPropulsion(MEP).Table4.6displaysthe currentstateoftheartforsmallspacecraftapplicableelectrospraythrusters. Electrospray technology has been advanced significantly at the The Massachusetts Institute of Technology (MIT) Space Propulsion Laboratory (SPL) and some companies have started to commercializesystemsbasedonthiseffort. Figure4.12istheElectrospraythrusterdevelopedat MIT.Voltageversuscurrentcurvesandtimeofflightspectroscopyamongothertestshavehelped tounderstandtheionicandelectricalcharacteristicsofthethruster.MIThasdemonstratedatotal of315hoursofcontinuouselectrosprayoperationandamagneticallylevitatedthrustbalancewas usedtomeasurethrustatµNlevels(Mier-Hicks&Lozano,2015).Eachthrusterhasatotalof480 emitters,apassivepropellantmanagementsystemthatincludesa1.2 cm3 tankandanacceleration

Table4.6.ElectrosprayPropulsionSystems

Product Manufacturer Thrust Power Specific Status Impulse S-iEPS MIT 74 µN 1.5 W 1160 s TRL6 IMPACT Accion 60 µNper 0.75 Wper 1200 s TRL5 SystemsInc. axis axis MAX-1 Accion 120 µN 1.6 W 2000 s TRL5 SystemsInc. 1mN Busek 0.7 mN 15 W 800 s TRL5 Electrospray 100µ Busek 0.1 mN 5W 2300 s TRL5

46 Figure4.11.S-iEPSpropulsionsystem.Im- Figure4.12. Electrospraythruster. Image agecourtesyofMITSPL. courtesyofMITSPL. chamber.Atthesystemlevel,MIThasdevelopedtheScalableionElectrosprayPropulsionSystem (S-iEPS),showninFigure4.11,thatfeaturesatotalofeightthrustersthatfirealongasingleaxis. Thismoduleisabletoprovide74 µNandmorethan1160 sofspecificimpulseatapowerdrawof lessthan1.5 W.Itislightweight,about95 gincludingPPU,andfitsina0.2 Uvolume(Krejciet al.,2015). Fullyintegratedelectrospraysystems,designedmainlyforcubesatapplications,arebeingde- velopedbyAccionSystems.IMPACTandMAX-1aretwodifferentcompleteelectrospraymodules that have been through thrust measurements and lifetimeand efficiency tests. IMPACT offers thrustinonedirectionandalso2-axisattitudecontrol,hasawetmassof0.5 kgandprovidesatotal impulse of 45Ns per axis.MAX-1 provides single-axis thrust, has a wet mass of 0.3kg and a total impulseof86 Ns(AccionSystemsInc.,2015). BusekInc. isdevelopingafullyintegratedelectrospraypropulsionsysteminthemNrange. Thismoduleincludesapropellant-lesscathodeneutralizerandalowpressurecustomizabletank thatwereleveragedfromthemoduleincorporatedintotheNASAST-7/ESALISAPathfinder spacecraft. The system uses 15 W of power and provides 675 N s with 50 mL of propellant and has amassof1.15 kg. TestsinrelevantconditionsarebeingperformedtoraisetheTRLfrom5to6 (BusekCo.Inc.,2015).Thesystemfeaturesa100 µNclassthrusterthatprovidesaspecificimpulse 1 of2300 sandconsumes5 W.Itcandeliver85 m s toa4 kgcubesatbyhavingawetmassof320 g and10 mLofanionicliquidpropellantthathasbeenfullycharacterizedduringtheST-7flight program(BusekCo.Inc.,2015). TheMicroDevicesLaboratory(MDL)attheJetPropul- sionLaboratory(JPL)hasdevelopedahighlyintegratedand scalableindiumMEPsystem(Figure4.13)thathasadrymass oflessthan10 gandprovidesthrustinthe20-100 µNrange. Indiummetalisstoredinsolidformandheatedafterwardsto beusedaspropellant. Over10hoursofcontinuousoperation testedaninitialprototypeassembly(JPL,2013).

IonEngines Inionthrusters, propellantisionizedbyus- ing various plasma generation techniques. Radio Frequency (RF)enginesachievethrustbyproducingionswithelectrode- lessinductivedischargesthataretypicallyachievedbyusing Figure4.13. IndiumMEP.Image ahelicalcoilatfrequenciesintherangeof1 MHz. Thepar- courtesyofJetPropulsionLabora- ticlesarethenacceleratedatveryhighexhaustvelocitiesby tory.

47 electrostaticgrids. Thesedeviceshaveahighefficiencywhen comparedtootherelectricpropulsionsystems. Inaddition, theabsenceofelectrodesavoidspotentialthreatstothrusterlifetimewhichisonlylimitedbygrid erosion.Table4.7displaysthecurrentstateoftheartionenginesforsmallspacecraft. BusekisdevelopingaRFionthrusterthatcanoperatewithbothxenonandiodinepropellants, achievingsimilarperformances(Tsay, Frongillo,&Hohman,2015). TheBIT-3enginehas3 cm diameter grids and is capable of providing variable specific impulse and thrust.At 60W of operating power,itcanachieveanefficiencyof35%. Recenttestperformanceresultsontheiodineversion haveshownthatthrust-to-powerratiosaresimilartotheonesachievedwithxenonaspropellant. Complementarytechnologyassociatedwiththethrustersuchaspropellanttanksandfeedsystem havebeendemonstratedaswellforthispropellant.Thecompatibilitywithiodineismadepossible sincetheplasma-generationchambersinRFenginesaregenerallybuiltwithceramicmaterialsthat are resistant to corrosion. A lower TRL, smaller thruster version of just 1 cm grids, the BIT-1, is alsounderdevelopmentbyBusek(Tsayetal.,2015). Recently,theJapaneseProximateObjectCloseflybywith OpticalNavigation(PROCYON)missionhasshownsuccessful operationofapropulsionsysteminSpace. TheIonthruster andCold-gasthrusterUnifiedPropulsionSystem(I-COUPS) wasdesignedattheUniversityofTokyoandisanintegrated system comprised of two sets of ion and cold gas thrusters. Bothtechnologiessharethesamegasfeedsystemthatprovides xenontobeusedaspropellant.Thiscombineshighthrustand largevcapabilities.Coldgasthrustersareusedforreaction Figure 4.14. RIT µX propulsion wheelde-saturationandsmallcorrectionburns,whileionen- unit.ImagecourtesyofAirbus. ginesarekeptfordeepspacemaneuvers.Intotal,themassof the propulsion system is less than 10 kg, including propellant.The ion engines in the I-COUPS unit areanevolutionoftheMiniatureIonPropulsionSystem(MIPS),whichwaspreviouslylaunched onboardtheHodoyoshi-3/4missioninOctober2014. ThisspacecraftwasplacedonaSunSyn- chronous Orbit and had 65kg of mass.The MIPS had a wet mass of 8.1kg with 1kg of propellant mass. Ionthrusteroperationwasprovenbyprovidingcontinuousacceleration(Takegaharaetal., 2015). Airbus is developing a family of RF ion thrusters over the last few years and has designed theRIT-µX(Figure4.14)forsmallspacecraftbusesandforhighprecisionmaneuvers. Various thrustconfigurationswereproposedandtested. In2013, asysteminthe50-500 µNrangewas

Table4.7.IonPropulsionSystemsandthrusters

Product Manufac- Thrust Power Specific Propellant Status turer Impulse BIT-3 Busek 1.4 mN 60 W 3500 s Xenon- TRL 5 Iodine BIT-1 Busek 0.1 mN 10 W 2250 s Xenon TRL 5 I-COUPS University 0.3 mN N/A 1000 s Xenon TRL 8 ofTokyo RITµX Airbus 50-500µN 50W 300-3000s Xenon TRL5

48 Figure 4.15. PPTCUP propulsion system. Figure4.16. BmP-220propulsionunit. Im- Image courtesy of Mars Space and Clyde agecourtesyofBusekCoInc.. SpaceCiarallietal.(2015). demonstrated and thrust resolution, linearity, response and noise met LISA Pathfinder mission requirements, which increased the TRL to 5. The nominal power to operate is less than 50 W and thespecificimpulseisbetween300and3000 s, dependingontheconfiguration. Themaximum demonstrated specific impulse was 3500s.It uses xenon as propellant and it has a dry mass of 440g (Leiteretal.,2015).

PulsedPlasmaandVacuumArcThrusters InPulsedPlasmaThrusters(PPTs),thrustis producedbytriggeringahighvoltagedischargebetweentwoelectrodesthatresultinanelectric arcthattypicallyablatesasolidstatematerial. Aself-generatedmagneticfieldisproducedand thenacceleratesandexpelsparticlesfromthethrusterhead. Typicallythepropellantispushed forwardbyaspringasitisbeingconsumed. Thistechnologyhassignificantheritagefromlarger spacecraftversionsandduetoitssimplicity,miniaturizationwasmoreachievablecomparedtoother electricpropulsionsystems.Majorproblemssuchaselectrodeshortcutsornon-uniformpropellant areunderactiveresearch.Thesesystemsaresuitableforattitudecontrolandfinepointing applicationssincethetriggerpulseofthedischargecanbeadjusted, smallimpulsebitscanbe achievedthatallowforhighprecision.TypicallythepropulsionsystemconsistsofjustaPPUthat controlstherequireddischargetooperatethethrustersbystoringenergyinacapacitorbank,which accountsforasignificantportionofthesystemmass. VariousmaterialshavebeentestedforPPT utilization,however,PTFEistheindustrystandard.Table4.8accountsforcurrentsmallspacecraft applicablestateoftheartPPTthrusters. MarsSpaceLtd. andClydeSpaceLtd. havedevelopedacompactpropulsionmodule(Fig- ure4.15)specificallydesignedtoprovidemaneuveringcapabilitiestocubesats.AttheUniversityof Southampton,thermalcycling,vibration,ElectroMagneticCompatibility(EMC)andlifetimetests wereperformed. Vibrationtestresultsshowedthatthemodulesustainsthemechanicalvibrations duringlaunchandElectro-Magnetic(EM)noiselevelsduringdischargeweremostlycompliantwith guidelines.The system has a total mass of 270 g and is characterized by an average specific impulse of655 sandatotalimpulseof48.2 N s. IthasasinglethrusterthatusesPTFEpropellantand isside-fedtomaximizedischargelength, withanelectrodedesignthatminimizescarbonization (Ciarallietal.,2015). Busekhasextensiveexperienceinthedevelopmentofpulsedplasmapropulsion. TheirMicro PulsedPlasmaAltitudeControlSystem(MPCAS)flewontheFalconSat-3missionin2007. This module consisted ofeightthrustersand provided withpreciseimpulse bitsof 80 µNs atmoderatepoweroflessthan10 W(,Anthony,&Hart,2011)byusingPTFEpropellant.

49 Table4.8.PulsedPlasmaandVacuumArcPropulsionSystems

Product Manufac- Thrust Power Specific Propellant Status turer Impulse PPTCUP MarsSpace 40 µN 2W 655 s PTFE TRL6 andClyde Space NanoSat MarsSpace 90 µN 5W 640 s PTFE TRL5 PPT andClyde Space µCAT GWUand 1to50 µN 2to14 W 2500-3000 s Titanium TRL7 USNA BmP-220 Busek 20 µN-s 1.5 W 536 s PTFE TRL5 Impulsebit MPACS Busek 80 µN-s 10 W 827 s PTFE TRL8 Impulsebit

ThesystemhadheritagefrompreviousinvestigationsconductedattheAirForceResearchLabora- tory(AFRL)(Bayley,Shoptaugh,Percoski,&Lawrence,2010)andhasbeenevolvingsincethisfirst approach. The BmP-220 is the latest version of the Busek PPT family, consumes less than 7.5 W, weighslessthan0.5 kgandallrequiredcomponentsfitina10 10 7 cmvolume,seeFigure4.16. ⇥ ⇥ Itcanprovideupto220 N softotalimpulsewith40 gofpropellant. Aninnovativesolidstate switchingtechnologyenablestheimplementationofseveralemittersinasingleunit. Thespecific impulse is 536s and the minimum impulse bit is 0.02mNs.The system TRL is estimated to be 5 (BusekCo.Inc.,2015). Vacuumarcthrustersareanothertypeofplasma-basedpropulsiondevicethatproducesthrust bypropellantionization.Thistechnologyconsistoftwometallicelectrodesseparatedbyadielectric insulator. Oneofthemisusedassolidmetallicpropellantanditisconsumedasthethruster operates.AdvantagesofusingametallicsolidpropellantoverthemoretraditionaloptionofPTFE arealowerenergyconsumptionperionizedmass,highpulsestabilityandhigherrepetitionrates duetothethermalpropertiesofmetals. TheMicro-CathodeArcThruster(µCAT)developedbyTheGeorgeWashingtonUniversity (GWU),usesvacuumdischargestoablatethecathodematerial. Itconsistsofa5 mmthruster headthatcontainsconcentricallyalignedandcylindricallyshapedanode,cathodeandinsulator. BysendingapulsecreatedbythePPUtotheelectrodeinterface,ahighvoltagearcisproduced acrossit(Keidaretal.,2015). TheµCAToffersaquasi-perfectionizationdegreeoftheplasma particlesintheexhaustplume,givinganearzerobackflux. Thispropulsiontechnologygenerates thrustbyconsumingcathodematerialmadeoftitaniumwithahighvoltagevacuumarc,producing highlyionizedplasmajetswithhighexhaustvelocities.Inaddition,theincorporationofanexternal magneticcoilimprovessignificantlythecapabilitiesofthethruster(Keidaretal.,2013). Anautonomousandmodularmicroelectricpropulsionsystembasedonthistechnologyhasbeen designedandbuiltatNASAAmesResearchCenterinpartnershipwithGWU.Thismodulefits intoa0.2 UvolumeandconsistsofonePrintedCircuitBoards(PCB)thatcommandandoperate uptofourvacuumarcthrusters. TwoPPUs,implementedinthemainPCB,createthenecessary dischargestooperatethethrusterthathaveanaveragethrustintheµNrangewhichiscontrolledby selecting different thrusting frequencies.This system was tested and measured in relevant conditions

50 Figure 4.17. Cylindrical Hall Effect Thruster Figure 4.18. BHT-200 during operation. Im- .ImagecourtesyofUTIASSFL. agecourtesyofBusekCoInc.. ofvacuumatNASAGlennResearchCenterwithahighaccuracytorsionalthruststand. Furthermore,a partnership between GWU and The Naval Academy resulted in the integrationofaµ-CATpropulsionsystemintotheBallisticallyReinforcedCommunicationSatellite (BRICSAT).ThismissionwaslaunchedinMayof2015andconsistedoffourPPUstooperatefour thrustersintotal.Preliminaryretrieveddatahasshownthatthesystemsuccessfullyaccomplished theobjectiveofdetumblingthespacecraft.Aftertwodays,thepropulsionsystemwasabletoreduce 1 1 theinitialtumblingfrom30 s tonearly1.5 s ,increasingtheTRLofthissystemfrom6to7 (Hurleyetal.,2015).

HallEffectThrusters Hall Effectpropulsionisa mature technologyfor large spacecraftsystems. Miniaturizationofsomeofthecomponents, suchasneutralizers, iscomplicatedtoachieveand powerconsumptionisrelativelyhighcomparedtootherelectricpropulsiontechnologies.However, an improvement has been made to integrate complete Hall Effect propulsion systems that can potentiallysupportlargetransfersforinterplanetarymissions.SeeTable4.9forcurrentstateofthe arttechnologyinHallEffectThrustersforsmallspacecraft. BusekhasdevelopedacompleteHallEffectthrusterpropulsionsystemforsmallspacecraft.The BHT-200,showninFigure4.18,issuitableforsmallspacecraftbusesofrelativelyhighmassand powersupplysinceitneeds100-300 Wtooperate. Thissystemhasflightheritagefromthe2006 TacSat-2mission,andwaspartofthepayloadintheFalconSat-5missionin2010. Inaddition,it willbeflownintheFalconSat-6mission,scheduledfor2016.Thismodelcanoperatewithmultiple propellants (Busek Co. Inc., 2015). The utilization of iodine will advance the technology due toitsincreaseddensityoverxenonanditsloweroperatingpressure,whichreducescostandrisk implications.Moredetailscanbefoundinsubsection4.3. The HT100, developed by Sitael Aerospace, has been extensively tested through campaigns thatincludecharacterizationunderthermal-vacuumconditionsandstructuralanalysisunderheavy loads.Erosionhasbeenobservedinanendurancetestthatlastedfor1650hourswherenothermal problems or important performance reduction was observed.The nominal operation power at 175 W givesathrustrangeof5-15 mN.Thethrustermassis440 g,itutilizesxenonaspropellantanditcan achieve a peak total efficiency of up to 35% and a maximum specific impulse of 1350 s.The HT100 hasbeenselectedforanin-orbitvalidationprogrambytheEuropeanandItalianspaceagencies.A largerversion,theHT400,operatesatanominalpowerof400 WanditisatTRL5(Misuri,Ducci, Albertoni,Andrenucci,&Pedrini,2015). TheSpaceFlightLaboratory(SFL)attheUniversityofTorontoisdevelopingalowpower cylindricalHallthruster(Figure4.17)thatoperatesbelow200 Wandhasadiameterof26 mm

51 Table4.9.HallEffectPropulsionSystemsandthrusters

Product Manufacturer Thrust Power Specific Status Impulse BHT-200 Busek 13 mN 200 W 1390 s XenonTRL8 ,IodineTRL 4 HT100 SITAEL 5-15 mN 175 W upto1350 s XenonTRL6 CHT UTIASSFL 6.2 mN 200 W 1139 s XenonTRL5 for the ionization chamber. The cylindrical geometry of the ionization chamber was chosen in ordertoovercomethechallengesoftheannularchamberoftraditionalHallthrusters. Withthis configuration,betterefficienciescanbeachievedwhilemaintainingasufficientthrustmagnitude between2.5-12 mN.Annularionizationchambersaremechanicallysimplerandproducehighthrust topowerratiosthatarebeneficialforsmallspacecraftapplications. However,theefficiencystill getsreducedwhenthischambergetsredesignedtooptimizelowpoweroperation. Excluding cathode, the weight of the first prototype was 1.6 kg.This device went under magnetic characterizationandperformancetestsinvacuum. Itusesxenonasabaselinepropellantdueto itsimprovedperformanceoverothergasessuchasargon.Furthertestinganddesignmodifications willbedoneinordertoraisetheTRLfrom5to6inearly2016(Pigeonetal.,2015).

4.2.3 Propellant-lessSystems Systems that do not carry propellant for thrust generation are an ideal candidate for small spacecraft. Theyavoidcomplexityandreducemasslimitations. Theycanachievehighaccelerationsthatcan potentiallypropelanobjectforinterplanetarytravel. Solarsailsarethemostpopularmethodofpropellant-lesspropulsion. Theytakeadvantageof solarradiationpressurebyreflectingphotonsonalargesailmadeofahighlyreflectivematerial. Severalmissionshavebeenconductedtodemonstratethistechnologyforlargebusessuchasthe Japanese IKAROS, launched in 2010. Regarding small spacecraft, NASA has been conducting extensiveresearchthatresultedinthelaunchin2010ofNanoSail-D2,atechnologydemonstration missionmanagedanddesignedbyNASAAmesResearchCenterandNASAMarshallSpaceFlight Center.The sail had a deployed surface area of 10 m2,wasmadeofathinhighlyreflectivematerial calledCP-1andweighted4.2 kg(Alhornetal.,2011). OneofthemostrecentsolarsailmissionforsmallspacecraftwasperformedbyThePlanetary Societyin2015. The3ULightSail-Aspacecraftcompleteditstechnologydemonstrationtestin SpacebyfullydeployingasolarsailinLEO.Thedimensionswere5.6 monasideand32 m2 of totalareaonceitwasdeployed.In2016,afollowupmission,LightSail-Bwillcompletetheproject byleveragingtheexperienceacquiredinthefirstflightandperformadditionalmaneuvers. This spacecraftwillflyinaFalconheavyrockettoanapproximately720 kmLEOorbit,whereanorbital changeinaltitudeorinclinationwillbeperformed(Ridenoureetal.,2015).

4.3 OntheHorizon Aspropulsiontechnologymatures,moresmallspacecraftmissionswillincorporatepropulsionsys- temsonboardallowingformorecomplexmissionarchitectures. Thissectionwillcovernear-term

52 spacecraftwithpropulsionaswellaspromisingtechnologiesthatwillbecomeanimportantpropul- sionassetforfuturemissions.

Technologiesindevelopment TheCubesatAmpibo- lar Thruster (CAT) is a novel device developed by the Uni- versityofMichiganthatutilizesamagnetichelicondis- charge to ionize the propellant.The thruster (Figure 4.19) doesnotrequireaseparateelectronsourceandnoresul- tantmagneticdipoleisproduced.Highplasmadensityis createdthroughahighefficiencyheliconRFsourceand alargeacceleratingelectricfieldisachieved. Alargeva- rietyofpropellantsinsolidorliquefiedstatecanbeused thankstotheelectrode-lessdesignofthethruster.Iodine Figure 4.19. Cubesat Ambipolar hasbeenpresentedasthemostpromisingpropellantdue Thruster (CAT) . Image courtesy of toitslowcostandhighstoragedensity.Thissystemcan PhaseFourLLC. achieveanestimatedspecificimpulseof1010 swhenusingiodine. Currently,thePPUisstillin developmentphaseandsomeofthecomponentsforiodineutilizationareatTRL3(Spangelo& Longmier,2015). Initialtestswereperformedbyusingbothxenonandargonaspropellant. For xenon,CATwasdesignedtooperateon10-50 Winordertoaddresssomeofthepowerlimitations thatsmallspacecraftface.Inthisconfiguration,theTRLis4andthrustandspecificimpulsearein the0.5-4 mNrangeandthe400-800 srangerespectively(Sheehan,Collard,Ebersohn,&Longmier, 2015). ThecompanyPhaseFourLLCisdevelopinganintegratedflightunitoftheCAT(Doug Messier,ParabolicArc,2015). There are severalother propulsion technologies currently being developed: Ventions LLC is workingonanintegrated3 Ucubesatpropulsionsystemusingnon-toxicpropellant;hybridnon- toxic/coldgaspropulsionsystemfor6 Uand12 UspacecraftbyPlanetaryResourcesDevelopment Corporation;andanon-toxicsolidrocketforcubesatsthatallowsforsecondignitionandutilizes analuminizedversionofanElectricSolidPropellant(ESP)fromDigitalSolidStatePropulsion (DSSP).ESPsprovidemoresafetyforhandlingcomparedtotraditionalsolidenergeticpropellants andareelectricallyignited(NASASBIR,2014). Orbital Technologies Corporation (ORBITEC) is developing the Miniature Nontoxic Oxide- Propane(MINNOP)propulsionsystem. Itconsistsofabipropellantsystemforsmallspacecraft thatcanprovideasignificantincrementinspecificimpulseperformancewithrespecttohydrazine systemswhenusedinbi-propellantmodeandsmalllevelsofminimumimpulsebitwhenusedin coldgasmode. Currenteffortsarepointedtowardsthedemonstrationofthebipropellantthrust chamberandignitionwithinsuitableweightconstraintsinordertofitintoa1 Uformfactor(NASA SBIR,2014). Anotherhigh-performancepropellantisanitrousoxidefuelblendedmono-propellantknownas NOFBXdevelopedbyFirestartechnologies. Thisselfpressurizingnon-toxicpropellantcanoffer morethan320 sofspecificimpulseanditprovides3.5to3.9timeshigherspecificenergydensity thanhydrazine(Mungasetal.,2011). TheInductivelyCoupledElectromagnetic(ICE)thrusterisanoveltechnologythatisbeing developedbyMSNWLLC.ThissystemusesasmallintegratedRFoscillatortogenerateplasma. ThetotalvolumeofthethrusterandthePPUisexpectedtobelessthan0.125 U.Oneofthemain advantagesisthatthissystemcanvirtuallyuseanyliquidpropellant.Anticipatedoperatingpower isbetween10-50 W.ThecurrentgoalistoachieveTRL4(NASAPressrelease,n.d.). Anexperimentalcharacterizationofalowpowerheliconthrusterhasbeenperformedatthe

53 StanfordUniversity’sPlasmaPhysicsLaboratory.Testswereconductedbyoperatingonwaterand argonpropellants. Thrustwasobservedatvariousperformancelevels, achievingmagnitudesof 2-5 µN.Futureworkinon-goingandincludeoptimizationforgreaterperformanceandthruststand measurements(Biggsetal.,2015). NanoAvionicsJSCisdevelopinganon-toxicmono-propellantpropulsionsystem. ItusesADN as propellant and gives 252 s of specific impulse.Current efforts are focused on the miniaturization ofacatalystbedheatersystemanddevelopmentoffuelfeedingequipment. Thismodulewillbe readyforflightintheLituanicaSAT-23 UcubesataspartoftheEuropeanQB50initiativeandis currentlyTRL4. The Mechanical and Aerospace Engineering Department at Utah State University has built andtestedanon-toxic22 Nthrusterforsmallspacecraft. Thisunitusesinnovativepropellants: compressed gaseous oxygen and ABS plastic. Additive manufacturing is used to build various systemcomponentssuchasthenozzleorthefuelgrain. Thesystemisrestartableandcanbe throttled from 1 N to 22 N while maintaining performance and robustness.The achieved laboratory specificimpulsewasabove230 s(Whitmore,Merkley,Spurrier,&Walker,2015). PrincetonPlasmaPhysicsLaboratory,withTheAerospaceCorporation,havetestedtheperfor- manceofasmallCylindricalHallThrusterwithpermanentmagnets. Themeasuredthrustwasin the 3-6.5mN range with a specific impulse of 1000-1900s.Efficiency studies were also conducted at a discharge voltage of 300V achieving a maximum thruster efficiency over 20%.This version demon- stratedevensuperiorperformanceincomparisontoanotherversionthatutilizeselectromagnets coils(Spektoretal.,2011).

Futuresmallspacecraftmissionswithpropulsion Duetothesignificantimprovementin propulsiontechnologies,missionconceptsthatwerepreviouslylimitedtolargespacecraftarenow possiblewithsmallbuses. Interplanetarymissionsarebecominglesscostly,andthereforeseveral institutions are assuming more risks to perform science missions with higher payoffs.As an example, NASA’sMission(EM-1)isgoingtobeusedtoprovidesecondarypayloadopportunity for up to eleven 6 U cubesat.The mission trajectory would provide access to deep space or a orbit. Theiodinesatellite(iSAT)mission,apartnershipprojectbetweenNASAMarshallSpaceFlight Center,BusekCo. Inc. andNASAGlennResearchCenter,consistsofa12 Ucubesatinahigh performanceintegratedbusconfigurationthatwillperformpropulsiveinclinationandaltitudeplane changes.ThisspacecraftwillincludeaBusek’sBHT-200-Ipropulsionsystemwithiodinepropellant thatoffersasimilarperformancethanthexenonversionwhenoperatingatthesamepowerlevel. Itisexpectedtobedeliveredforlaunchinthesecondquarterof2017(Dankanich,Polzin,Calvert, &Kamhawi,2014)andan80hourendurancetestoftheengineeringmodelhasbeenperformedat NASAGlennResearchCenter. Theobjectivewastocharacterizetheperformanceofthethruster overthethrottlingrange, todemonstratefeedsystemcomponentsandtostudytheplumeand thermalmodelsduringoperation(Polzinetal.,2015). NASAAmesandGlennResearchCentersareworkingonthePathfinderTechnologyDemon- stration(PTD)projectwhichconsistsofaseriesof6 Ucubesatsthatwillbelaunchedtotestthe performanceofnewsubsystemtechnologiesonorbit. Forthefirstflightversion,variousstateof theartelectrospraysystems,previouslydiscussedinsubsubsection4.2.2,arebeingconsidered. JPLisdevelopingtheInSightmissionwhichisgoingtobelaunchedinMarch2016thatwill incorporatetwoidenticalcubesatsaspartoftheMarsCubeOne(MarCO)technologydemonstra- tion. ThesespacecraftwillneedtoperformuptofiveTrajectoryCorrectionManeuvers(TCMs) duringthemissiontoMars.Thesecubesatsincludeanintegratedpropulsionsystem,developedby

54 VACCOIndustries,thatcontainsfourthrustersforattitudecontrolandotherfourfortheTCMs. ThemoduleusescoldgasR-236FAaspropellant, produces755 N softotalimpulseandweighs 3.49 kg(Klesh&Krajewski,2015). AteamatPurdueUniversityandNASAGoddardSpaceFlightCenterisdevelopingtheFilm EvaporationMEMSTunableArray(FEMTA).Thistechnologyconsistsofagroupofnozzlesmade of high aspect ratio slots. Each nozzle produces thrust by applying local heat to a propellant capillaryinterfaceandthemainadvantagesaretheabsenceofanymechanismsandalowpower consumption,intheorderofmW.Uptothreegenerationsofthesedeviceshavebeenbuiltand improvedovertime. Vanadiumandplatinumheaterswereusedforthemostupdatedversionand thrust,propellantandmassflowrateresponsehavebeencharacterized. Thrustlevelsfrom15to 600 µNwereobservedatlessthan100 mWofinputpowerwhilespecificimpulserangedfrom5to 40 s.Repeatable thrust pulses were consistent in magnitude and could be controlled.This system is apromisingoptionforattitudecontrolandsmallmaneuverapplicationsincubesats(Cofer,O’Neill, Heister,Alexeenko,&Cardiff,2015). Twoseparate3 UcubesatsarepartoftheInterplanetaryNanoSpacecraftPathfinderInaRele- vant Environment (INSPIRE) mission.These spacecraft will be placed in an Earth escape trajectory inordertotesttheperformanceofthecommunication,navigationandoperationssegmentsindeep space. AcoldgassystemdevelopedbytheUniversityofTexas,Austin,hasbeenincludedthat utilizestheadditivemanufacturingtechniquesthatwerepreviouslyusedfortheMiPScoldgas module. TheMiPSflewintheMEPSI-3missionfromtheAerospaceCorporation(Hinkley,2008), (Cardin,Coste,Williamson,&Gloyer,2003). FurtherresearchwasconductedbyUTAustinto redefinethe3DprintingprocesstoadaptthesystemtotheBevo-2andARMADILLOmission concepts. Theadditivemanufacturingprocessallowsthefabricationofcomplexfeaturesinsmall volumesandasaturatedliquidpropellantisreleasedthroughaconverging-divergingnozzleinorder to produce thrust. Tests have measured specific impulse in the range of 65-89s and thrust in the range of 110-150mN across different temperatures (Arestie, Hudson, & Lightsey, 2012). A version ofthispropulsionunitwillbeusedforattitudecontrolmaneuversandnominalflightoperationsfor theINSPIREmission(Kleshetal.,2013). NEAScoutandLunararetwoNASAJPLmissionsthataregoingtobelaunchedas part of EM-1, scheduled for 2018. Both of the interplanetary 6 U cubesats will deploy an identical 2 2 sailof80 m ofareawith0.0601 mm s ofcharacteristicacceleration. NEAScoutsolarsailwill beusedasamainpropulsionsystemwhereasLunarFlashlightsailwillbeusedmainlyforstation keepingandtoreflectlightintoselectedlunarcratersonceinorbit.ThedutycycleforNEAScout is90%whileforLunarFlashlightis85%(Carlisleetal.,2015).

4.4 Conclusion Asignificantvarietyofpropulsiontechnologiesarecurrentlyavailableforsmallspacecraft. While coldgasandpulsedplasmathrusterspresentanidealoptionforattitudecontrolapplications,they havelimitationsformoreambitiousmaneuverssuchaslargeorbitaltransfers. Otheralternatives suchashydrazine,non-toxicpropellantsandsolidmotorsprovideahighcapabilityandaresuitable formediumsizebusesandmissionsthatrequirehighervbudgets.Somespacecrafthavealready flown with these systems or are being scheduled to fly in the next year. For the near future, thefocusisplacedonnon-toxicpropellantsthatavoidsafetyandoperationalcomplicationsand providesufficientdensityandspecificimpulse.Theapplicationofthistechnologyincubesatsisstill indevelopmentassomeofthecomponentsneedtobescaleddowntocomplywithvolume,power andmassconstraints. Electrosprays,HallEffectthrustersandionenginesareinanactivephaseofdevelopmentand

55 activetestingandtechnologydemonstrationsareexpectedfordifferentbussizes.Thesepropulsion technologieswillallowspacecrafttoachieveveryhighvand,therefore,toperforminterplanetary transferswithlowthrust. Severalothertechnologies,aswellasnew versionsof existingsystemswithimprovedcapabilities, arebeingproposedandawiderangeofmatureoptionsinthefollowingyearsareforecasted. As theindustryprogressesandmorelaunchesarescheduled,morepropulsionsystemswillbeincluded onboardsmallspacecraft,increasingtheaverageTRLforthissubsystem.

References

Accion Systems Inc. (2015). MAX-1 Scalable electric propulsion system for small satel- lites. http://static1.squarespace.com/static/5446faa2e4b025843cfc6731/t/ 549c68cee4b0b2b297f4fa09/1419536590919/MAX-1+brochure.pdf. (Acccessed: 2015- 11-02) Aerojet Rocketdyne. (2015). Aerojet Rocketdyne official website. https://www.rocket.com/ propulsion-systems/.(Acccessed:2015-11-02) Alhorn,D.C.,Casas,J.P.,Agasid,E.F.,Adams,C.L.,Laue,G.,Kitts,C.,&O’Brien,S.(2011). Nanosail-D:TheSmallSatelliteThatCould! In25thAnnualAIAA/USUConferenceon SmallSatellites.Logan,Utah,August2011. Arestie,S.,Hudson,B.,&Lightsey,G. (2012). DevelopmentofaModularColdGasPropulsion SystemforSmallSatelliteApplications.TheJournalofSmallSatellites,1 (2),63-74. Bayley, D.J., Shoptaugh, B.J., Percoski, W.D.,&Lawrence, T.J. (2010). TheFalconOPS Program: SpaceOperationsattheUnitedStatesAirForceAcademy (Tech.Rep.). United StatesAirForceAcademy,Colorado:UnitedStatesAirForceAcademy. Biggs, D., Avery, S., Raymond, L., Liang, W., Gascon, N., Fabris, A. L.,...Cappelli, M. (2015). A Compact Helicon Thruster for CubeSat Applications.In34thInternationalElectricPropulsion Conferenceand6thNano-satelliteSymposium.Hyogo-Kobe,. Bonin,G.,Roth,N.,Armitage,S.,Newman,J.,risi,B.,&Zee,R.E.(2015).CanX-4andCanX-5 PrecisionFormationFlight: MissionAccomplished! In29thAnnualAIAA/USUConference onSmallSatellites.Logan,Utah,August2015. Bowen,J.,Villa,M., & Williams,A.(2015).CubeSatbased Rendezvous,ProximityOperations,and DockingintheCPODMission. In29thAnnualAIAA/USUConferenceonSmallSatellites. Logan,Utah,August2015. BusekCo.Inc. (2015). BmP-220Micro-PulsedPlasmaThruster. http://www.busek.com/index _htm_files/70008502F.pdf.(Acccessed:2015-11-02) Cardin,J.M.,Coste,K.,Williamson,D.,&Gloyer,P. (2003). AColdGasMicro-Propulsion SystemforCubeSats. In17thAnnualAIAA/USUConferenceonSmallSatellites. Logan, Utah,August2003. Carlisle, G., Landau, D., Grebow, D., Lantoine, G., Nandi, S., Gustafson, E.,. . . Stuart, J.(2015). ConcurrentMissionDesignofNEAScout&LunarFlashlight,SolarSailCubeSatMissions.In ProceedingsfromAIAASpaceOperationsandSupportTechnicalCommitteeImprovingSpace OperationsWorkshops. Carpenter, C., Schmuland, D., Overly, J.,&Masse, R. (2014). TestResultsfortheMPS-120 andMPS-130CubeSatPropulsionSystems.In28thAnnualAIAA/USUConferenceonSmall Satellites.Logan,Utah. Carroll,D.L.,Cardin,J.M.,Burton,R.L.,Benavides,G.F.,Hejmanowski,N.,Woodruff,C.,. . . Bhandari,R. (2015). PropulsionUnitforCubeSats(PUC). In62ndJANNAFPropulsion

56 Meeting.Nashville,TN,1-5June2015. Ciaralli,S.,Coletti,M.,&Gabriel,S.B. (2015). QualificationofaPulsedPlasmaThrusterfor CubeSatPropulsion(PPTCUP). In34thInternationalElectricPropulsionConferenceand 6thNano-satelliteSymposium.Hyogo-Kobe,Japan. Cofer,A.,O’Neill,W.,Heister,S.,Alexeenko,A.,&Cardiff,E. (2015). Film-EvaporationMEMS TunableArrayforLow-MassSmallSatPropulsion: DesignImprovementsandThrustChar- acterization.In51stAIAA/SAE/ASEEJointPropulsionConference.Orlando,Florida. Dankanich, J. W., Polzin, K. A., Calvert, D., & Kamhawi, H. (2014). The iodine Satel- lite (iSAT) Hall Thruster Demonstration Mission Concept and Development. In 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference. 28-30 Jul. 2014; Cleveland, OH; UnitedStates. Dinardi,A.,Beckel,S.,&Dyer,J. (2013). ImplementationandContinuedDevelopmentofHigh PerformanceGreenPropulsionintheUnitedStates.InAIAA2013-5441. DougMessier,ParabolicArc.(2015).PhaseFourReceives1MillionDARPAContractforCubeSat Thruster.http://www.parabolicarc.com/2015/11/25/phase/.(Acccessed:2015-11-30) Dyer, J., Dinardi, A., & Anflo, K. (2013). First Implementation of High Performance Green PropulsioninaConstellationofSmallSatellites. In27thAnnualSmallSatelliteConference. Logan,Utah,2013. France,M. E.,Anthony,J.F.,&Hart,S.(2011).USAFACapstone Program—Proving GroundForFutureOperationallyResponsiveSpaceLeaders. InAIAAReinventingSpace Conference,AIAA-RS-2011-1002. Gibbon,D. (2010). AReviewoftheuseofbutaneasalowcostpropellant. InSpacePropulsion Conference.SanSebastian,Spain,May2010. Hejmanowski,N.J.,Woodruff,C.A.,Burton,R.,Carroll,D.L.,&Cardin,J.M.(2015).CubeSat HighImpulsePropulsionSystem(CHIPS).In62ndJANNAFPropulsionMeeting.Nashville, TN,1-5June2015. Hinkley,D. (2008). ANovelColdGasPropulsionSystemforNanosatellitesandPicosatellites. In 22ndAnnualAIAA/USUConferenceonSmallSatellites.Logan,Utah,August2008. Hurley,S.,Teel,G.,Lukas,J.,Haque,S.,Keidar,M.,Dinelli,C.,&Kang,J. (2015). Thruster SubsystemfortheUnitedStatesNavalAcademy’s(USNA)BallisticallyReinforcedCommu- nicationSatellite(BRICSat-P).In34thInternationalElectricPropulsionConferenceand6th Nano-satelliteSymposium.Hyogo-Kobe,Japan,July2015. James,K.,Moser,T.,Conley,A.,Slostad,J.,&Hoyt,R.(2015).PerformanceCharacterizationof theHYDROSWaterElectrolysisThruster.In29thAnnualAIAA/USUConferenceonSmall Satellites.Logan,Utah,August2015. JPL. (2013). Microfluidic Electrospray Propulsion May Allow Microspacecraft to Fly to MarsortheAsteroidBelt.http://microdevices.jpl.nasa.gov/news/news-microfluidic -electrospray-propulsion.php.(Acccessed:2015-11-10) Keidar, M., Haque, S., Zhuang, T., Shashurin, A., Chiu, D., Teel, G., . . . Uribe, E. (2013). Micro- CathodeArcThrusterforPhoneSatPropulsion. In27thAnnualAIAA/USUConferenceon SmallSatellites.Logan,Utah,August2013. Keidar, M., Zhuang, T., Shashurin, A., Teel, G., Chiu, D., Lukas, J., ... Brieda, L. (2015). Electric propulsion for small satellites. Plasma Physics and Controlled Fusion 57 (2015) 014005(10pp). Klesh,A.,Baker,J.,Castillo-Rogez,J.,Halatek,L.,Murphy,N.,Raymond,C.,. . . Lightsey,G. (2013). INSPIRE:InterplanetaryNanoSpacecraftPathfinderInRelevantEnvironment. In AIAASPACE2013ConferenceandExposition.SanDiego,California,September2013. Klesh,A.,&Krajewski,J.(2015).MarCO:CubeSatstoMarsin2016.In29thAnnualAIAA/USU

57 ConferenceonSmallSatellites.Logan,Utah,August2015. Krejci,D.,Mier-Hicks,F.,Fucetola,C.,Lozano,P.,Schouten,A.H.,&Martel,F. (2015). Design andCharacterizationofaScalableionElectrosprayPropulsionSystem.In34thInternational ElectricPropulsionConferenceand6thNano-satelliteSymposium.Hyogo-Kobe,Japan. Kvell,U.,Puusepp,M.,Kaminski,F.,Past,J.-E.,Palmer,K.,Gronland,T.-A.,&Noorma,M. (2014). NanosatelliteorbitcontrolusingMEMScoldgasthrusters. InProceedingsofthe EstonianAcademyofSciences,63,2S,279–285. Leiter,H.,Altmann,C.,Kukies,R.,J.Kuhmann,Post,J.-P.,Berger,M.,&Rath,M.(2015).Evo- lutionoftheAIRBUSDSGmbHRadioFrequencyIonThrusterFamily.In34thInternational ElectricPropulsionConferenceand6thNano-satelliteSymposium.Hyogo-Kobe,Japan. Manzoni,G.,&Brama,Y.L. (2015). CubesatMicropropulsionCharacterizationinLowEarth Orbit. In29thAnnualAIAA/USUConferenceonSmallSatellites. Logan, Utah, August 2015. Masse,R.K.,Spores,R.A.,Kimbrel,S.,allen,M.,Kimbrel,S.,&McLean,C. (2015). Enabling HighPerformanceGreenPropulsionforSmallSats. In29thAnnualAIAA/USUConference onSmallSatellites.Logan,Utah,August2015. McLean, C., Deininger, W., Marotta, B., Spores, R., Masse, R., Smith, T., . . . Bacha, C. (2015). GreenPropellantInfusionMissionProgramOverview,Status,andFlightOperations.In51st AIAA/ASME/SAE/ASEEJointPropulsionConference.Orlando,Florida,July27-29,2015. Mier-Hicks,F.,&Lozano,P.C.(2015).ThrustMeasurementsofIonElectrosprayThrustersusing aCubeSatCompatibleMagneticallyLevitatedThrustBalance.In34thInternationalElectric PropulsionConferenceand6thNano-satelliteSymposium.Hyogo-Kobe,Japan,July2015. Misuri,T.,Ducci,C.,Albertoni,R.,Andrenucci,M.,&Pedrini,D.(2015).SITAELLowPowerHall EffectThrustersforSmallSatellites.In34thInternationalElectricPropulsionConferenceand 6thNano-satelliteSymposium.Hyogo-Kobe,Japan. MoogISP. (2014). MoogMonopropellantthrustersbrochure.http://www.moog.com/literature/ Space_Defense/ISP/Monopropellant_Thrusters_Rev_0613.pdf.(Acccessed:2015-11-05) Mungas,G.,Vozoff,M.,Rishikof,B.,Strak,D.,London,A.,Fryer,J.,&Buchanan,L. (2011). NOFBXMonopropulsionOverview. In14thAnnualFAACommercialSpaceTransportation Conference. NASA Press release. (n.d.). Technology Development Project Selections . https://www .nasa.gov/content/technology-development-project-selections/#.Vmsn7L83L-s. (Ac- ccessed:2015-11-22) NASASBIR.(2014).SBIR.sbir.nasa.gov/.(Acccessed:2015-11-15) Nicholas, A., Finne, T., Galysh, I., Mai, A.,&Yen, J. (2013). CubeSatSolidRocketMotor PropulsionSystemsprovidingdelta-Vsgreaterthan500m/s. In27thAnnualAIAA/USU ConferenceonSmallSatellites.Logan,Utah,August2013. Persson,M.(2015).CommercialBreakthroughforECAPSHPGPreplacingHydrazine.InRymd- forum.Gothenburg,Sweden,10March2015. Pigeon,C.E.,Orr,N.G.,Larouche,B.P.,Tarantini,V.,Bonin,G.,&Zee,R.E. (2015). A LowPowerCylindricalHallThrusterforNextGenerationMicrosatellites. In29thAnnual AIAA/USUConferenceonSmallSatellites.Logan,Utah. Polzin, K. A., Peeples, S., Seixal, J., Mauro, S., Lewis, B., Jerman, G., . . . Lee, L. (2015). Propul- sionSystemDevelopmentfortheIodineSatellite(iSAT)DemonstrationMission.In34thIn- ternationalElectricPropulsionConferenceand6thNano-satelliteSymposium. Hyogo-Kobe, Japan. Rangsten,P.,Bejhed,J.,Johansson,H.,Bendixen,M.,Jonsson,K.,&Gronland,T.-A. (2012). AdvancedMEMScomponentsinclosed-loopmicropropulsionapplications. In26thAnnual

58 AIAA/USUConferenceonSmallSatellites.Logan,Utah. Ridenoure,R.,Munakata,R.,Diaz,A.,Wong,S.,Plante,B.,Stetson,D.,. . . Foley,J. (2015). LightSailProgramStatus: OneDown,OnetoGo. In29thAnnualAIAA/USUConference onSmallSatellites.Logan,Utah. RuiC.Barbosa,NASASpaceflight.com. (n.d.). debutsLongMarch11loftingTianwang-1 trio. http://www.nasaspaceflight.com/2015/09/china-debuts-long-march-11-lofting -tianwang-1-trio/.(Acccessed:2015-12-01) Schappell,D.T.,Scarduffa,E.,Smith,P.,&Solway,N. (2005). AdvancesinMarottaElectric andSatellitePropulsionFluidControlActivities. In41stAIAA/ASME/SAE/ASEEJoint PropulsionConference.July10-13,2005,Tucson,AZ. Sheehan,J.P.,Collard,T.A.,Ebersohn,F.H.,&Longmier,B.W. (2015). InitialOperationof theCubeSatAmbipolarThruster. In34thInternationalElectricPropulsionConferenceand 6thNano-satelliteSymposium.Hyogo-Kobe,Japan. Spangelo,S.,&Longmier,B.(2015).OptimizationofcubeSatSystem-levelDesignandpropulsion SystemsforEarth-EscapeMissions.JournalofSpacecraftand,52 (4),1009–1019. Spektor,R.,,K.D.,Beiting,E.,Swenson,K.A.,Goddard,D.,Raitses,Y.,&Fisch,N.J. (2011). CharacterizationofaCylindricalHallThrusterwithPermanentMagnets. In32nd InternationalElectricPropulsionConferenceand6thNano-satelliteSymposium.Wiesbaden, Germany. Spores,R.,Masse,R.,Kimbrel,S.,&McLean,C. (2014). GPIMAF-M315EPropulsionSystem. In50thJointPropulsionConference.Cleveland,Ohio,28July2014. SSC ECAPS. (2015). HPGP,thenextlevelofpropulsion. http://www.sscspace.com/ecaps. (Acccessed:2015-09-09) Stratton,J. (2004). TheuseoftheaerojetMR-103HthrusterontheNewHorizonsmissionto Pluto.In55thInternationalAstronauticalCongress.Vancouver,Canada,2004. Takegahara, H., Kuninaka, H., Funaki, I., Ando, A., Komurasaki, K., Koizumi, H.,...Kakami, A. (2015). OverviewofElectricPropulsionResearchActivitiesinJapan. In34thInternational ElectricPropulsionConferenceand6thNano-satelliteSymposium.Hyogo-Kobe,Japan,July 2015. Tsay,M.,Frongillo,J.,&Hohman,K. (2015). Iodine-FueledMiniRFIonThrusterforCubeSat Applications. In 34thInternationalElectricPropulsionConferenceand6thNano-satellite Symposium.Hyogo-Kobe,Japan,July2015. Tsay,M.,Frongillo,J.,Lafko,D.,&Zwahlen,J. (2014). DevelopmentStatusand1UCubeSat ApplicationofBusek’s0.5NGreenMonopropellantThruster. In28thAnnualAIAA/USU ConferenceonSmallSatellites.Logan,Utah,August2014. VACCO Industries. (2015). Cubesat Propulsion Systems from VACCO. http://www.cubesat -propulsion.com/.(Acccessed:2015-09-14) Whitmore,S.A.,Merkley,S.L.,Spurrier,Z.S.,&Walker,S.D. (2015). DevelopmentofaPower Efficient,Restartable,"Green"PropellantThrusterforSmallSpacecraftandSatellites. In 29thAnnualAIAA/USUConferenceonSmallSatellites.Logan,Utah. Zondervan, K. L., Fuller, J., Rowen, D., Hardy, B., Kobel, C., Chen, S.-H., . . . Kremer, A. (2014). CubeSatSolidRocketMotorPropulsionSystemsprovidingdelta-Vsgreaterthan500m/s.In 28thAnnualAIAA/USUConferenceonSmallSatellites.Logan,Utah,August2014.

59 5 Guidance, Navigation and Control

5.1 Introduction TheGuidance, Navigation&Control(GNC)subsystemincludesboththecomponentsusedfor position determination and the components used by the Attitude Determination and Control System (ADCS). InEarthorbit,anonboardpositiondeterminationcapabilitycanbeprovidedbyaGPSreceiver. Alternatively,groundbasedtrackingsystemscanbeused. Ifonboardknowledgeisrequired thentheseradarobservationscanbeuploadedandpairedwithasuitablepropagator. Commonly, the USAF published two line element (TLE) sets(Shepherd, Lt Col Glen and Air Force Space Command,2006)arepairedwiththeSGP4propagator(Vallado,Crawford,Hujsak,&Kelso,2006). Indeepspace,positiondeterminationisperformedusingtheDeepSpaceNetwork(DSN)andan onboardradiotransponder(Thornton&Border,2003). ADCS includes sensors used to determine attitude and attitude rate, such as star trackers andgyros,andactuatorsdesignedtochangeaspacecraft’sattitude,suchasreactionwheelsand thrusters.Therearemanyattitudecontrolanddeterminationarchitecturesandalgorithmssuitable foruseinsmallspacecraft(Wertz,2012). ThecontinuingtrendinsmallspacecraftGNCistheminiaturizationofexistingtechnologies. While3-axisstabilized,GPSequipped100 kgclassspacecrafthavebeenflownforoveradecade, ithasonlybeeninthepastfewyearsthatsuchtechnologieshavebecomeavailablefor10 kgclass spacecraft. Table5.1summarizesthecurrentstateoftheartperformanceforGNCsubsystemsin smallspacecraft.

Table5.1.ThestateoftheartforGNCsubsystems

Subsystem Performance Status ReactionWheels 0.1 N mpeaktorque,1.5 N m s TRL9 storage Magnetorquers 5Am2 peakdipole TRL9 StarTrackers 25 arcsecpointingknowledge TRL9

SunSensors 0.1 accuracy TRL9

EarthSensors 0.25 accuracy TRL9 1 1 Gyroscopes 1 h biasstability,0.1 h 2 TRL9 randomwalk GPSReceivers 1.5 mpositionaccuracy TRL9

IntegratedUnits 0.007 pointingcapability TRL6

5.2 Stateoftheart 5.2.1 IntegratedUnits Integratedunitscombinemultipledifferentattitudeandnavigationcomponentsintoasinglepart withtheaimtoprovideasimple,singlecomponentsolutiontoaspacecraft’sGNCrequirements. Typicalcomponentsincludedarereactionwheels,magnetometers,magnetorquersandstartrackers. Theunitsoftenincludebuilt-inattitudedeterminationandmomentummanagementalgorithms.

60 Table5.2describessomeoftheintegratedunitscurrentlyavailable,thoughnonehaveflownyet. 1 Bothunitsdescribedinthetableare 2 Uunits,andtheunitfromBlueCanyonTechnologiesis illustratedinFigure5.1.

Figure5.1. BCTXACTIntegratedADCS Figure5.2. SinclairInterplanetaryRW-0.03 Unit. ImagecourtesyofBlueCanyonTech- ReactionWheel. ImagecourtesyofSinclair nologies. Interplanetary.

Table5.2.IntegratedGNCunits

Product Manufac- Mass Components Pointing Status turer (kg) Capabil- ity

MAI-400 Maryland 0.694 3reactionwheels,3-axis ? TRL6 Aerospace magnetometer,2HCIs,3 torquerods

BCT BlueCanyon 0.85 3reactionwheels,3-axis 0.007 TRL6 XACT Technologies magnetometer,star tracker,3torquerods

5.2.2 ReactionWheels Miniaturizedreactionwheelsprovidesmallspacecraftwithaprecisionpointingcapability. Reac- tionwheelscanprovidearbitrarytorqueslimitedonlybythewheel’speaktorqueandmomentum capacity.Table5.3listsaselectionofhighheritageminiaturereactionwheels,andFigure5.2illus- tratesoneofthewheelsofferedbySinclairInterplanetary. Forfullthree-axiscontrol,aspacecraft requiresthreewheels. However,afourwheelconfigurationisoftenusedtoprovidefaulttolerance (Jin,Ko,&Ryoo,2008).Duetoparasiticexternaltorques,reactionwheelsneedtobeperiodically desaturatedusinganactuatorthatprovidesanexternaltorque,suchasthrustersormagnetorquers (Wisniewski&Kulczycki,2005).

5.2.3 Magnetorquers Magnetorquers are an established technology used in small spacecraft and can provide control torquesperpendiculartothelocalexternalmagneticfield.Table5.4listsaselectionofhighheritage magnetorquers and Figure 5.3 illustrates some of ZARM Technik’s product offerings.Magnetorquers areoftenusedincombinationwithwheelstoremoveexcessmomentum. Ascontroltorquescan onlybeprovidedintheplaneperpendiculartothelocalmagneticfield,full3-axisstabilizationis

61 Table5.3.ReactionWheels

Product Manufac- Mass Peak Momen- Radiation Status turer (kg) Torque tum Tolerance (N m) Capacity (krad) (N m s) 10SP-M Surrey 0.96 0.011 0.42 5 TRL9 Satellite Technology 100SP-O Surrey 2.6 0.11 1.5 5 TRL9 Satellite Technology RW-0.03 SinclairIn- 0.185 0.002 0.04 20 TRL9 terplanetary notpossibleatanygiventime.However,orbitperiodiccontrolispossibleusingonlymagnetorquers asthespacecraftmovesthroughthemagneticfield(Wisniewski&Stoustrup,2004).

Table5.4.Magnetorquers

Product Manufac- Mass PeakDipole Radiation Status turer Tolerance MTR-5 Surrey 0.5 kg 5Am2 5krad TRL9 Satellite Technology MT0.1-1 ZARM 0.003 kg 0.1 A m2 TRL9 MT1-1 ZARM 0.060 kg 1Am2 TRL9 TQ-15-28- Spaceflight 0.727 kg 15 A m2 TRL9 0-1-1 Industries

5.2.4 Thrusters

ThrustersusedforattitudecontrolaredescribedinChapter4.Pointingaccuracyisdeterminedby minimumimpulsebit,andcontrolauthoritybythrusterforce.

5.2.5 StarTrackers

A star tracker can provide an accurate,standalone estimate of the spacecraft’s attitude by comparing adigitalimagecapturedwithaCCDorCMOSsensortoanonboardstarcatalog(Spratling& Mortari,2009). Table5.5listssomemodelssuitableforuseonasmallspacecraft,oneofwhichis illustratedinFigure5.4.

62 Figure5.3. ZARMTechnikMagnetor- Figure5.4.SSTLProcyonStarTracker. quersforMicro-Satellites. Imagecour- ImagecourtesyofSurreySatelliteTech- tesyofZARM. nologyLtd.

Table5.5.StarTrackers

Product Manufacturer Mass Accuracy Radiation Status (incl. Tolerance baffle) Rigel-L SurreySatelliteTechnology 2.2 kg 25 arcsec 5krad TRL9 Procyon SurreySatelliteTechnology 1.7 kg 50 arcsec TRL9 ST-16 SinclairInterplanetary 0.12 kg 74 arcsec 9krad TRL9

5.2.6 Magnetometers

Magnetometersprovideameasurementofthelocalmagneticfield,andthismeasurementcanbe usedtoprovidebothestimatesofattitude(Psiaki,Martel,&Pal,1990)andalsoorbitalposition (Psiaki, Huang, & Fox, 1993).Table 5.6 provides a summary of some 3-axis magnetometers available forsmallspacecraft,oneofwhichisillustratedinFigure5.5.

Table5.6.Magnetometers

Product Manufac- Mass Resolution Orthogonal- Radia- Status turer ity tion Toler- ance

Magnetome- NewSpace 0.2 kg 6.5 nT <1 10 krad TRL9 ter Systems

MicroMag3 PNICorp 0.2 kg 15 nT <1 TRL9

Magnetome- Surrey 10 nT <1 5krad TRL9 ter Satellite 0.19 kg (Si) Technology

63 Figure5.6. AdcoleCoarseSunSensor Figure5.5. NSSMagnetometer. Image Detector (Cosine Type). Image cour- courtesyofNewSpaceSystems. tesyofAdcoleCorporation.

5.2.7 SunSensors SunsensorsareusedtoprovideanestimateofthelocationoftheSuninthespacecraftbodyframe, whichinturncanbeusedasaninputinattitudeestimation. Coarsesensorsonlyprovideanon- directionalcosinereading(Allgeier,Mahin,&Fitz-Coy,2009),andaspacecraftwouldrequirea minimumofsix. Finesunsensorsprovideafull2-axisestimateofSunlocation(Chang,Yun,& Lee,2007)andaminimumoffourarerequired.AselectionofsunsensorsaredescribedinTable5.7 oneofwhichisillustratedinFigure5.6.

Table5.7.SunSensors

Product Manufac- Mass Accu- Radiation Status turer (kg) racy Tolerance

Fine(digital)Sun NewSpace 0.035 0.1 10 krad TRL9 Sensor Systems

AnalogSunDetector Adcole 0.068 0.75 TRL9

CSS-01 SpaceMicro 5 TRL9 0.0141

5.2.8 EarthSensors Earth sensors can be simple infrared horizon crossing indicators (HCI) or can utilize more ad- vancedthermopilesensorstodetectthetemperaturedifferencesbetweenthepolesandtheequator. ExamplesofsuchtechnologiesaredescribedinTable5.8andillustratedinFigure5.7.

Table5.8.EarthSensors

Product Manufacturer Mass(kg) Accuracy Status

StaticEarthSensor Maryland 0.033 0.25 TRL9 Aerospace

MiniDigitalHCI Servo 0.050 0.75 TRL9

64 Figure5.7. MAI-SES.Imagecourtesy Figure5.8. LN-200SFiberOpticGyro ofMarylandAerospaceInc. andIMU.ImagecourtesyofNorthrop GrummanCorporation.

5.2.9 Gyros

Gyroscopes provide a measurement of angular .The main gyro types used in small spacecraft arefiberopticgyros(FOGs)andMEMSgyros,withFOGsofferingbetterperformanceatamass andcostpenalty(Greenheck,Bishop,Jonardi,&Christian,2014).Table5.9listsasampleofgyros availableforsmallspacecraft,oneofwhichisillustratedinFigure5.8.

Table5.9.Gyros

Product Manufacturer Type Mass Bias Random Radia- Status (kg) Stability Walk tion Toler- ance 1 1 MIRAS-01 SurreySatellite 3-axis 2.8 10 h 0.6 h 2 5 krad TRL9 Technology MEMS 1 1 LN-200S Northrop 3-axis 0.75 1 h 0.1 h 2 10 krad TRL 9 Grumman FOG 1 1 AnalogDevices 3-axis 0.016 25 h 2.0 h 2 TRL9 ADIS16405 MEMS

5.2.10 GPS

For Low Earth Orbiting spacecraft GPS receivers are now the primary method for performing orbitdetermination,replacinggroundbasedtrackingmethods. OnboardGPSreceiversarenow consideredamaturetechnologyforsmallspacecraft,andsomeexamplesaredescribedinTable5.10. TheNovaTelOEM615board,replacingtheubiquitousOEMV1,isillustratedinFigure5.9. GPS accuracyislimitedbypropagationvariancethroughtheexosphereandtheunderlyingprecisionof thecivilianuseC/Acode(Montenbrucketal.,2012). GPSunitsarecontrolledundertheExport AdministrationRegulations(EAR)andmustbelicensedtoremoveCOCOMlimits(Officeofthe FederalRegister,2015).

65 Figure 5.9. NovaTel OEM615 Dual- Figure5.10. GeneralDynamicsSDST. FrequencyGNSSReceiver.Imagecour- ImagecourtesyofGeneralDynamics. tesyofNovAtelInc.

Table5.10.GPSReceivers

Product Manufacturer Mass Accuracy Radiation Status Tolerance SGR-05U Surrey Satellite 0.040 kg 10 m 5 krad TRL 9 Technology SGR-10 Surrey Satellite 0.95 kg 10 m 10 krad TRL 9 Technology OEM615 Novatel 0.021kg 1.5m TRL 9

5.2.11 DeepSpaceNavigation Indeepspace,navigationisperformedusingradiotranspondersinconjunctionwiththeDeepSpace Network(DSN).Atthetimeofwritingtheonlysmallspacecraftsuitabledeepspacetransponderto haveflownpreviouslyistheJPLdesignedandGeneralDynamicsmanufacturedSmallDeepSpace Transponder(SDST).However,JPLhasdesignedadeepspacetranspondersuitableforuseina cubesat,IRIS.Table5.11detailsthesetworadios,andtheSDSTisillustratedinFigure5.10.IRIS isderivedfromtheLowMassRadioScienceTransponder(LMRST)andisscheduledtoflyon INSPIRE(Aguirre,2015).

Table5.11.DeepSpaceTransponders

Product Manufacturer Mass Bands Status SDST General 3.2 kg X,Ka TRL9 Dynamics IRISV2 JPL 0.5 kg X,Ka,S,UHF TRL6

5.3 OntheHorizon GiventhehighmaturityofexistingGNCcomponents, futuredevelopmentsinGNCaremostly focused on incremental or evolutionary improvements, such as decreases in mass and power, increases inlongevity,orhigheraccuracy.ThisisespeciallytrueforGNCcomponentsdesignedfordeepspace missions,wheresmallspacecraftfocusedmissionshaveonlyveryrecentlybeenproposed.

66 5.4 Conclusion SmallspacecraftGNCisamaturearea,withmanypreviouslyflownandhighTRLcomponents offeredbyseveraldifferentvendors. Soon-to-be-flownintegratedunitswillofferasimple,single vendorsinglecomponentsolutionforADCSwhichwillsimplifyGNCsubsystemdesign.

References

Aguirre,F. (2015,March). X-BandelectronicsfortheINSPIRECubesatdeepspaceradio. In AerospaceConference,2015IEEE (p.1-10).doi:10.1109/AERO.2015.7119295 Allgeier,S.E.,Mahin,M.,&Fitz-Coy,N.G. (2009). Designandanalysisofacoarsesunsensor forpico-satellites. InProceedingsoftheAIAAInfotechatAerospaceConferenceandExhibit andAIAAUnmanned...UnlimitedConference(pp.2009–1837). Chang, Y.-K., Yun, M.-Y., & Lee, B.-H. (2007). A new modeling and validation of two-axis miniaturefinesunsensor.SensorsandActuatorsA:Physical,134 (2),357–365. Greenheck,D.,Bishop,R.,Jonardi,E.,&Christian,J. (2014). DesignandTestingofaLow-Cost MEMSIMUClusterforSmallSatApplications. In28thAnnualAIAA/USUConferenceon SmallSatellites.Logan,Utah. Jin,J.,Ko,S.,&Ryoo,C.-K.(2008).Faulttolerantcontrolforsatelliteswithfourreactionwheels. ControlEngineeringPractice,16 (10),1250–1258. Montenbruck,O.,Swatschina,P.,Markgraf,M.,Santandrea,S.,Naudet,J.,&Tilmans,E.(2012). Precisionspacecraft navigationusingalow-costGPSreceiver.GPSsolutions,16 (4),519–529. OfficeoftheFederalRegister. (2015). Foreignavailabilitydeterminationproceduresandcriteria. CodeofFederalRegulations,Title15Part768.7 . Psiaki,M.L.,Huang,L.,&Fox,S.M. (1993). Groundtestsofmagnetometer-basedautonomous navigation(MAGNAV)forlow-earth-orbitingspacecraft. JournalofGuidance,Control,and Dynamics,16 (1),206–214. Psiaki,M.L.,Martel,F.,&Pal,P.K. (1990). Three-axisattitudedeterminationviaKalman filteringofmagnetometerdata. JournalofGuidance,Control,andDynamics,13 (3),506– 514. Shepherd,LtColGlenandAirForceSpaceCommand. (2006). SpaceSurveillanceNetwork. In SharedSpaceSituationalAwarenessConference,ColoradoSprings,CO. Spratling,B.B.,&Mortari,D. (2009). Asurveyonstaridentificationalgorithms. Algorithms, 2 (1),93–107. Thornton,C.L.,&Border,J.S.(2003).Radiometrictrackingtechniquesfordeep-spacenavigation. JohnWiley&Sons. Vallado,D.A.,Crawford,P.,Hujsak,R.,&Kelso,T. (2006). Revisitingspacetrackreport#3. AIAA,6753 ,2006. Wertz,J.R. (2012). Spacecraftattitudedeterminationandcontrol(Vol.73). SpringerScience& BusinessMedia. Wisniewski,R.,&Kulczycki,P. (2005). Slewmaneuvercontrolforspacecraftequippedwithstar cameraandreactionwheels.ControlEngineeringPractice,13 (3),349-356. Wisniewski,R.,&Stoustrup,J. (2004). PeriodicH2synthesisforspacecraftattitudecontrolwith magnetorquers.JournalofGuidance,Control,andDynamics,27 (5),874-881.

67 6 Structures, Materials and Mechanisms

6.1 Introduction

Sincethelasteditionofthisreporttherehasbeenfurtherexpansionofofferingsforoff-the-shelf structuresandlikewiseanexpansionofcustommachined,composite,andevenprintedstructures used,orproposedforuse,onsmallspacecraftmissions. Thischapterwillrefertosmallspacecraft structures with a focus on 1U- 12U platforms and specifically those components designed to transmit loadsthroughthespacecrafttotheinterfaceofthelaunchanddeploymentsystemandprovide attachmentpointsforpayloadsandassociatedcomponents.Thesestructuresaretypicallyclassified astheprimarystructure. Forcontrast, secondarystructuresareallotherstructures, likesolar panels,thermalblanketsetc.,thatonlyneedtosupportthemselves.Whenaprimarystructurefails itisalmostalwayscatastrophic,whileafailureofasecondarystructuretypicallydoesnotaffectthe integrityofthespacecraftbutcanhaveasignificantimpactontheoverallmission.Thesestructural categoriesserveasagoodreferencebutthelinesbetweenthemcanbehardtodistinguishforsmall spacecraftsincetheyareparticularlyconstrainedbyvolume. Thisisespeciallytrueforcubesats, as the capabilities of these spacecraft have expanded but the volume afforded by the standard dispensers (by definition) have not.Therefore, it is often essential that the structural components be asvolumeefficientaspossible.Toachievethisvolumeefficiency,theprimarystructuralcomponents mustnotonlycarrymechanicalloads,butmayalsoserveastheprimarycomponentforthermal management,provideprimarymeansforradiationshielding,serveasapressurecontainmentvessel, andevenbehaveasastrainactuationcomponent–featuresthatareoftenassignedtosecondary structuralcomponentsinlargerspacecraft. Importanttoanydiscussionofsmallspacecraftstructureisthematerialofthestructureitself. Typically a spacecraft’s structure is made up of both metallic and non-metallic materials.Metals are commonlyhomogeneousandisotropic,meaningtheyhavethesamepropertiesateverypointandin everydirection. Non-metals,suchascomposites,arenormallyneitherhomogeneousnorisotropic. Materialchoiceisdrivenbytheoperationalenvironmentofthespacecraftandmustensureadequate marginforlaunchandoperationalloads,thermalbalanceandthermalstressmanagement,andby thesensitivitiesoftheinstrumentationandpayloadtooutgassingandthermaldisplacements. Thedesignofthestructureisnotonlyaffectedbythedifferentsubsystemsandlaunchen- vironments,butalsotheapplicationandoperationsofthespacecraft,suchastheconfiguration differencesforaspinversusa3-axisstabilizedsystem. Instrumentationalsoplacesrequirements onthestructureandcanrequiremechanisms,suchasdeployableboomtocreatesomedistance betweenamagnetometerandthespacecrafttomitigateitseffectonthemeasurement. Alsoincludedinthischapterisanoverviewofradiationeffectsandsomemitigationstrategies asitimpactsstructuraldesignconsiderationsforsmallspacecraft.

6.2 Stateoftheart

Twogeneralapproachesarecommonforprimarystructuresinthesmallspacecraftmarket: off- the-shelf structures and custom machined or printed components. Maybe unsurprisingly, most off-the-shelfofferingsareforthecubesatmarket. Oftentheoff-the-shelfstructurescansimplify thedevelopmentofasmallspacecraft,butonlyasthecomplexityofthemission,subsystems,and payloadrequirementsfallwithinthedesignintentoftheoff-the-shelfstructureoffered.

68 6.2.1 PrimaryStructure There are now several companies that provide cubesat primary structures (often called frames orchassis). Mostaremachinedfrom6061-T6or7071aluminumandaredesignedwithseveral mountinglocationsforcomponentsinanattempttoofferconfigurationflexibilityforspacecraft designers. Thissectionwillhighlightseveralapproachestakenbyvariousvendorsinthecubesat market.Oftheofferingsincludedinthesurvey,1Uto3Uformatsaremostprevalent,butthereare afewframesthataredesignedfor6Uandeven12Uspacecraft.Todate,however,theauthorisnot awareofanymissionthathasflown,orevengonebeyondtheproposalphasefora12Uspacecraft. Alsoofnote,theexactformatofthe12Ucubesatseemstobeevolving.Thistrendissimilartothe developmentofthe6Uandistypicaluntiladispenserisqualified,whichtendstosetthestandard fortheexactdimensionalconstraintsofthespacecraftwithin.

MonocoqueConstruction

Pumpkin, Inc. CubeSat Kit The structural approach taken by Pumpkin for their 1U- 3U spacecraft is of a ap- proach,where loads are carriedby the external skin in an attempt to maximizeinternalvolume. Pumpkin,Inc. providesseveraloff-the- shelfcubesatstructuresintendedascomponentsoftheirCubeSat Kitsolutionsin0.5U,1U,1.5U,2Uand3Usizes(Pumpkin,Inc., 2015c). Allstructuresstrictlyadheretothecubesatstandard(1U =10 10 10 cm),andconsistofrivetedsheet-metalconstruction, ⇥ ⇥ offeredasskeletonizedFigure6.1)andsolid-wallconfigurations. Figure 6.1. 1U Skeletonized ModularFrameDesigns CubeSatKit. Imagecourtesy ofPumpkin,Inc.(2015a). NanoAvionics Modular Frame NanoAvionics has devel- oped what it calls “standardized frames and structuralelement”that whenassembledformtheprimarystructurefor1Uto12Uspacecraft.Amodular3Ustructurefrom NanoAvionicsisshowninFigure6.2. Thesecomponentsareintendedtobemodular,madefrom 7075aluminum,andlikemanyoff-the-shelfcubesatstructures,compliantwiththePC/104form factor(NanoAvionics,2015).

RadiusCubeSatStructures RadiusSpacehasalsochosenahighlymodularapproachto developafamilyofcubeSatstructuresthatrangefromthe1Uto12Usizes. Figure6.3showsthis modularapproachfor1Uto3Usizes.PCBintegrationistypicallyaccomplishedthroughastacked configuration,althoughRadiusSpaceassertsthestructuresallowfordifferentPCBorientationsfor allbutthe1Uframe.

CardSlotSystem

ComplexSystems&SmallSatellites(C3S) C3Shasdevelopeda3Ucubesatstructure thatutilizesacardslotsystem,asshowninFigure6.4,whichisintendedtoprovideseveralstated benefitsoverthemorecommonPC/104stacksolution.Thesebenefitsincludeaccesstoindividual cardsduringintegrationandtesting(PC/104solutionsrequirede-integrationofanentirestackto isolateasinglecard),improvedstack-uptolerance,andbetterthermalmanagementofindividual

69 Figure 6.2. Nano Avionics Small Satellite Figure 6.3. The Radius Space Modular Structures. ImagecourtesyofNanoAvionics Structures. ImagecourtesyofRadiusSpace (2015). (2015). cardscompared to a traditional PC/104stack,where all cards areconnected series and are thermally interdependent(ComplexSystems&SmallSatellites,2015).

6.2.2 Mechanisms There are several companies offering mechanisms for the small spacecraft and smaller markets. Althoughnotexhaustive,thissectionwillhighlightafewdevicesforreleaseactuation,component pointing,andboomextension,thatrepresentthestateoftheartforthecubesatmarket.Deployable mechanismsusedfordeorbitdevices,pleaserefertosection12.

CDT:DeployableBooms CompositeTechnologyDevelopment(CTD)hasdevelopedacom- positeboomcalledtheStableTubularExtendableLock-OutComposite(STELOC),thatisrolled uporfoldedforstowageanddeploysusingstoredstrainenergy.Theslit-tubeboom,showninFig- ure6.5,employsaninnovativeinterlockingedgefeaturealongthetubeslitthatgreatlyenhances stability.Theboomcanbefabricatedinmanycustomdiametersandlengths,offersasmallstowed volume,andhasanear-zerocoefficientofthermalexpansion(CTE).

Figure 6.5. CTD’s Deployable Composite Figure6.4. C3S3UCubeSatStructure. Im- Booms. ImagecourtesyofCompositeTech- age courtesy of Complex Systems & Small nologyDevelopment(2015). Satellites(2015).

TethersUnlimited: 3 DOFGimbalMechanism TethersUnlimitedoffersa3 DOFgimbal mechanismcalledtheCompactOn-BoardRoboticArticulator(COBRA).Thismechanismprovides accurate pointing for sensors and thrusters.The COBRA packages down to100 100 33.25 mm and ⇥ ⇥ weighs 155 grams (Tethers Unlimited, Inc., 2015).An image of the COBRA is shown in Figure 6.6.

70 Figure6.6.TethersUnlimitedCompactOn- Figure 6.7. Honeybee Robotics CubeSat BoardRoboticArticulator. Imagecourtesy SADAwithiPhoneforscale.Imagecourtesy ofTethersUnlimited,Inc.(2015). ofHoneybeeRobotics(2015a).

Honeybee: SolarPanelDriveActuator HoneybeeincooperationwithMMAhasdeveloped aSolarArrayDriveActuator(SADA),showninFigure6.7, thataccommodates 180 single ± axisrotationforsolararraypointing. Honeybeealsoofferstheunitinaslip-ringconfiguration forcontinuousrotation. Table6.1highlightsafewkeyspecificationsforthisactuator(Honeybee Robotics,2015b).

Table6.1.HoneybeeSADA Mass (slip Ring Option) 180 g

Backlash <3 OperatingTemperatureRange 30 to+85 C Size 100 100 6.5 mm ⇥ ⇥ Radiation Tolerance 10 krad Wire Wrap 7 channels per wing @ 1.4 A per channel Slip Ring 10 channels per wing @ 0.5 A per channel

TiNi Aerospace: Frangibolt Release Actuator TiNi Aerospacehasseveralreleasemechanismsavailableforthespace- craftmarket,butperhapsthemostrelevanttothecubesatmarket istheFrangiboltActuator(particularlytheFD04model),dueto itssmallsizeandpowerspecifications.TheFrangiboltoperatesby applyingpowertoaCopper-Aluminum-Nickelmemoryshapealloy cylinderwhichgeneratesforcetofractureacustomnotchedfastener intension(TiNiAerospace,2015).TheFrangiboltisintendedtobe Figure 6.8. TiNi Areospace reusablebyre-compressingtheactuatorusingacustomtoolandre- Frangibolt Actuator. Image placingthenotchedfastener.Figure6.8showsamodeloftheFD04 courtesy of TiNi Aerospace FrangiboltactuatorandTable6.2describesafewkeyspecifications. (2015).

6.3 OntheHorizon 6U and 12U off-the-shelf structures Off-the-shelf 6U and 12U structural components are productsthatcouldbeconsidered"onthehorizon,"thoughseveralcompaniesoffer6Uand12U

71 Table6.2.TiNiFD04FrangiboltActuator Mass 7g Power 15 W@9 VDC OperatingTemperatureRange 50 to+80 C Size 13.72 10.16 mm ⇥ HoldingCapacity 667 N FunctionTime Typically20 sec.@9 VDC Life 50cyclesMIN chassisorframesforpurchase. However,itappearsthatatleastthe6Uofferingswilllikelyhave flightheritagewithintheyear2016.

PumpkinSupernova6U Pumpkinhasdevelopedwhatithasnamedthe"Supernova,"a 6Ustructurethatfeaturesamachinedaluminummodulararchitecture. Thestructure,shownin Figure6.9,isdesignedtointegratewiththePlanetarySystemsCorporation(PSC)Canisterized SatelliteDispenser,andincludesaccommodationforthePSCSeparationConnectorforpowerand datawhileintegrated(Pumpkin,Inc.,2015b).

InnovativeSolutionsInSpace6U InnovativeSolutionsInSpace(ISIS)hasalsoadopted amodularapproachtoa6Ustructuretomaximizepayloadflexibility. The6Ustructureshown inFigure6.10isdesignedforintegrationwithintheISISLaunchandDeploymentSystem, and althoughnotyetflown,iscurrentlyusedformultiplespacecraftslatedforlaunchinthenearfuture.

Figure6.10. InnovationSolutionsInSpace Figure6.9.The6USupernovaStructureKit. Modular6UStructures. Imagecourtesyof ImagecourtesyofPumpkin,Inc.(2015b). InnovativeSolutionsInSpace(2015).

AdditiveManufacturingMaterials Theuseofadditivemanufacturingforspacecraftprimary structureshasbeenproposedforseveralyears,butonlynowhasthisprocessbeenadoptedbyflight missions(itisimportanttonotehowever,thatadditivemanufacturinghasbeenquitecommonfor smallspacecraftsecondarystructuralelementsformanyyears).Typically,theadvantageofadditive manufacturingistofreethedesignerfrommanufacturingconstraintsimposedbystandardmanu- facturingprocessesandallowmonolithicstructuralelementswithcomplexgeometry. Inpractice

72 however,additive manufacturing has its own set of geometric constraints,but when these constraints areunderstoodandrespected,thedesignercanapproachadesignchallengewithalargertoolset thathasnotbeenavailableintherecentpast.

WindformMaterials CRPTechnologyisusingselectivelasersintering(SLS)technologyfor theircarbonfilledpolyamidebasedmaterial,calledWindformXT2.0.Table6.3showsasummary ofmaterialpropertiespublishedbyCRP(CRPTechnologys.r.l.,2015).

Table6.3.WindformXT2.0 3 Density 1.097 gcm Color Black

Meltingpoint 179.3C TensileStrength 83.84 MPa TensileModulus 8928.20 MPa Resistivity,surface <108 Ohm Outgassing,TML 0.57 %

TheMontanaStatePrintSatmissionisatechnologydemonstratorspacecraftfortheeffective- nessofadditivemanufacturingusingtheWindformXTmaterial. Figure6.11showsthecomplete spacecraftandFigure6.12showstheprimaryprintedstructure. Thespacecraftisequippedwith severalsensorstoinvestigatethepropertiesofthematerialduringitsmission(Dr.DavidKlumpar, 2015).

Figure 6.11.Flight configuration of PrintSat. Figure6.12. WindformPrintSatStructure. Image courtesy of Dr. David Klumpar ImagecourtesyofCRPTechnology(2015). (2015).

The Morehead State University’s Rapid Prototyped MEMS Propulsion and Radiation Test (RAMPART)spacecraftwillalsobedemonstratingtherapidlyprototypedWindformmaterialdur- ingitsmission. Theentirestructureismadeofhighphosphorus,electrolessnickelplatedmaterial toprovideradarreflectivityfortrackingpurposes. BenefitsoftheRAMPARTpropulsionsystem arethelightweightandspecializedcellstructuresofthepropellanttankmadefromWindformXT. ThespacecraftwasscheduledforlaunchinJune2013,butwasdelayed.

AccuraBluestone 3DSystemsCorporationhasdevelopedaastereolithographicallyfabri- catedcompositematerialthatshowspromiseforspacecraftstructuralapplications.Thismaterialis currentlybeingusedasthemainstructuralcomponentfornozzles,tubing,andstorageofacold-gas

73 propulsionsystemshowninFigure6.13,originallydevelopedattheUniversityofTexasAustinand nowbeingdevelopedforseveralmissionsatGeorgiaTechUniversity. Table6.4showsasummary ofmaterialpropertiespublishedby3DSystems(3DSystems,Inc.,2015).

Table6.4.AccuraBluestone 3 Density 1.78 gcm Color Blue

GlassTransition(Tg) 78-81C TensileStrength 66-68 MPa TensileModulus 7600-11700 MPa FlexuralStrength 124-154 MPa Outgassing,TML low* *Tobemeasuredin2016

Figure6.13. ColdGasPropulsionModulefabricatedusingAccuraBluestone. Imagecourtesyof StevenArestie,E.GlennLightsey,BrianHudson(2012).

6.4 RadiationEffectsandMitigationStrategies 6.4.1 ShieldingfromtheSpaceEnvironment Shieldingthespacecraftisoftenthesimplestmethodtoreducebothaspacecraft’sratiooftotal ionizingdosetodisplacementdamagedose(TID/DDD)accumulationandtherateatwhichSEEs occurifusedappropriately,andinvolvestwobasicmethods: shieldingwiththespacecraft’spre- existingmass(includingtheexternal skin orchassis,and existsin every casewhether desired or not), and/sectorshielding.Thistypeofshielding,knownaspassiveshielding,isonlyveryeffective againstlowerenergyradiation,andisbestusedagainsthighparticlefluxenvironmentsincluding thedensestportionsoftheVanAllenbelts,theJovianandshortlivedsolarparticle events. Insomecasesincreasedshieldingismoredetrimentalthanifnonewasused,owingtothe secondariesgeneratedbyhighlypenetratingenergeticparticles;thereforeitisimportanttoanalyze boththethicknessandtypeofmaterialsusedtoshieldallcriticalpartsofthespacecraft.Thefinal designconsiderationisduetothestrongomni-directionalityofmostformsofparticleradiation, wherespacecraftneedtobeshieldedfromthefull4 ⇡ steradiancelestialsphere. Thisbringsthe notionofshieldingperunitsolidangleintothedesignspace,wheresmallholesorgapsinshielding

74 areoftenonlydetrimentalproportionallytothehole’ssolidangleasviewedbytheconcernedEEE component. Essentially,completelyenclosingcriticalcomponentsshouldnotbeconsideredafirm designconstraintwhenotherstructuralconsiderationsexist.

6.4.2 InherentMassShielding Inherentmassshieldingconsistsofutilizingtheentiretyofthepre-existingspacecraft’smassto shieldsensitiveelectroniccomponentsthatarenotheavilydependentontheirlocationwithinthe spacecraft. Thisoftenincludesthemainspacecraftbusprocessors, powerswitches, etc. Again the notion of shielding per unit solid angle is invoked here, where a component could be well shieldedfromits“backside” (2 ⇡ steradianhemisphere)andweaklyshieldedfromthe“front” due toitslocationnearthespacecraftsurface. Itwouldonlythenrequireadditionalshieldingfrom itsfronttomeetoperationalrequirements. Theclassicmethodemployedhereistoincreasethe spacecraft’sstructuralskinthicknesstoaccountforthisadditionalshieldingrequired. Thisisthe classicmethodlargelyduetoitssimplicity,wheremerelyathickerextrusionofmaterialisusedfor construction. Thedisadvantagetothismethodisthematerialused,veryoftenaluminum,ismass optimizedforstructuralandsurfacechargingconcernsandnotforshieldingeitherprotons/ionsor electrons. Recentresearchhasgoneintooptimizingstructuralmaterialsforbothstructuraland shieldingconcernsandiscurrentlyanactiveareaofNASA’ssmallbusinessinnovationresearchand smallbusinesstechnologytransferinvestment. Theprocesstodetermineexactlyhowmuchinherentshieldingexistsinvolvesusingareverseray tracingprogramonthespacecraftsolidmodelfromthespecificpoint(s)ofinterest.Aftergenerating theshielding-per-unit-solid-anglemapofthecriticalarea(s)ofthespacecraft,atradestudycanbe performedonwhatandwherebesttoinvolvefurtheradditionalshielding.

6.4.3 AdHocShielding There are two types of ad hoc shielding utilized on spacecraft:spot shielding, where a single board or componentiscoveredinshieldmaterial(oftenconformally);andsectorshielding,whereonlycritical areasofthespacecrafthaveshieldingenhancement.Thesetwomethodsareoftenusedinconcertas necessarytofurtherinsulateparticularlysensitivecomponentswithoutunnecessarilyincreasingthe overallshieldmassand/orvolume. Adhocshieldingismoreefficientperunitmassthaninherent massshieldingbecauseitcanbeoptimizedforthespacecraft’sintendedradiationenvironmentwhile looseningthestructuralconstraints.Themostrecentmethodsinclude:multiplelayershieldswith layer-uniqueelementalatomicnumberswhicharelayeredadvantageously(ofteninalow-high-low Zscheme), knownas“graded-Z” shielding, andadvancedlow-Zpolymerorcompositemixtures doped with high-Z metallic microparticle powders. Low-Z elements are particularly capable at shieldingprotonsandionswhilegeneratinglittlesecondaryradiation,wherehighZelementsscatter electronsandphotonsmuchmoreefficiently.Neutronshieldingisauniqueproblem,whereoptimal shieldmaterialsoftendependontheparticleenergiesinvolved. Commercialoptionsincludemost notablyTethersUnlimited’sVSRSsystemforsmallspacecraft,whichwasspecificallydesignedto bemanufacturedundera3Dprintedfusedfilamentfabricationprocessforconformalcoating(a methodwhichoptimizesvolumeandminimizesshieldgaps)applications.

6.5 Conclusion Thelandscapeforsmallspacecraftstructuraldesignaswellasthefirmsdevelopingandoffering solutionsforspacecraftdesignersareexpanding.Therearenowatleastafewdifferentapproaches tooff-the-shelf frames or chassis, each one with its own set of merits, as well as new vendors

75 offeringsmall-satspecificradiationshieldingsolutions.Mostofthedevelopmentshavebeeninthe 3Ucubesatclassandtherearenowatleastafewexamplesofmaturestructuraldesignsfor6U classcubesats,with12Udesignsbeingpresentedforfuturestandardization. Therehavealready beensomeveryinterestingusesof3Dprintedmaterials,anditappearsthattheapplicationofthese materialsforspaceflightmissionsisontheverynearhorizon,includingexploitingtheadhocnature ofitsmanufactureforpurpose-builtradiationshielding. Whetherornotthepromisedbenefitsof thesematerialsoutweighthoseofmoreconventionalmaterialsinthenearfutureremainstobeseen.

References

3DSystems,Inc. (2015). AccuraBluestoneTechnicalData. http://www.3dsystems.com/sites/ www.3dsystems.com/files/DS_Accura_Bluestone_US.pdf.(Accessed:2015-11-19) Complex Systems & Small Satellites. (2015). C3S CubeSat Structure. https://www.c3s.hu/ portfolio-item/3u-cubesat-structure/.(Accessed:2015-11-11) Composite Technology Development. (2015). STELOC Composite Booms. http://www.ctd -materials.com/wordpress/?page_id=76.(Accessed:2015-11-29) CRPTechnology.(2015).WindformXT2.0forthePrintSatMission.http://www.windform.com/ applications-aerospace.html.(Accessed:2015-11-13) CRPTechnologys.r.l. (2015). WindformXT2.0.http://www.windform.com/PDF/SCHEDA_WF_XT _2_0_ENG.pdf.(Accessed:2015-11-13) Dr.DavidKlumpar, K.M. (2015). PrintSatSpacecraft. http://ssel.montana.edu/printsat .html.(Accessed:2015-11-13) Honeybee Robotics.(2015a).CubeSatSolarArrayDriveAssembly.http://www.honeybeerobotics .com/portfolio/cubesat-solar-array-drive-assembly/.(Accessed:2015-12-02) Honeybee Robotics. (2015b). CubeSat Solar Array Drive Assembly Specifications. http://www.honeybeerobotics.com/wp-content/uploads/2013/12/Honeybee-Robotics -CubeSat-SADA.pdf.(Accessed:2015-12-02) Innovative Solutions In Space. (2015). Introducing the ISIS 6U CubeSat Struc- ture. http://www.isispace.nl/cms/index.php/news/latest-news/120-introducing-the -isis-6u-structure.(Accessed:2015-11-27) NanoAvionics. (2015). NanoAvionics Structural Components. http://n-avionics.com/ structural.(Accessed:2015-11-11) Pumpkin,Inc. (2015a). . http://www.cubesatkit.com/images/cubesatkit_1u-revd-skeleton .jpg.(Accessed:2015-11-08) Pumpkin, Inc. (2015b). 6U Supernova Structure Kit. http://www.cubesatkit.com/docs/ SUPERNOVA_User_Manual-RevA0.pdf.(Accessed:2015-11-08) Pumpkin, Inc. (2015c). System Chart. http://www.cubesatkit.com/docs/ cubesatkitsystemchart.pdf.(Accessed:2015-11-08) RadiusSpace. (2015). RadiusSpace1U-3UStructure. http://www.radiusspace.com/img/full/ Radius_Structure_1U-3U.jpg.(Accessed:2015-11-11) Steven Arestie, E. Glenn Lightsey, Brian Hudson. (2012). Development of A Modular, Cold Gas Propulsion System for Small Satellite Applications. http://www.jossonline.com/ wp-content/uploads/2014/12/0102-Development-of-A-Modular-Cold-Gas-Propulsion -System-for-Small-Satellite-Applications.pdf.(Accessed:2015-11-19) TethersUnlimited,Inc. (2015). CobraGimbal. http://www.tethers.com/SpecSheets/Brochure _Gimbal.pdf.(Accessed:2015-12-02)

76 TiNi Aerospace. (2015). Frangibolt Actuator FD04. http://www.tiniaerospace.com/fcfd04 .html.(Accessed:2015-12-02)

77 7 Thermal Control System

7.1 Introduction Thereisadefinedtemperaturerangeforallspacecraftcomponentsthatmustbemetforoptimal functionandthisregulationoftemperaturesthatoccurthroughouta spacecraftinorbit iscontrolled bythermalmanagementtechniques. Followingthehighdemandforsmallspacecraftinthelast decade,miniaturizedthermalmanagementsystemsarerequiredtoensureproperthermalcontrol requirementsaremet. Whiletraditionalthermalcontroltechniqueshavebeendemonstratedon largerspacecraft,theseexistingtechniquesmayrequireadditionaldevelopmentforminiaturization andtestingforsmallspacecraftapplication. Thistechnologywillstillbeconsideredstateofthe art,howevernotatTRL9forsmallspacecraftapplications.Table7.1isalistofthecurrentstate oftheartpassivethermaltechniquesapplicableforsmallspacecraft.

7.2 StateoftheArt 7.2.1 PassiveSystems Passivethermalcontrolrequiresnoinputpowerforthermalregulationwithinaspacecraft.Thiscan beachievedusingseveralmethodsandishighlyadvantageoustospacecraftdesigners,especiallyfor thecubesatformfactor,aspassivethermalcontrolsystemsareassociatedwithlowcost,volume, weightandrisk,andhavebeenshowntobereliable. TheintegrationofMulti-LayerInsulation (MLI),thermalcoating, heatpipes, andsunshadesareexamplesofpassivemethodstoachieve thermal balance in a spacecraft. The use of MLI and surface coatings has been a traditional thermaltechniquethathasbeenusedonnearlyeveryspacecraftsinceearlyspaceflight,andthere hasnotbeenanymodificationofthesemethodsforsmallspacecraftapplication. Cubesatssuch asPharmasat,GeneSat,O/OREOS,SporeSat,YamSat,Compass-1,DelfiC-3,andminisatellites Bird,SDS-4,,andPICARDhaveallusedMLIandcoatingtoassistthermalregulation. Thermallyisolatedstructuraljointsareoftenusedforsmallspacecraftthermalmanagement,where multiplewasherswithlowthermalconductivityarestackedbetweenfastenersandjoinedsurfaces tolimitheattransferviaconductioninspecificplaces.

ThermalInsulationandCoating Thermalinsulationactsasathermalradiationbarrierfrom incomingsolarfluxandalsotopreventexcessiveheatdissipation. Typicallyusedtomaintaina temperature range for the electronics and battery during orbit, or more recently, for biological payloads,thermalinsulationistypicallyintheformofMLIblanketsbutreflectivetapehasalso beenused. MLIisfairlydelicateanddropsdrasticallyinperformanceifcompressed,sousingit outsideofthesmallsatellitethatfitsintoadeployed(P-POD,NLAS)requiresalotofcaution. Additionally,MLIblanketstendtodropefficiencyastheirsizedecreasesandthespecificwaythey are attached has a large impact on their performance.Due to this, MLI application does not perform aswellforsmallspacecraft(cubeSatformfactor)astheydoonlargerspacecraft.Surfacecoatings aretypicallylessdelicateandaremoreappropriateforexteriorofasmallspacecraftthatwillbe deployedfromadispenser. Lastly,internalMLIblanketsthatdonotreceivedirectsolarradiation (sunlight)canoftenbereplacedbylowemissivitycoatingsthatperformidenticallyinthatcontext, usinglessvolumeandoftencostless.Silveredtapesoffersuperiorperformanceasefficientradiators, rejectingsolarheatveryeffectively,butmustbehandledextremelycarefullytomaintainoptical propertiesanddon’talwaysbondwelltocurvedsurfaces. DunmoreAerospacecorporationhasproducedMLIblanketsforaerospaceusesincetheearly 1980’s and have since then participated in many US and European space missions (Dunmore

78 AerospaceCorporation,2015). WhiletheirMLIblanketshavebeenusedonsmallspacecraftmis- sions,theirrecentdevelopmentswithSTARcrestSpacecraftMaterialshasengineeredaSATKIT consistingofDE330,DE076,DM116,andDM100MLIblanketsforcubesatapplication.Thesema- terialsareconstructedfrompreviouslyflownMLI,howevertheactualKIThasTRL8. Dunmore alsoofferspolyimidefilmtapeandMLItapedesignedtoinsulatewiresandcablesonaspacecraft oraircraftandhasaTRLof8forsmallspacecraft. The alteration of the optical characteristics (solar absorptance and emittance) of a surface materialbyapplyingmattepaintisanotherpassivemethodofthermalcontrol. Whileblackpaint willabsorballincidentheat,whitepaintlimitshowmuchheatisabsorbedfromthesurrounding environmentduetoitslowabsorption/emittanceratio(Anvari,Farhani,&Niaki,2009). Tapeis anotherknownusefulthermalcoatingresource;itiseasytobothapplyandremove,isrelatively inexpensive,andhasalongerusablelifetimethanpaint(Soulage,2013). AZTechnology,MAP, AstralTechnologyUnlimited,Inc.,LordTechmark,Inc.,Sheldahl,AkzoNobelAerospaceCoatings manufacturethermalcoating(paintandtape)foraerospaceusethathasbeendemonstratedon multiple small spacecraft missions.Some examples of small spacecraft using thermal coatings include Picard (150 kg) which used white SG12FD paint on the Sun pointing face and cubesat YamSat which hadblackpaintappliedinsideofthespacecraftfortemperaturemaintenance.

Sun Shields The application of a sunshield, or sun- shade,iscommonforspacecraftthermalcontrol,although theimplementationonasmallspacecraft,especiallyfor cubesatformfactor, hasbeenarecentadditionforthe improvement of thermal performance. Sierra Lobo has developed a deployable sunshield that will be flown on CryoCube-1, estimated launch in 2016.This sunshield can supportamultiplemonthlongdurationlifetimeandcan providetemperaturesbelow100 Kandbelow30 Kwith additionalactivecooling(SierraLobo,2014). Figure7.1 displaysthedesignofthesunshieldusedonCryoCube-1. MLIConceptsInc.alsohasextensiveexpertiseinthe Figure7.1. EndviewofSunShieldon design and development of stainless steel and titanium CryoCube-1developedatSierraLobo. heatshieldsthatwillnotbreakdownduetoheatorother ImagecourtesyofSierraLobo(2014). stress(MLIConcepts,LLC.,2010),thoughthistechnologyhasbeendemonstratedonlargerspace- craftonly.

ThermalStraps Recentuseofflexiblethermalstrapshas become a convenient form of temperature control on small spacecraftastherequiredmassforthestrapislimitedwith reducedstiffnessbetweencomponents.Flexiblethermalstraps canbeappliedtoallowforpassiveheattransfertoathermal sinkandcanbefittedtoanyparticularlengthfordesign. ThermalManagementTechnologies(TMT)hasdeveloped Figure 7.2. Thermal Manage- standardflexiblethermalstrapsavailableinthinaluminumor ment Technologies Aluminum ther- copperfoillayersoracopperbraid;customaccommodations mal strap test. Image courtesy canbefabricatedandtestedforservice(ThermalManagement of Thermal Management Technolo- Technologies,2015),seeFigure7.2. Whilethesestrapshave gies(2015). beentested,theyhavenotbeenflownonanysmallspacecraft

79 missions. Thermalstrapsarealsobeingmanufacturedinmaterialsotherthanthetraditionalaluminum andcopper.Thermacorehasutilizedk-Technologyinsolidconductioninthedesignoflightweight thermalk-Corestrapsthatsupplyanaturalconductivepathwithoutincludingstructuralloadsto thesystemandhaveshowntohavegreaterconductionefficiencycomparedtotraditionalaluminum strapsintesting(Thermacore,2015). Here,thek-Coreencapsulatedgraphitefacilitatestheheat dissipation in high-power electronics(Thermacore, 2015). This technology is fully designed and testedbuthasnotflownonasmallspacecraft. TechnologyApplications,Inc.hasspecializedinthetestingand developmentofGraphiteFiberThermalStraps(GFTS),withflight heritageonlargerspacecraftmissions(andSpice).GFTSare known to be extremely lightweight and highly efficient and thermally conductivewithunmatchedvibrationattenuation(TechnologyAp- plications,Inc.,2015),seeFigure7.3. Whilethistechnologyhas notbeendemonstratedortestedonsmallspacecraftplatforms,the capabilityforsmallspacecraftapplicationsisstillapplicable. Figure 7.3. Graphite Fiber ThermotiveTechnologydevelopedtheTwoArmFlexibleTher- ThermalStraps(GFTS).Im- mal Strap (TAFTS) that is currently flying on JPL’s age courtesy of Technology (PortableRemoteImagingSpectrometer)instrument.Forspacein- Applications,Inc.(2015). fraredcameras,thereisarequirementforextremelyflexibledirect cooling of mechanically-sensitive focal planes (Urquiza, Vasquez, Rodriguez, & Gorp, 2012). The design of TAFTS uses three “swaged terminals and a twisted section”thatallowsforsignificantenhancedelasticmovementandelasticsdisplacementsinthree planes,whileamoreconventionalstrapofthesameconductanceofferslessflexibilityandasym- metricalelasticity(Urquizaetal.,2012).Infraredcamerashaveflownonsmallspacecraftmissions, althoughtheTAFTSdesignhasnot.

ThermalLouvers Thermallouvershavenotyetbeenintegrated onsmallspacecraftduetovolumeandpowerconstraints.Full-sized louversforlargerspacecrafthavehighefficacyforthermalcontrol, howevertheirintegrationonsmallspacecrafthasbeenchallenging. Typicalspacecraftlouversareassociatedwithalargermassand inputpowerwhichbotharelimitedonasmallspacecraft. God- dardSpaceFlightCenterhasdevelopedapassivethermallouverfor smallspacecraftandwillbespacedemonstratedona6Ucubesat, Dellingr,where14 Whasbeenshown to bethe powerdissipation. Thislouverdesignusesbimetallicspringsforcontroloftheposition Figure 7.4. Passive Ther- oftheflaps;whenheatinthespacecraftrises,thereisexpansion mal Louver on 6U cubesat inthespringsduetothebimetallicpropertiesofthespringcausing Dellingr. Image courtesy of theflapstoopenwhichaltersthethermalradiationoftheexte- NASAGoddardSpaceFlight riorsurface(NASAGoddardSpaceFlightCenter,2014).Similarly Center(2014). whenthespacecraftcoolsandtheflapsclose,theexteriorsurfacereturnstothepreviousemissivity (NASAGoddardSpaceFlightCenter,2014). Figure7.4isarepresentationofthethermallovers onDellingr.

DeployableRadiators Similarlytothermallouvers,theutilizationofdeployableradiatorsona smallspacecraftischallengingduetothevolumerestrictions.Painthasbeenwidelyusedtocreate

80 aradiator-likesurface,whichhasshowntobeadvantageousonsmallerplatforms. Forasystem thatrequiresalargeamountofheatdissipationregardlessofincidentthermalradiationintensity,a passivedeployableradiatorthatislightweightandsimpleindesignwouldgreatlyenhancethermal performance. Thermal Management Technologies is developing Ther- mallyEfficientDeployableRadiatorsforsmallspacecraftthat integratesanisothermalradiatorsurfacewithahighconduc- tancehingeforhighthermalefficiency(ThermalManagement Technologies,2015). Thisthermallyconductivehingeallows forminimaltemperaturegradientsbetweentheradiatorand spacecraft,asseeninFigure7.5. Theradiatingsurfaceuses graphitecompositematerialformassreductionandincreased stiffness,wherethetypicalradiatoruniformityisgreaterthan 1 1 0.1CW m (Thermal Management Technologies, 2015). Thistechnologyiscurrentlyinthedevelopmentandtesting phase. Thedesignofaflexibledeployableradiatorforsmallspace- craftwasproposed,developedandtestedbyShoyaOnoand Figure 7.5. TMT Conductive Hosei Nagano and colleagues from Kaneka Corporation and Hinge(top)andDeployableRadia- JAXA.Thisdesigncandeployorstowtheradiationareade- torforSmallSatelliteModel(bot- pendingontheenvironmenttemperatureforproperheatdissi- tom). ImagecourtesyofThermal pationcontrolandhasanoverallvolumeof0.5 360 560 mm ManagementTechnologies(2015). ⇥ ⇥ and0.287 kgtotalmass,seeFigure7.6. Thefinispassively stowedanddeployedbyanactuatorthatconsistsofashapememoryalloyandbiasspring.Toin- creasebothradiatorsizeandthevalueofthermalconductivity,multiplelayersofKanekaGraphite Sheets(KGS)areusedforthefinmaterial. TherearsurfaceofthefinisinsulatedwithMLIto reducetheamountofheatdissipationundercoldconditions(Onoetal.,2015). Testingforthe deploymentandstowingwasconductedinathermostaticchamber,andthethermalperformance test was conducted under vacuum conditions, where it was shown that the half-scaled radiator dissipated54 Wat60C(Onoetal.,2015).

Figure7.6.Flexibleradiatorconceptualdiagram.ImagecourtesyofOnoetal.(2015).

HeatPipes Heatpipesareanefficientpassivethermaltransfertechnology,whereaclosed-loop systemtransportsexcessheatviatemperaturegradients,typicallyfromelectricaldevicestoacolder surface,whichisofteneitheraradiatoritself,oraheatsinkthatisthermallycoupledtoaradiator. Traditionalheatpipesarecylindricalinshape,whichwasutilizedonBIRD(92 kg),butthereare

81 alsoflatplatesthatarerectangularstainlesssteeltubingsandwichedbetweentwoaluminumplates andchargedwithaworkingfluidinside(Nakamuraetal.,2013). SmallspacecraftSDS-4(50 kg) successfullyincorporatedthisflatplatedesignthatwasdevelopedatJAXA,asseeninFigure7.7. Although this technology has been applied on a 50 kg small spacecraft,additional fabrication and testingmayberequiredforcubesatplatformapplications.Forcubesatdesign,theTRLforpassive heatpipesareTRL6.

Figure7.7. FOXflightmodelheatpipedevelopedatJAXA.ImagecourtesyofNakamuraetal. (2013).

7.2.2 ActiveSystems Activethermalmethodsforspacecraftthermalcontrolrelyoninputpowerforoperation,areassoci- atedwithhigherprecisionandhavebeenshowntobemoreeffective(Hogstrom,K.,2013).Typical activethermaldevicesincludeelectricalresistanceheaters,coolersortheuseofcryogenicmaterials. Untilspacecraftdesignersareabletominiaturizeexistingactivelycontrolledthermaltechniques, theutilizationofactivethermalsystemsinsmallspacecraftwillbelimited. Smallspacecraftde- signersarekeentouseactivethermalsystemsfortemperaturesensitivedevices(suchasbatteries, camerasandelectronics).Insuchcaseswhereacompletepassivesystemisnotsufficientforthermal management,electricalresistanceheatersandcoolersareattachedtospecificequipmenttomaintain operationaltemperatures.Forthecurrentstateoftheartinactivethermaltechnologiesapplicable onsmallspacecraft,seeTable7.2.

ThermalStraps Activethermalstrapshavebeenshowntoincreasethermalperformance,es- peciallyinadesignthatisassociatedwithhighconcentratedheatfluxesontheelectronics. The advancedthermallyconductivepathonthestrapsuppliesareliablemitigationmethodforreduc- inghotspotswhilealsolimitingintegrationoverheadandspace. LoadPathAerospaceStructures currentlyhaveFlexibleandEnhancedActiveThermalStraps(FEATS)thatarecapableofheat 2 dissipation up to50Wcm and cooling capacity of 35 W (LoadPath,Aerospace Structures,De- sign,TestandMaterials,2015). Whilethesehavenotyetflownonsmallspacecraftmissions,they havebeendevelopedandtestedforsmallspacecraft.

Heaters Onsmallspacecraft,electricalresistanceheatersaretypicallyusedtomaintainbattery temperatureduringcoldcyclesoftheorbitandarecontrolledbyathermostatortemperature sensor. 1UcubesatsCompass-1,MASAT-1andOUTFI-1requiredanelectricalheaterattached

82 Table7.1.PassiveThermalSystems

Product Manufacturer Status MLIBlanket Sheldahl,Dunmore, TRL9 Aerospace,Fabricationand Materials,MLIConceptsInc. Paint AZTechnology,MAP,Astral TRL9 TechnologyUnlimited,Inc., DunmoreAerospace SunShields SierraLobo TRL8 FlexibleThermalStraps ThermalManagement TRL9formetalstraps,TRL Technologies,Thermacore, 8forcompositestraps TechnologyApplications,Inc., ThermotiveTechnology ThermalLouvers NASAGoddardSpaceFlight TRL8 Center DeployableRadiators ThermalManagement TRL6 Technologies,Kaneka Corporation/JAXA collaboration PassiveHeatPipe Thermacore,Inc.and TRL6 AdvancedCooling Technology,Inc. PassiveThermalLouver NASAGoddardSpaceFlight TRL8 Center tothebatteryinadditiontothepassivecontrolfortheentirespacecraftsystemtomaintainther- malregulationineclipses.Asbiologicalpayloadsarebecomingmorecommononsmallspacecraft, thebiologyhavetheirownspecifiedtemperaturemaintenancerequirements. NASAAmesbiolog- icalnanosats,GeneSat,PharmaSat,O/OREOS,SporeSat,EcAMSat,andBiosentinel,allutilize actively-controlledresistanceheatersforprecisetemperaturemaintenancefortheirbiologicalpay- loadswithcloselooptemperaturefeedbacktomaintainthebiologytemperatures.MincoProducts, Inc.manufacturesflexiblestripheatersequippedwithpolyimideinsulation.TheseheatersareTRL 9forsmallspacecraftmissions.

Cryocoolers Therehavebeenrecentimprovementsinthecoolingtechnologiesforsmallspace- craft.Cryogeniccoolers,orcryocoolers,areusedoninstrumentsorsubsystemsrequiringcryogenic cooling, such as high precision IR sensors.The low temperature improves the dynamic range and ex- tendsthewavelengthcoverage.Further,theuseofcryocoolersisassociatedwithlongerinstrument lifetimes,lowvibration,highthermodynamicefficiency,lowmassandsupplycoolingtemperatures lessthan50 K(Hon,Kesler,&Sigurdson,2009). Instrumentssuchasimagingspectrometers,in- terferometersandMWIRsensorsusecryocoolerstofunctionattheextremelylowtemperatures required. Cryocube-1willbethefirstcubesatmissionthatwillperformcryogenicmanagement tests(fluidlocationsensing,sloshcharacterizationandcryogenicfluidtransfer)onorbitin2016. The3Uwillcarrygasonboardandwillbepassivelycooledandliquefiedusingacryotankdeveloped

83 Figure7.8. ConfigurationofprimarymechanicalUPLcryocoolercomponentsfromCreare. Image courtesyofZagarolaetal.(2012). atSierraLobo,Inc. Crearedeveloped an Ultra Low Power (ULP)cryocooler,a single-stage turbo-Brayton cryocooler thatoperatesbetweenacryogenicheatrejectiontemperatureandtheprimaryloadtemperature. Componentsincludeacryogeniccompressor,arecuperativeheatexchanger,andaturboalternator, where the continuous flow nature of the cycle allows the cycle gas to be transported from the compressoroutlettoaheatrejectionradiatoratthewarmendofthecryocooler,andfromthe turboalternatoroutlettotheobjecttobecooledatthecoldendofthecryocooler(Zagarolaet al.,2012),seeFigure7.8. Thiscryocoolerisdesignedtooperateatcoldendtemperaturesof30 to70 K, loads of upto 3 W,and heat rejectiontemperatures of upto 210 K by changing only the chargepressureandturbomachineoperatingspeeds. Thistechnologyhascompetedtestingand fabrication(TRL7). Ricor-USA,Inc. developedtheK562S,arotaryStirlingmini micro-cooler, thathasacoolingcapacityof200 mWat95 Kand 300 mWat110 Kthathasbeenusedinseveralsmallgimbalsde- signedformilitaryapplications.RicoralsodevelopedK508NaStir- 1 ling2 W micro cooler,that has coolingcapacity 500 mW at 77 K and 700 mWat77 Kthatissuitableforuseonasmallspacecraft,see Figure7.9andforbothminicoolers. ThesecoolersareTRL7for smallspacecraftapplications. Sunpower, Inc.developed the CryoTel DS1.5 Stirling Cryocooler featuringadual-opposed-pistonpressurewavegeneratorandasep- aratecoldheadtominimizeexportedvibrationandacousticnoise andhasanominalheatliftof1.4 Wat77 Kusing30 Wpowerwith a 1.2kg mass (Sunpower, 2015).Sunpower also offers MT-F, mini- coolerthathasanominalheatliftof5 Wat77 K,using80 Wpower Figure7.9.Ricor-USAK562S with a total mass of 2.1 kg, see Figure 7.10 for both coolers.While Mini-cooler (top) and Ricor- theMT-Ftechnologyhasbeensuccessfullydemonstratedinappli- USA K508N 1/2W Micro cationssuchasHighTemperatureSuperconductivity(HTS)filters, Cooler(bottom).Imagecour- highaltitudeballoons,refrigeration,germaniumdetectors,IRde- tesyofRicor-USACryogenic tectors,radiotelescopesandlaserdiodecooling(Sunpower,2015), andVacuumSystems(2015). ithasnotbeenappliedtoasmallspacecraftmission.

84 Figure7.10. CryoTelDS1.51.4 WCryocooler(left)andCryoTelMT-F5 WCryocooler(right). ImagecourtesyofSunpower(2015).

NorthropGrummandesignedaMicroPulseTubecoolerthatisasplitconfigurationcoolerthat incorporatesacoaxialcoldheadconnectedviaatransferlinetoavibrationallybalancedlinear compressor,seeFigure7.12. ThismicrocompressorhasbeenscaledfromaflightprovenTRL9 high efficiency cooler (HEC) compressor. The cooler has an operational range of 35 to 40 K and a heatrejectiontemperatureof300 K,using80 Wofinputpower,has750 mWrefrigerationat40 K andatotalmassof7.4 kg(Durand,Tward,Toma,&Nguyen,2014). LockheedMartin SpaceSystems Companyengineered apulsetubemicro-cryocooler,asimplified versionofaStirlingcryocooler,consistingofacompressordrivingacoaxialpulsetubecoldhead, seeFigure7.11. Theunithasamassof0.345 kgfortheentirethermalmechanicalunit,andis 1 compactenoughtobepackagedin 2 Uofacubesat(Olson&Nast,2013).Themicrocoolerdesign underwentqualificationtestingatTRL6andiscompatibleforsmallspacecraftmissions.

Figure 7.12. Flight design PT microcooler Figure7.11. LockheedMartinTRL6Micro- and its flight configuration with attached cryocooler. Cryocoolerphotographprovided reservoirtank. ImagecourtesyofDurandet courtesyofLockheedMartinCorporation. al.(2014).

7.3 OntheHorizon

Traditionalthermalcontroltechnologiesforspacecraftwillnotalwaysbeabletobeimmediately integratedintosmallspacecraftplatforms. Asmentionedintheintroductionofthischapter,the technologythatisdemonstratedonlargerspacecraftmayneedtobealteredslightlyforsmallspace- craftcompatibilityandwillnotbeautomaticallyTRL9. Thissectiondiscussessometechnology thatisbeingproposedanddevelopedforsmallspacecraftthermalcontrol,andisnotreadyfor spaceflight.

85 Table7.2.ActiveThermalSystems

Product Manufacturer Status ElectricalHeaters MincoProducts,Inc.andAll TRL9 FlexFlexibleCircuits,LLC. MiniCryocoolers Ricor-USA,Inc.,Creare, TRL7 SunpowerInc.,Northrop Grumman,andLockheed MartinSpaceSystems Company FlexibleandEnhancedActive LoadPath TRL7/8 ThermalStraps(FEATS)

ThermalStraps ThermotivehasdevelopedPyrovoPyrolyticGraphiteFilm(PyrovoPGF)ther- malstrapsthathavealreadyflowninopticalcoolingapplicationsinhighaltitudecamerasand avionicsandareplannedtobeusedinseveralupcomingspaceflightinstrumentsin2016. Pyrovo PGFstrapsusepyrolyticgraphitewrappedinaHEPAfilter-vented4 µmthickaluminizedMylar blanketandhavenoexposedgraphite.Thespecificthermalconductivityofthismaterialhasshown tobe10 betterthanaluminumand20 betterthancopper,asseeninFigure7.13(Thermotive, ⇥ ⇥ 2014). Whilethesestrapshavenotflowninspaceonasmallspacecraftmission,theyareplanned tobeincludedonseveralupcomingspaceflightinstrumentsin2016(TRL6).

Figure7.13.ThermotivePyrovoPGFMaterialComparison.ImagecourtesyofThermotive(2014).

Deployable Radiators Thermotiveisresearchingthedesignofadeployablepassiveradiator forhostedpayloadinstrumentsandcubesats,FoldingElasticThermalSurface(FETS).Originally conceivedasathermalshieldandcoverforapassivecooler(cryogenicradiator)onJPL’sMATMOS mission,thisproposedconceptisbeingmodifiedasadeployableradiatorforsmallspacecraftuse andhasTRL4/5(Thermotive,2014).

86 Figure7.14. 44C, 2100 J CubeSat Thermal Figure 7.15. JT Circulator. Circulator pho- Storage Unit. Image courtesy of Thermal tographprovidedcourtesyofLockheedMar- ManagementTechnologies(2015). tinCorporation.

StorageUnits Thermalstorageunitscanbeusedinvariousapplicationsforpassivelystoring thermalenergyforcomponentprotectionorforfutureenergyuse(ThermalManagementTechnolo- gies,2015). ThermalManagementTechnologiesisdevelopingaphase-changingthermalstorage unit(TSU)designthatconsidersdesiredphaseshades-changetemperatures,interfaces,temperature stability,storedenergy,andheatremovalmethodologies,seeFigure7.14. Acompletefabrication ofthisdevicewillallowtheusertocontroltemperaturepeaks,stabletemperaturesand/orenergy storage(ThermalManagementTechnologies,2015). ActiveSpaceTechnologiesalsohasstorage unitsunderdevelopmentthatintegratesonlinedesignsupportandhighcryogenicenthalpy. Both technologiesareatTRL5forsmallspacecraftuse.

FluidLoops Apumpedfluidloopiscapableofachievingheattransferbetweenmultiplelocations viaforcedfluidconvectivecooling. Mechanicallypumpedfluidloopsarenotofinteresttosmall spacecraft engineers as they are associated with high power consumption and mass. Lockheed MartinCorporationisdevelopingacirculatorpumpforaclosedcycleJouleThomsoncryocooler, seeFigure7.15. Withanoverallmassof0.2 kg,itcancirculategasaspartofasingle-phaseor two-phasethermalmanagementsystemusing1.2 Wofelectricalpowerandcanmanagearound 40 Wofspacecraftpowerasasingle-phaseloop,orseveralhundredWattsofspacecraftpoweras partofa2-phaseloop(Champagneetal.,2015).ThisdesignisTRL3.

7.4 Conclusion Asthermalmanagementonsmallspacecraftislimitedbymass, volumeandpowerconstraints, traditionalpassivetechnologies,suchasMLI,paints,coatingsandmetallicthermalstraps,still dominatethermaldesign.Activetechnologies,suchasthinflexibleresistanceheatershavealsoseen significantuseinsmallspacecraft,includingsomewithadvancedclosed-loopcontrol.Technologies thathavetodateonlybeenintegratedonlargerspacecraftarebeingexamined,designedandtested for small spacecraft platform application. Passive louvers and sun shields have been proposed and developed for small spacecraft and will tentatively fly in 2016 (Dellingr and CryoCube-1). Deployableradiatorsandvarioustypesofcompositethermalstrapshavealsobeenfabricatedand testedforsmallspacecraftutilizationinthepastfewyearsandareofferedfromnumerousvendors. Technologyinactivethermalcontrolsystemshasstartedexpandingtoaccommodatevolumeand powerrestrictionsofasmallerspacecraft;cryocoolersarebeingdesignedtofitwithin0.5Uvolume that will broaden small spacecraft ability to use optical sensors and imaging spectrometers.Thermal

87 storage units are being developed that will better control amount of heat dissipation as well as storing energyforfutureuse.

References

Anvari,A.,Farhani,F.,&Niaki,K. (2009). Comparativestudyonspacequalifiedpaintsusedfor thermalcontrolofasmallsatellite.IranianJournalofChemicalEngineering,Vol.6,No.2 . Champagne,P.,Olson,J.R.,Nast,T.,Roth,E.,Collaco,A.,Kaldas,G.,. . . Loung,V. (2015). DevelopmentofaJ-TMicroCompressor(Tech.Rep.).PaloAlto,CA94304,USA:Advanced TechnologyCenter,LockheedMartinCorporation. Dunmore Aerospace Corporation. (2015). Dunmore: Aerospace. http://www.dunmore.com/ products/multi-layer-films.html. Retrievedfromhttp://www.dunmore.com/products/ multi-layer-films.html (Accessed:2015-08-10) Durand,D.,Tward,E.,Toma,G.,&Nguyen,T. (2014). Efficienthighcapacityspacemicro- cooler.NorthropGrummanAerospaceSystemsApprovedforPublicRelease;NGAS14-1119, 6/02/14. Hogstrom,K.(2013).State-of-the-ArtThermalAnalysisMethodsandValidationsforSmallSpace- craft.Ae241LiteratureSurvey . Hon, R., Kesler, C., & Sigurdson, D. (2009). Integrated testing of a complete low cost space cryocoolersystem.. LoadPath,AerospaceStructures,Design,TestandMaterials.(2015).FlexibleandEnhancedActive ThermalStraps(FEATS).SmallSatConferenceBrochure. MLIConcepts,LLC. (2010). Products: Multi-LayerInsulation(MLI). http://www.mliconcepts .com/Products/Products.html.(Accessed:2015-08-10) Nakamura,Y.,Nishijo,K.,Murakami,N.,Kawashima,K.,Horikawa,Y.,Yamamoto,K.,. . . In- oue,K. (2013). SmallDemonstrationSatellite-4(SDS-4): Development,FlgithResults,and LessonsLearnedinJAXA’sMicrosatelliteProject. 27thAnnualAIAA/USUConferenceon SmallSatellites. NASA Goddard Space Flight Center. (2014). Dellingr. https://techport.nasa.gov/ externalFactSheetExport?objectId=14545.(Accessed:2015-08-28) Olson,J.,&Nast,T.(2013).Lockheedmartinmicrocryocooler(Tech.Rep.).PaloAlto,CA94304, USA:AdvancedTechnologyCenter,LockheedMartinCorporation. Ono,S.,Nagano,H.,Nishikawa,Y.,Mishiro,M.,Tachikiawa,S.,&Ogawa,H. (2015). Thermo- physicalpropertiesofahigh-thermal-conductivegraphitesheetandapplicationtoadeploy- able/stowableradiator.ThermophysicsandHeatTransfer. Ricor-USA Cryogenic and Vacuum Systems. (2015). K562S Integral Stirling Low Power Mini MicrocoolerandK508NHighlyReliableIntegralStirling1/2WMicroCooler.www.ricor.com. SierraLobo. (2014). CryoCube-1. http://www.sierralobo.com/cryocube/. (Accessed: 2015-08- 12) Soulage,M.(2013).Personalcorrespondence. Sunpower,I.(2015).Cryotel R ds1.5.http://sunpowerinc.com/cryocoolers/cryotel-family/ ds15/.(Accessed:2015-09-01) Technology Applications, Inc. (2015). Graphite Fiber Thermal Straps (GFTS). http://www .techapps.com/gfts.(Accessed:2015-09-30) Thermacore. (2015). Thermalstraps: Efficientcoolingwithoutstructuralloading. http://www .thermacore.com/products/thermal-straps.aspx.(Accessed:2015-09-30)

88 ThermalManagement Technologies.(2015).Flexiblethermalstraps.http://tmtsdl.com/products .html#ftStraps.(Accessed:2015-08-20) Thermotive. (2014). Products. http://thermotive.com/thermalstraps.html. (Accessed: 2015- 09-01) Urquiza,E.,Vasquez,C.,Rodriguez,J.,&Gorp,B.V. (2012). Developmentandtestingofan innovativetwo-armfocal-planethermalstrap(TAFTS).Cryogenics. Zagarola,M.,Hill,R.,Gagne,J.,&Kaszeta,R.(2012).Ultralowpowercryo-refrigeratorforspace applications.InternationalWorkshoponInstrumentationforPlanetaryMissions.

89 8 Command and Data Handling

8.1 Introduction Therearetwoprimarytrendsinsmallspacecraftcommandanddatahandling(C&DH).Thedesire to incorporate small spacecraft, especially in the cubesat class, into more complex science and technologyapplicationsinLEOanddeepspaceorinterplanetarymissionsrequiresincreasedsystem reliabilityandperformance. Inthecaseofthesmallerspacecraft,theseobjectivesarecomplicated bytheuseofhighlyintegratedsystemsandtheneedforpowerandmassefficiency. Attheotherendofthespectrum,low-costeasy-to-developsystemsthattakeadvantageofopen source software and hardware are providing aneasyentryinto spacesystems development,especially forthosewholackspecificspacecraftexpertiseorforthehobbyist.

8.2 Stateoftheart Sincethepublicationofthefirsteditionofthisreport,severalcubesatsusingcommercial-off-the- shelf(COTS)componentsandintegratedsystemshavesuccessfullyflownintheLEOenvironment, overshortmissiondurationsoftypicallylessthanoneyear. AvarietyofC&DHdevelopmentforcubesatshasspannedin-housedevelopmenttonewcompa- niesthatspecializeincubesatavionicsandestablishedcompanieswhoprovidespacecraftavionics forthespaceindustryingeneral. Presentlythereareanumberofcommercialvendorswhooffer highlyintegratedsystemsthatcontaintheon-boardcomputer,memory,electricalpowersystem (EPS)andtheabilitytosupportavarietyofinput&output(I/O)forthecubesatclassofsmall spacecraft. InanticipationoftheextendeddurationinLEOanddeepspacemissions,vendorsareincorpo- ratingradiationhardenedorradiationtolerantdesignsintheircubesatavionicspackages.

8.2.1 FormFactor TheCompactPCIandPC/104formfactorscontinuetobetheindustrystandardelectronicsbus systemswithmultiplevendorsofferingcomponentsthatwillintegrateintosystemsthatcanbe spacerated. ThePC/104boarddimensioncontinuestobethebaselineforcubesatconfigurations. Many vendorshaveadoptedtheuseofstackable“daughter” or“mezzanine” boardsinordertosimplify connection between subsystem elements and payloads, as well as to accommodate advances in technologies while maintaining compatibility with existing designs.A few vendors provide a modular package,whichallowsuserstoselectfromavarietyofcomputationalprocessors.

8.2.2 On-BoardComputing MicrocontrollersandFPGAs Smallspacecraft,andespeciallycubesatdevelopers,continueto usemicrocontrollersandfieldprogrammablegatearrays(FPGAs)supportingavarietyofdifferent processorcores. FPGAshavesuccessfullegacyinspaceandcontinuetolendthemselvestohigh levels of integration providing peripherals, on-chip memories and improved power performance, factorsthatinfluencethechoiceofonboardcomputingatpresent. SeeTable8.1forcurrentstate ofthearthighlyintegratedon-boardcomputingsystemsforsmallspacecraftuse. ManypowerefficientmicrocontrollersusedincubesatsfeatureARMprocessorsandavariety of on-chipperipherals, especiallycommunicationssuchasuniversal serialbus (USB),controller areanetwork(CAN),aswellasI2Cinterfacesandserialperipheralinterface(SPI).Therehasalso

90 Table8.1.SampleofHighlyIntegratedOn-boardComputingSystems

Product Manufacturer Processor Status NanomindA712D GOMSPACE ARM7 TRL9 ISISOBC ISIS ARM9 TRL9 PluggableSocketed Pumpkin C8051F120, TRL9 ProcessorModule PIC24F256110,PIC 24F256GB210, MSP430F1612, MSP430F1611, MSP4302618 MODAS UtahStateUniversity TI320C6713DSP TRL9 SDL XBox SpaceMicro P200K(TIDSP); TRL9 P400K(Freescale PowerPCDualCore); P300K(FPGAVirtex 5or7) Proton2XBox SpaceMicro P300K(TIDSP); TRL9 P300KFPGA(Virtex 5or7);P400K (FreescaleP2020dual corePowerPC processor) Intrepid Tyvak ATMEL TRL9 AT91SAM9G20 Q7 Xiphos XilinxZynq7020 TRL9 ARMdualcore CortexA9,Actel ProASIC3Control FPGA Q6 Xiphos XilinxSpartan-6, TRL9 ActelProASIC3 ControlFPGA Q5 Xiphos PowerPC405 TRL9 ArduSat NanoSatisfi ATMEL TRL9 ATmega328P

91 beenanincreaseinthenumberofmicrocontrollersthatintegrateflashmemory,asmostoftheir advantagesarecenteredonprogrammability. System developers are gravitating towards ready-to-use hardware and software development plat- formsthatcanprovideseamlessmigrationtohigherperformancearchitectures.Aswithnon-space applications,thereisareluctancetochangecontrollerarchitecturesduetothecostofretraining andcodemigration. FollowingtheleadofmicrocontrollersandFPGAvendors, cubesatavion- icsprovidersareworkingtowardsprovidingsimplifiedtoolsetsandcosteffectivebasicevaluation boards.

SmartphoneBasedProcessing FurtherdemonstratingCOTShardware,NASA’sPhoneSat1.0 andSSTL’sSTRAND-1flewcubesatsthatusedNexusOneasthecentral processor. Smartphonesexploitalargemarketwithafastdesigncycle,andincorporateseveral key features that are used in spacecraft, such as cameras, radio links, accelerometers and high performancecomputerprocessors.Thecoresusedonthoseearlyspacecraftwerebased upontheQualcommSnapdragonsystemonchip(SoC)witha1 GHzScorpionprocessorrunning theAndroidoperatingsystem.Phonesat1.0simplyflewthephoneinacubesatchassisalongwith abatterypackforpowerandaUHFbeaconradio. Thehobbyistmarketthathassubsequentlyemergedfromsmartphoneappdevelopmentexperi- encedthesameI/Obottlenecksandmountingproblemsobservedbythesesmartphonespacecraft. Consequently,arangeoflow-powermicroprocessorsarenowavailable,althoughstillbasedonARM andoftenrunningAndroid,butprovidingbettermodularity.Nosmartphonebasedcubesatavionics kitsareavailablecommerciallyatthistime.

Opensourceplatforms Anumberofopensourcehardwareplatformsholdpromiseforsmall spacecraft systems. Arduino boards consist of a microcontroller with complementary hardware circuits, calledshields. TheArduinoplatformusesAtmelmicrocontrollers, thereforedevelopers canexploitAtmel’sdevelopmentenvironmenttowritesoftware. TheArduSatspacecraftusedthe ArduinoplatformandsuccessfullyengagedthepublictoraisefundingonKickstarter.BeagleBone has also emerged as a popular open source hardware platform. BeagleBone contains an ARM processorandsupportsOpenCV,apowerfulopensourcemachinevisionsoftwaretoolthatcould be used for imaging applications. BeagleSat is an open source cubesat platform based on the BeagleBone embedded development board. It provides a framework and tool set for designing a cubesat from the ground up, while expanding the cubesat community and bringing space to a broader audience. Raspberry Pi is another high-performance open source hardware platform capable of handling imaging, and potentially, high-speed communication applications (Wooster, Boswell,Stakem,&Cowan-Sharp,2007). Finally,IntelhasenteredthemarketwiththeirEdison system.Thedual-corex86-64SoCwastargetedat“InternetofThings”applicationsbuttheEdison hasprovenverywellsuitedforadvancedcubesatdevelopment,anovelusethatIntelhasembraced. Arduino has become knownfor being beginnerfriendly,and making the world of microcontrollers moreapproachableforsoftwaredesigners. ThoughitpresentsasetofrelativelyfamiliarAPIto developers,itdoesnotrunitsownoperatingsystem. OntheotherhandtheBeagleBoneBlack, RaspberryPiandIntelEdisonarefull-featuredembeddedLinuxsystems,runningAngstrom,Rasp- bianandYoctoLinuxkernelsoutoftheboxrespectively.Thisbroadenstherangeofdevelopertool options,rangingfromwebbasedinterfacestoAndroidandPythonenvironments. Notonlydoes thisfurthereasethelearningcurvefornovicedevelopers,butitallowsthefullpowerofaLinux systemtobeharnessedincomputationtasks.

92 Table8.2.SampleofHighlyIntegratedOn-boardComputingSystemManufacturers

ATMEL Honeywell STMicroelectronics BAESystems Intel TexasInstruments Broadreach Intersil 3DPlus C-MACMicrotechnology MaxwellTechnologies Xilinx Cobham(Aeroflex) Microsemi(Actel) Arduino Freescale SpaceMicro,Inc. BeagleBone

8.2.3 MemoryandElectronicComponents Therangeofon-boardmemoryforsmallspacecraftiswide,typicallystartingaround32 kBandin- creasingwithavailabletechnology.ForC&DHfunctions,onboardmemoryrequireshighreliability. Avarietyofdifferentmemorytechnologieshavebeendevelopedforspecifictraits,includingstatic randomaccessmemory(SRAM),dynamicRAM(DRAM),flashmemory(atypeofelectrically erasableprogrammableread-onlymemory),magnetoresistiveRAM(MRAM),ferro-electricRAM (FERAM),chalcogenideRAM(CRAM)andphasechangememory(PCM).SRAMistypicallyused duetopriceandavailability. Achartcomparingthevariousmemorytypesandtheirperformance isshowninTable8.3. Therearemanymanufacturersthatprovideavarietyofelectroniccomponentsthatareconsid- eredhighreliabilityandspaceratedandcanbeseeninTable8.2.Avisittoanyoftheirrespective websiteswillshowtheirrangeofcomponentsandsubsystemsincludingprocessors,FPGAs,SRAM, MRAM,businterfaces,applicationspecificintegratedcircuits(ASICs),andlowvoltagedifferential signaling(LVDS).

8.2.4 BusElectricalInterfacesandI/O Cubesatclassspacecraftcontinuetoutilizethoseinterfacesthatarecommonlyusedinthemi- crocontrollerorembeddedsystemsworld. Highlyintegratedsystems,especiallySoC,FPGAand ASICs,willtypicallyprovideseveralinterfacestoaccommodateawiderangeofusersandtoease thetaskofinterfacingwithperipheraldevicesandothercontrollers. Someofthemostcommon interfacesarelistedbelowwithabriefdescription:

SerialCommunicationInterfaces(SCI):RS-232,RS-422,RS-485etc. • Synchronous Serial Communication Interface: I2C, SPI, SSC and ESSI (Enhanced Syn- • chronousSerialInterface).

UniversalSerialBus(USB). • MultiMediaCards(SDCards,CompactFlashetc.). • Networks:Ethernet,LonWorks,etc. • Fieldbuses:CAN-Bus,LIN-Bus,PROFIBUS,etc. • Timers:PLL(s),Capture/CompareandTimeProcessingUnits. •

93

13 Nil Yes 10 3.3 V 100 ns 1Mrad Mil-std 10 years CRAM/PCM 8

⇥ 13 Nil Yes 10 3.3 V 300 ns 16k 1Mrad Mil-std 10 years 270 mW FERAM package) 1.5 MB(12chip 8

⇥ 13 Nil Yes 10 3.3 V 1 MB 300 ns 1Mrad Mil-std 128k MRAM 10 years 900 mW 8 s ⇥ µ

6 10 Yes 8;32M Flash 30 mW 30 krad ⇥ 10 years 3.3&5 V Nil(cells); electronics) 128-256 MB Commercial ready;200 50 nsafterpage 16M write;2 mserase Low-med(device 8 ⇥ Table8.3.Comparisonofmemorytypes No N/A High 25 ns 3.3 V 50 krad DRAM 16M 128 MB 300 mW Industrial Unlimited 8 ⇥ No N/A 10 ns 4 MB SRAM 3.3-5 V 1Mrad Mil-std Low-nil 512k 500 mW Unlimited 10% C) ± range Power cycles) Feature Package (@70 (relative) SEUrate (bits/die) Operating Endurance Accesstime Non-volatile Temperature Organization (Erase/Write voltage, DataRetention Radiation(TID)

94 Table8.4.CommercialcubesatEPS

Manufacturer Product Contact

Pumpkin CubeSatKitTMLinearEPS www.cubesatkit.com Gomspace NanoPowerModules www.gomspace.com InnovativeSolutionsinSpace CrystalspaceP1U“Vasik” www.cubesatshop.com (ISIS) Clydespace Varietyofsystemsfrom1-6U www.clyde-space.com

DiscreteIO:GeneralPurposeInput/Output(GPIO). • AnalogtoDigital/DigitaltoAnalog(ADC/DAC). • Debugging:JTAG,ISP,ICSP,BDMPort,BITP,andDB9ports. • SpaceWire:astandardforhigh-speedseriallinksandnetworks. • 8.2.5 ElectronicPowerSupplies A number of developers still design their EPS in-house.This is usually the case when the payload has powercontrolneedsandrequirementsthatcannotbemetbythecommerciallyavailablesuppliers. AstheEPSisacriticalsystemforthespacecraft,developerswilltypicallyutilizehighreliabilityor spaceratedcomponents. ThereareseveralcommerciallyavailableEPSforthecubesatplatform. Thesesystemsprovide voltagesandregulationtypicallyutilizedinembeddedsystemssuchas3.3 Vand5 V. Thesesystemsalsoprovideanarrayoffeaturestoaddressenduserneeds,suchasshortcir- cuitprotection,overcurrentandover/undervoltageprotection,telemetry,batterychargingand monitoring,resetcapabilityandmoredependinguponthevendor. Manyofthesesystemshave flightheritageandarethereforegreaterthanTRL6.Table8.4providesashortlistofvendorswho provideEPSsolutionsforthecubesatplatform.

8.3 OntheHorizon ManyC&DHsystemswillcontinuetofollowthetrendssetforembeddedsystems. Shortduration missionsinLEOwillcontinuetotakeadvantageoftheadvancesmadebyindustryleaderswho provideembeddedsystemstechnologiesandcomponents. Inkeepingwiththelowcostrapidde- velopmentthemeofthecubesat-basedmissions,manyCOTSsolutionsareavailableforspacecraft developers. Radiationmitigationsolutionsarebeingimplementedbydeveloperswhoneedtoaddressthose concernsasappliedtodeepspaceandlongdurationLEOmissions.Abriefdiscussionaboutthose techniquesisprovidedinsubsection8.4. Alsotrendinginthecubesatdevelopmentarenaistheuseofopensourcesolutions. Anumber ofC&DHsystemsbeingdevelopedareutilizingLinuxastheirOS.Thisisallowingthemtotake advantageofopensourceSWthathasbeendevelopedandtested(Woosteretal.,2007). NASA hasdevelopedopensourcesoftwaretosupportanumberofmissions. Othersdevelopersareusing the open source in its truest sense, providing software libraries and on-line tools to aid in the developmentoftheirspacesystems.Abriefdiscussiononopensourceisprovidedinsubsection8.5.

95 8.4 Radiationmitigationandtoleranceschemes

DeepspaceandlongdurationLEOmissionswillrequiredeveloperstoincorporateradiationmitiga- tionintotheirrespectivedesigns. Thecubesatplatformhastraditionallyutilizedreadilyavailable COTScomponents. UseofCOTSpartshasallowedforlowcostC&DHdevelopmentwhilealso allowingthedeveloperstotakeadvantagesofstateofthearttechnologiesintheirdesigns.Manyof thecomponentandsystemvendorsalsoprovideradiationhardened(rad-hard)equivalentdevicesas well. Whiletherearemanycommerciallyavailablerad-hardcomponents,useofthesecomponents hasanimpacttotheoverallcostsofspacecraftdevelopment. Inordertokeepcostsasreasonable aspossible,C&DHdeveloperswillneedtoaddressappropriateuseofrad-hardcomponentsalong withotherradiationmitigationtechniquesfordevelopmentofanoverallradiationtolerantdesign asdiscussedinthefollowingsection.

8.4.1 Radiationmitigationandtoleranceschemes

Forspaceapplications,radiationcandamageelectronicsintwoways.Totalionizingdose(TID)is theamountofcumulativeradiationreceived. Singleeventeffects(SEE)isthedisturbancecreated bysingleparticleshittingtheelectronics(Nguyen,2015). Totaldoseismeasuredinkradandcan affecttransistorperformance. Singleeventupsets(SEU)canaffectthelogicstateofmemory. A singleeventlatchup(SEL)canaffecttheoutputtransistorsonCMOSlogic,potentiallycausinga high-currentstate.Thepurposeofthissectionistosummarizetechniquesusedtomitigatesystem failurescausedbyradiationeffects.

8.4.2 ComponentSelection

Memory FRAM (Ferroelectric RAM) is a non-volatile random access memory that is persistent like Flashmemory.FRAMmemorycellsarelatchedusingaPZTfilmstructurewhichismorelikelyto maintainstateduringasingleeventeffectthantraditionalcapacitivelatchesfoundinRAM(Ball Aerospace&TechnologiesCorp,2015;Henkel,1996).

Imaging Charge couple devices (CCD) and complementary metal oxide semiconductors (CMOS) are imagesensorsthatareusefulinradiationenvironments. However,CCD’sarepreferredinspace applications while the CMOS detectors is a newer technology for rad hardened image sensors. (Bardoux, Penquer, Gilard, Ecoffet, & Auvergne, 2012; Chapman, 2015; Holbert, 2015; NASA GoddardSpaceFlightCenter,2015a,2015b)

8.4.3 ProtectionCircuits

Watchdogtimers Watchdogtimersareoftenusedtomonitorthestateofaprocessor. Awatchdogtimerisa hardwarecircuit,externalorinternaltotheprocessor,thatresetstheprocessorwhenitexpires unlessrefreshedbytheprocessor.Iftheprocessorjumpstoanerroneousmemorylocationthrough asingle-eventupsetorasoftwareexception, thewatchdogtimerresetstheprocessortorestore operations.(Mauere,Fraeman,Martin,&Roth,2008)

96 Communicationwatchdogtimer Adedicatedcommunicationwatchdogtimercircuitcanmonitorcommandandresponsesto determineifthesystemislockedup. Suchacircuitresetspowerafteraspecificnumberoffailed transmissions.

Overcurrentprotection Singleeventlatchup(SEL)cancausedevicefailureduetoanelevatedcurrentstate.Hardware andsoftwareovercurrentprotectioncanbeimplementedtowatchforelevatedcurrentlevelsand thenissueapowerresettotheoffendingcircuit. Thesamplingfrequencyforsoftwareovercurrent protectionmustbesufficienttodetectandresetthesubsystembeforetheelevatedcurrentcauses permanentdamage. Forhardwareprotection,ashuntresistorandbypassdiodecanbeusedtoin conjunctiontofiltervoltageandcurrentspikesforradhardeneddevices.

Powercontrol Since many components are more prone to radiation effects when powered on, a candidate mitigationstrategyistopoweroffdeviceswhentheyarenotneededoperationally.

8.4.4 MemoryProtection

ECCmemory Error-correctingcodememoryiscapableofdetectingandcorrectingbiterrorsinRAMand FLASHmemory.Ingeneral,ECCworksbystoringachecksumforaportionofthememory.This checksum can be used to simply mark a portion of memory unusable and/or correct single-bit errors.ThememorycontrollerisresponsibleformanagingtheECCmemoryduringreadandwrite operations.(LaBeletal.,1996)

SoftwareEDAC Bit errors can be detected and corrected using software. In general, EDAC algorithms use threecopiesofthememorytodetectandcorrectbitdiscrepancies.Softwareroutinely“scrubs”the memory,compareseachofthethreestoredmemoryvalue,selectsthemajorityvalue,andcorrects theerroneousmemorylocation.SoftwareEDACcanbeperformedatthebitorbytelevel.Memory lifetimeneedstobeconsideredforsoftwareEDACimplementationssinceeverycorrectionincreases thewritecounttoamemorylocation.

8.4.5 CommunicationProtection

Sharedbusmonitoring(I2C) I2Cisastandardcommunicationprotocolforsharingdeviceperipherals.I2Cconsistsofaclock anddataline. Individualperipheralsonthebususethesecommonlinestocommunicatewith amastercontroller. Intheeventthatanindividualdevicelocksupcommunication,themaster controllercanmonitorandresetthedevicetorestorecommunicationforalldevices.

Shared bus switching Another option is to decouple the clock and data lines so that each peripheralhasit’sownpair.Additionaldatalinescanbeusedonthemastercontroller.Alter- natively,anexternalFPGAcouldbeusedtoassignauniqueclock/datapairtoeachperipheral and,optionally,includeamethodawaytoreconfigurethoseassignmentsinflight.

97 CRC Cyclicredundancycheck(CRC)isacommonmethodfordetectingmemoryorcommunication errors. Parityisasingle-bitimplementationofaCRCwherethebitofsummaryinformationis calculatedbytheXORofthedatatobecommunicatedorstoredtomemory. Forcommunication channels,aCRCiscalculatedpriortosendingthemessageandisappendedtothemessagestream inaknownlocation. WhenthemessageisreceivedtheCRCiscalculatedagainandcomparedto thepreviouslygeneratedCRCappendedtothedatastream. Formemory,theCRCiscalculated priortowritingthedatatomemory. Whenthedataisreadout,anewCRCiscalculatedand comparedtothepreviouslygeneratedCRC.CRC’shelpdetectdatacorruptionbutcannotbeused tocorrectthedefectivedata.

Forwarderrorcorrection FECtransmitsredundantdatatohelpthereceiverrecovercorrupteddata.Init’ssimplestform, FECcouldtransmitthreebitsforeverybitofdataandthenvotetorestoretheoriginaldata.More efficientalgorithmsbalancethedataoverheadwiththecorrectionaccuracy.Mauereetal.(2008)

8.4.6 ParallelProcessingandVoting Triplemodularredundancy Single-event upsets can interrupt discrete logic, including processing.Triple modular redundancy (TMR)isafaultmitigationtechniquewherelogicisreplicatedthreetimesandtheoutputofthe logicisdeterminedbyamajority-vote.

Firmwareprotection Many spacecraft subsystems include a processor to handle and optimize operations. These processorsrequirefirmwarewhichiswrittenintoonboardprogrammemory. Likedatamemory, program memory is also susceptible to single-event upsets and device failure. To counter this issue,abootloadermaybeusedtocheckthevalidityofthefirmwareandprovideamechanismfor uploadingnewversions. Additionally,multiplecopiesofthefirmwaremaybestoredinmemoryin thecasethattheprimaryversioniscorrupt.

8.5 OpenSourceSpacecraftSoftware Open Source software offers spacecraft developers a way to accelerate software development,improve quality,andleveragelessonslearnedfrompriormissions.

8.5.1 CFE/CFS TheCoreFlightExecutive(cFE)isanapplicationdevelopmentandruntimeenvironmentdeveloped byGoddardSpaceFlightCenter. cFEincludescoreserviceslikemessaging,timekeeping,events, andtable-drivencommandingandconfiguration(Fitzsimmons,2012;NASAGoddardSpaceFlight Center,2015a).

8.5.2 COSMOS COSMOSisatooldevelopedbyBallAerospacethatprovidesaframeworkforoperatingandtesting anembeddedsystem.Thetoolincludesmodulesfortelemetrydisplay,plotting,scripting,logging, andconfigurationtablemanagement(BallAerospace&TechnologiesCorp,2015).

98 8.5.3 Linux LinuxiscurrentlysupportedbyseveralspacecraftavionicsprovidersincludingSpaceMicroand Tyvak. Additionalsoftwaremodulesareneededforspaceapplications. Suchmodulesmayinclude memoryscrubbing, asafemodecontroller, watchdogfunctionality, andotherreliabilityservices (NASAGoddardSpaceFlightCenter,2015b).

8.6 Conclusion Systemlevelsolutionsareindemandandamajorityofthesmallspacecraftbusdevelopersutilize hardwaretypicallyemployedintheembeddedsystemsandcontrolworld. Asaresultthereare manysourcesforcubesatsystems,subsystemsandcomponentsfromvendorswhoprovidecomplete spacecraft bus avionics solutions, which include on-board computing, memory, electronic power supplyandengineeringdevelopmentsystems. Ascubesatdevelopmentandapplicationcontinues toevolve,thereareawiderangeofavionicssystemsandcomponentsavailabletoaddresstheneeds ofthewiderangeofsmallspacecraftdevelopers,professionalandamateur. Designingandfabricatingavionicssystemsforharshradiationenvironmentsismitigatedbya combination of shielding, derating and controlling operating conditions for cumulative ionization and displacementdamageeffectsthatcausegradualdegradationinelectronicdevices.Smallspacecraft, especiallyinthecubesatclass,willneedtoaddressimpactsofradiationindeepspacemissionsand extendeddurationmissionsinLEO.Severalprocessormanufacturersandboardlevelintegrators areaddressingtheneedforradiationhardenedandradiationtolerantdesigns. Someboardlevel integratorshavealsoundertakenradiationtestingoftheirintegratedsystems. Manyintegrated systemsproviders,areutilizingradiationhardenedprocessorsorFPGAsfrommanufacturerssuch asXILINX,ATMEL,Aeroflex. Opensourcesoftwareandhardwareholdalotofpromiseforcommercialandgovernmentspace- craftdevelopers. Makingaprojectopensourceisthefirststep. Thenextstepistosocializethe softwareandencouragedeveloperstonotonlyusebuttocontributebackflight-provenalgorithms, softwaremodules,andhardwarecomponents. Cubesatsareplayingalargeroleinrapidlydevelopedlowcostmissionsinspace,astheyare establishingtechnologydemonstrationsandshortdurationsciencemissionsinLEO.NASAand other space agencies are now exploring their application in deep space missions. The cubesat communitywillprovideinnovativesolutionstoaddressthereliabilityrequirementsnecessaryfor thosemissions,whileattemptingtomaintainthelowcostapproachassociatedwiththeplatform. Completeavionicspackagesareavailabletothosewhoseekanintegratedsolution. Attheother extreme,opensourceDIYkitsareavailabletothosewhoseekalowcostwaytoexploredeveloping theirownC&DHsystemandspacecraft.

References

Ball Aerospace & Technologies Corp. (2015). The user interface for command and control of embeddedsystems.http://cosmosrb.com/.(Accessed:2015-10-20) Bardoux,A.,Penquer,A.,Gilard,O.,Ecoffet,R.,&Auvergne,M. (2012). Radiationeffectson imagesensors.InInternationalconferenceonspace. Chapman,T.(2015).Radiationtolerances.http://www.photonics.com/EDU/Handbook.aspx?AID= 41473.(Accessed:2015-10-20) Fitzsimmons, S. (2012). Open-source software for cubesat satellites. In Proceedings of the AIAA/USUConferenceonSmallSatellites.Logan,Utah.

99 Henkel,H.(1996).Totaldoseradiationtestsatframnon-volatilememories.http://www.cypress .com/file/57011/download.(Accessed:2015-10-20) Holbert,K.E.(2015).Singleeffectevents.http://holbert.faculty.asu.edu/eee560/see.html. (Accessed:2015-10-20) LaBel,K.A.,Gates,M.M.,Moran,A.K.,Marshall,P.W.,Barth,J.,Stassinopoulos,E.,. . . Dale,C.J.(1996).Commercialmicroelectronicstechnologiesforapplicationsinthesatellite radiationenvironment. InAerospaceapplicationsconference (Vol.1). Aspen,CO. http:// radhome.gsfc.nasa.gov/radhome/papers/aspen.htm.(Accessed:2015-10-20)doi:10.1109/ AERO.1996.495897 Mauere,R.,Fraeman,M.,Martin,M.,&Roth,D. (2008). Harshenvironments: Spaceradiation environment,effects,andmigitation.JohnsHopkinsAPLTechnicalDigest,28 (1). NASA Goddard Space Flight Center. (2015a). Core flight software system. https:// gsfctechnology.gsfc.nasa.gov/TechSheets/CFSS_Goddard_09.pdf. (Accessed: 2015-10- 20) NASAGoddardSpaceFlightCenter. (2015b). GSFCOpenSourceSoftware.http://opensource .gsfc.nasa.gov/.(Accessed:2015-10-20) Nguyen,M.(2015).Fpga advances improveradiationmitigation forremote-sensingsatellites.COTS Journal,17 (8). Wooster,P.,Boswell,D.,Stakem,P.,&Cowan-Sharp,J. (2007). Opensourcesoftwareforsmall satellites.InProceedingsoftheAIAA/USUConferenceonSmallSatellites.Logan,Utah.

100 9 Communications

9.1 Introduction Thecommunicationsystemisanessentialpartofaspacecraft,enablingspacecrafttotransmitdata andtelemetrytoEarth,receivecommandsfromEarth,andrelayinformationtooneanother. A device that both receives and transmits is called a transceiver. In contrast, a transpon- deressentiallyusesthesametechnologyasatransceiver,butisalsocapableofprovidingranging information,eitherbetweenspacecraftorwithrespecttoEarth. Spacecraft-to-spacecraftcommu- nicationsissometimesreferredtoasanInterSatelliteLink(ISL). Traditionally,communicationbetweenEarthandspacecraftisbasedintheradiospectrum (from about 30 MHz to 40 GHz).The different communication bands as defined by IEEE (2009) that are typicallyusedforspacecraftinclude:

VeryHighFrequency(VHF):30to300 MHz • UltraHighFrequency(UHF):300 MHzto3 GHz • L band:1 to 2 GHz • S band:2 to 4 GHz • C band:4 to 8 GHz • X band:8 to 12 GHz • Ku band:12 to 18 GHz • K band:18 to 27 GHz • Ka band:27 to 40 GHz • Optical (Laser Communication):100 to 800 THz • TheradiospectrumusedforspacecraftcommunicationsisalsoshowngraphicallyinFigure9.1. Whiletheuseofradiofrequency(RF)forcommunicationsisstillthestateoftheartatthetime ofthispublication,advanceshavebeenmadeinrecentyearstowardsusinghighercarrierfrequencies (whichgenerallyresultsinhigherdatarates),upintotheX- throughKa-bands.Higherdatarates

Figure9.1.Radiospectrumusedforspacecraftcommunication.

101 Figure 9.3. Cubesat-compatible S-band Figure 9.2. UHF deployable (4) monopole patchantenna. ImagecourtesyofIQWire- antennas for use on cubesats.Image courtesy less. ofGOMSpace. aremorereadilyachievablewithhigherfrequenciesbecausedatarateisproportionaltobandwidth usedforcommunication,andbandwidthismorereadilyavailableinthehigherfrequencies. There iscurrentlysignificantcrowdingofthelowerRFfrequencies,especiallyinS-bandfromcellphones (Wertz,Everett,&Puschell,2011,p.641). Received signal power will decrease as the transmission distance gets larger, thus larger spacecraft on deep space missions almost always use dish antennas because of their ability to focus radio transmissionsintoaprecisedirectionalbeam. Thusspacecraftmustbeabletopointaccurately. Thelargephysicalsizeandhighpointingrequirementsofaparabolicdishantennamakesuchan antennadifficulttointegratewithacubesat.Developershavesoughtalternatives,especiallyasthe attitudedeterminationandcontrolofcubesatsgetsbetter(refertosection5). Forexample,an inflatabledishantennaisoneproposedsolution(Babuscia,Corbin,Knapp,Jensen-Clem,&deLoo SaraSeager,2013). Thusfar,cubesatshavenotoperatedbeyondLEO,andthishas allowedthemtotakeadvantageof(lowergain)whiporpatchanten- nasintheircommunicationsystems.Duetotheirlowdirectionality, theseantennascangenerallymaintainacommunicationlinkeven whenthespacecraftistumbling,whichisadvantageousforcubesats lackingaccuratepointingcontrol. Whiportapeantennas,suchas theoneshowninFigure9.2,areeasilydeployablefromacubesat andaregenerallyusedforVHFandUHFcommunications. Patch antennas,suchastheoneshowninFigure9.3,aresmallandro- bustanddonotrequiredeployment.Theyaregenerallyusedfrom UHFthroughS-bandoncubesats,andarebeingexploredforuse Figure9.4. Exampleofsoft- inX-bandarraysoncubesats(Altuncetal.,2015),andbeyond.A ware defined radio, tunable keyadvantageofhigherfrequency(especiallyforcubesats)isthat in the range 70 MHz to 6 antennaaperturedecreasesbutgainremainssimilar. Thisisad- GHz. Image courtesy of vantageousforgroundsystemstoo.Onemajordisadvantageisthat GOMSpace. higherfrequenciesgetreadilyabsorbedbytheatmosphere.IntheKa-band,waterdropletsheavily attenuatethesignal,resultingin“rainfade”sogreatertransmittingpowerisrequiredtoclosethe link. However,thisdoesnotpresentaproblemforintersatellitelinks,whichdonotthrough theatmosphere. AnothertrendthataidsintheimprovementofRFbasedcommunicationsystemsisthedevelop- mentofsoftwaredefinedradio(SDR).ByusingFieldProgrammableGateArrays(FPGAs),SDRs havegreatflexibilitythatallowsthemtobeusedwithmultiplebands,filteringandmodulation

102 schemes,withoutmuch(ifany)changetohardware(Wertzetal.,2011,p. 636). Furthermore, suchcharacteristicscanbechangedin-flightbyuploadingnewsettingsfromtheground. SDRs areespeciallyattractiveforuseoncubesatsastheycanbemadeincreasinglysmallandefficient aselectronicsbecomesmallerandrequirelesspower(seeFigure9.4). Since2012,NASAhasbeen operatingtheSpaceCommunicationsandNavigation(SCaN)TestbedontheInternationalSpace Station,which was created for the purpose of SDR TRL advancement,among other things (Johnson, Reinhart,&Kacpura,2012). Laserbasedcommunication(“lasercom”)hasalreadybeendemonstratedwithlargerspacecraft suchasLADEE(NationalAeronauticsandSpaceAdministration,2013c).Theeraforlasercomon cubesatsisjustbeginning,withtechnologydemonstrationmissionsplannedfor2015and2016. Inthefollowingsections,TRL6+technologythatisrelevanttothecubesatformfactorislisted intablesorganizedbyoperatingfrequency.

9.2 Stateoftheart 9.2.1 VHFandUHF VHFandUHFfrequenciesarematurebandsusedforcubesatscommunication,withseveralradio developers to choose from. TRL 7 and higher technologies are listed in Table 9.1. Note that ClydeSpace’sVUTRXtransceiverwasdevelopedbyF’SATI(theFrenchSouthAfricanInstituteof Technology)atCPUT(CapePeninsulaUniversityofTechnology)(FrenchSouthAfricanInstitute ofTechnology,2015). MoreinformationonBitBeamradioscanbefoundinLurie(2014),while moreinformationonL3Communications’CadetRadiocanbefoundinKneller,Hyer,McIntyre, Jones,andSwenson(2012). Typically,asmallpatchantenna(seeFigure9.3)orwhipantennaisusedtotransmitVHFand UHF.AsidefromtheTRL9antennaslistedinTable9.1,otherdeployable,highergainantennas (asseeninFigure9.5)arebeingdeveloped,includingaTRL6deployablequadrifilarhelicalUHF throughS-bandantennabyHelicalCommunicationTechnologies(HCT),andadeployablehelical UHFantennabyNorthropGrummanAerospaceSystems(Ochoa,Hummer,&Ciffone,2014).

9.2.2 L-band InL-band,cubesatscantakeadvantageoflegacyspacecommunicationsnetworkssuchasGlobal- StarandIridiumbyusingnetworkspecifictransponderstorelayinformationtoandfromEarth. Anadditionaladvantageisthatthesenetworksremovedependenceondedicatedgroundstation equipment,asdiscussedfurtherinsection11.

Figure 9.5.Example of deployable quadrifilar Figure 9.6. SNaP spacecraft with Haigh- helical antenna. Image courtesy of Helical Farr’s deployable UHF Crossed Dipole an- CommunicationTechnologies. tenna.ImagecourtesyofHaighFarr.

103 Table9.1.DevelopersandproductsforuseinVHF/UHF

Product Manufacturer Status Lithium-1 AstronauticalDevelopment TRL9 LLC CSKPhasingBoard AstronauticalDevelopment TRL9 LLC BBSDR BitBeamInc. TRL8 BBUHF BitBeamInc. TRL8 VUTRX ClydeSpaceLtd. TRL9 NanoComAX100 GOMSpaceApS TRL8 NanoComANT430 GOMSpaceApS TRL9 NanoComSDR GOMSpaceApS TRL7 P/N17100 Haigh-FarrInc. TRL9 TRXUV ISISB.V. TRL9 TRXVU ISISB.V. TRL8 DeployableAntennaSystem ISISB.V. TRL9 forCubeSats Cadet L3CommunicationsInc. TRL9

Examples of network-specific transponders are shown in Table 9.2.Note that NearSpaceLaunch’s EyeStar-D2SatelliteDuplexradiohasflightheritage,butnolargefiletransferwaspossibledueto anunplanned2rpmspinrate(Voss,Dailey,Crowley,Bennett,&White,2014). Also,sci_Zoneis developingitsnextgenerationofsimplexradio,STX3,aswellasaduplexradio. ThemultibandHCTquadrifilarhelicalantennamentionedinsection9.2.1canalsooperatein L-band.

Table9.2.DevelopersandproductsforuseinL-band

Product Manufacturer Status 9602SBD IridiumCommunicationsInc. TRL9 EyeStar-S2 NearSpaceLaunchInc.(NSL) TRL9 EyeStar-D2 NearSpaceLaunchInc.(NSL) TRL8 STX2Simplex sci_Zone,Inc TRL9

9.2.3 S-band Examples of TRL 7+ S-band communication technology are shown in Table 9.3. A cubesat- compatibleS-bandtransmitterisshowninFigure9.7.NotethattheClydeSpaceproductsSANT andSTXweredevelopedbyF’SATIatCPUT.Haigh-Farr’sS-bandantennasarescheduledtofly ontheCPOD3Ucubesatmission,scheduledforlaunchin2016.

104 RegardinglowerTRLtechnology, L3Communications’Cadet NanosatRadio(seeTable9.1)isalsoconfigurabletobeusedinS- band,althoughthishasnotbeendemonstratedatthetimeofpubli- cation.LJT&AssociateshavedevelopedanS-bandtransponderto workwiththeTrackingandDataRelaySatelliteSystem(TDRSS). TheLCT2-bS-bandBPSKTDRSStransmitterhasalreadyflown ontheSOAREX-VIflightexperiment(White,Morgan,&Murbach, 2007).Also,SyrlinksdevelopsanS-Bandtransceiverthathasflight heritage, thoughtotheknowledgeoftheauthorithasnotbeen flownonacubesatmission. Similarly,SurreySatelliteTechnology Figure 9.7. Cubesat- USLLCdevelopedanS-bandquadrifilarantenna,S-banddownlink compatible S-band trans- transmitter,andS-bandreceiverwithflightheritageonspacecraft mitter, to be used with thatarelessthan180kginmass,thoughtotheknowledgeofthe eitheramateurorcommercial authortheyhavenotflownonacubesatmission. bands. Image courtesy of Many antennas are available in S-band, including a stacked ClydeSpace. patchS-bandantennabeingdevelopedbyNewSpaceSystemsand theHCTquadrifilarhelicalantennamentionedinsection9.2.1. AntDevCo,IQWireless,Surrey SatelliteTechnologyandmanyothersmakeS-bandpatchantennasthatcouldbecompatiblewith cubesats.ISISB.V.resellstheS-bandpatchantenna,andtransmitterandreceiverforIQWireless’ HISPICOcommunicationsystem. TheunlicensedISM(Industrial,Scientific,andMedical)bandshavebeenutilizedforcubesat communicationsaswell. Notably,agroupatSingapore’sNanyangTechnologicalUniversityused a2.4-GHzZigBeeradioonitsVELOX-ImissiontodemonstratethatCOTSland-basedwireless systemscanbeusedforinter-cubesatcommunication(Xie,Lee,Low,&Gunawan,2014).Similarly, thereareinvestigationsunderwayforusingwirelessCOTSproducts,suchasbluetooth-compatible hardware,forintra-satellitecommunications(Schoemaker&Bouwmeeste,2014). Furthermore,companiesthattraditionallydesigncommunicationsforlargerspacecraftarenow modifyingsomeoftheirproductsforuseonsmallerspacecraft. OneexampleistheCOMDEV S-bandtransceiver(Hatziathanasiou&McLaren,2014).

Table9.3.ManufacturersandproductsforuseinS-band

Product Manufacturer Status Beryllium2 AstronauticalDevelopment TRL9 LLC SANT ClydeSpaceLtd. TRL9 STX ClydeSpaceLtd. TRL9 P/N3745 Haigh-FarrInc. TRL8 P/N3756 Haigh-FarrInc. TRL8 SCR-100 InnoflightInc. TRL9 HISPICO IQWirelessGmbH TRL9 SLINK IQWirelessGmbH TRL7 TXS ISISB.V. TRL8 CSR-SDR-S/S VulcanWirelessInc. TRL8

105 9.2.4 X-band X-bandtransmitters(suchasthatinFigure9.8)haverecentlybecomearealityforcubesatsbecause oftheadventofcommerciallyavailableMonolithicMicrowaveIntegratedCircuits(MMICs).There hasbeenmucheffortrecentlyfromindustry,universitiesandgovernmentcentersaliketodevelop communicationssystemsatthiswavelength(Paloetal.,2014). Table9.4displaysTRL9cubesatcompatibleX-bandcommunication hardware.NotethatAntDevCo’s“evolved”wireantennasweredesigned using X5 Systems’ AntSyn (Antenna Synthesis) software. The corre- spondingflightheritage(ST5mission)isnotofthecubesatformfactor, but each of the five spacecraft were only 25 kg in mass. AntDevCo also developsX-bandpatchantennas. ItshouldalsobenotedthatPlanet LabsusesaproprietaryX-bandradio(Boshuizen, Mason, Klupar,& Spanhake,2014). SurreySatelliteTechnologydevelopedahigh-gainX-bandantenna andcorrespondingpointingmechanism(seeFigure9.8),andanX-band transmitterthathaveflightheritageonspacecraftlessthan180kgin mass,thoughtotheknowledgeoftheauthorhavenotflownonacube- satmission. Similarly, Haigh-Farr’ssmall-satellite-compatibleX-band antennaflewonthesuborbitalSOAREX-8mission. JPLhasalsodevelopedacubesatcompatibletransponderfordeep Figure9.8.X-bandhigh- space(Duncan,Smith, & Aguirre, 2014),while CU Boulderand Goddard gainantennaandpoint- SpaceFlightCenterjointlydevelopedanX-bandSDRthatisnowbeing ing mechanism. Image soldbyBlueCanyonTechnologies(Altuncetal.,2015). LowerTRL courtesy of Surrey Space. technologiesincludeanX-bandtransmitterfromNewSpaceSystems.

Table9.4.ManufacturersandproductsforuseinX-band

Product Manufacturer Status EvolvedX-bandwire AntennaDevelopment TRL9 antennas CorporationInc.(AntDevCo) QuadrifilarHelixAntenna AntennaDevelopment TRL9 (X-band) CorporationInc.(AntDevCo) HDR-TM Syrlinks TRL9

106 Figure9.9. ConceptualdrawingoflasercommunicationbetweentwocubesatsforOCSDmission. ImagecourtesyofNationalAeronauticsandSpaceAdministration(2015).

9.2.5 Lasercom

LasercomforcubesatshasyettobecomeaTRL9technology,butitisquicklygainingground. Already,AerospaceCorporationlaunchedoneofthreecubesatsinitsAeroCubeOpticalCommu- nicationandSensorDemonstration(OCSD)program(Welle, Janson, Rowen,&Rose,2015)on October8,2015(seeFigure9.9). Also,Fibertekisworkingona(currentlyTRL6)6Ulasercom system. Forbothoftheseventures,lasersarehostedonboardthecubesat(s). AlowerTRLlaser- comconceptinvolvesanasymmetricopticallink,wherebythelaserhardwareisonEarthanda modulatingretroreflectorisonthespacecraft(refertosection9.3.2).

9.3 OntheHorizon

9.3.1 Ku- toKa-band

Ku-,K-,andKa-bandcommunicationsystemsarethestateoftheartforlargespacecraft,especially inspacecraft-to-spacecraftcommunications, buttheyarestillyoungtechnologiesinthecubesat world.DevelopersworkingoncubesatcompatibleKa-bandcommunicationsystemsincludeAquila Space,MicroAerospaceSolutions,NewSpaceSystems,andTethersUnlimited. AquilaSpacealreadyhasanoperationalKa-bandtransmitterontwo6Uspacecraft;however, theutilityofthesesystemshasonlybeenminimallydemonstratedandAquilaSpaceiscurrently developingthenextgenerationoftheproduct. AKa-bandtransmitterisshowninFigure9.11. MicroAerospaceSolutionshasaTRL5Ku/Ka-bandtransceiverwithdeployable60 cmcubesat dishantenna(Lyons,Platt,Reeve,Rockeberger,&Tamir,2015). TethersUnlimitedhasaTRL5 K-bandSDRcalledSWIFT-KTX. Atthehigherfrequencies,rainfadebecomesasignificantproblemforcommunicationsbetweena spacecraft and Earth (Pelton, 2006).Nonetheless, the benefits have justified further research by both industryandgovernmentalike.AttheJetPropulsionLaboratory(JPL),ISARA(IntegratedSolar ArrayandReflectarrayAntenna)isbeingdevelopedforuseona3Ucubesat(NationalAeronautics andSpaceAdministration,2014). Essentially,thebackofthespacecraft’ssolarpanelsareusedas aKa-bandantennareflector.AKa-bandcommunicationsystemisbeingdevelopedbyJPLforthe cubesatMarsCubeOne(MarCO)mission(JPLStudiesMissions,TechforFutureInterplanetary Cubesats,2015).

107 9.3.2 Asymmetriclasercommunications Asymmetriclasercommunicationutilizesaremotelygeneratedlaser(i.e. doesnotrequireanon- boardsignalcarrier)andmodulatingretroreflector(MRR)toreflectandmodulatealaserbeam (encodingitwithspacecraftdata)backtoEarth(seeFigure9.10). ThelaserislocatedonEarth, wherepowerandvolumeconstraintsarenotastight,whilethecommunicationspayloadonthe spacecraftrequiresonlyafewWattsforoperation.SPAWARisdevelopingthistechnologyusinga MEMSbasedMRR(Wayneetal.,2015),whileNASAAmesResearchCenterisdevelopingasimilar capabilityusingamodulatingquantumwell(MQW)deviceastheMRR(Salas,Stupl,&Mason, 2012).

9.3.3 TransparentAntennas Whendeployablesolarpanelsarenotanoption,acubesat’ssurfaceisprimerealestateforsolar cells.Onewaytomaximizeexposedsurfaceareaonacubesatistocreatecommunicationsantennas thatareopticallytransparent. GroupsattheUniversityofHouston(Montanoetal.,2014)and UtahStateUniversity(Genc,Turpin,Yasin,&Baktur,2012)havedevelopedprototypesofthese small,opticallytransparentantennas.

9.3.4 IntercubesatCommunicationsandOperations Therearemultipleadvantagestocommunicatingbetweenspacecraft.Ascubesatmissionsbecome moreautomated,constellationscouldexchangeinformationtomaintainprecisepositionswithout input from the ground. Data can be relayed between spacecraft to increase the coverage from limitedgroundstations. Finally,intercubesattranspondersmayverywellbecomeavitalelement ofeventualdeepspacemissions,sincecubesatsaretypicallylimitedinbroadcastingpowerdueto theirsmallsizeandmaybebettersuitedtorelayinformationtoEarthviaalarger,morepowerful mothership. Thoughtranspondersarewellestablishedinthespacecraftworld,networkedswarmsofcubesats thatpassinformationamongsteachotherandtheneventuallytogroundhaveyettobedemon- strated.Developingnetworkedswarmsislessofahardwareengineeringproblemthanasystemsand softwareengineeringproblem,asdemonstratedbyNASAAmesResearchCenter’sEdisonDemon- strationofSmallsatNetworks(EDSN)mission(Hanson,Chartres,Sanchez,&Oyadomari,2014), see Figure 9.12.Ames’ follow up Nodes cubesat mission is scheduled to deploy from the International SpaceStationinearly2016.

Figure 9.10. Scheme for using land based Figure 9.11. Ka-band transmitter with a lasertotransmitdatafromcubesatusingon- horn antenna. Image courtesy of Aquila boardMRR.ImagecourtesyofSalasetal. Space. (2012).

108 Figure 9.12.Scheme for inter-cubesat communication for EDSN mission.Image courtesy of National AeronauticsandSpaceAdministration(2013b).

Similarly,theCubesatProximityOperationsDemonstration(CPOD)mission“willdemonstrate rendezvous,proximityoperationsanddockingusingtwo3Ucubesats”(NationalAeronauticsand SpaceAdministration,2013a),andisledbyTyvakNanoSatelliteSystems,LLC.

9.4 Conclusion

ThereisalreadystrongflightheritageformanyUHF/VHFandS-bandcommunicationsystems forcubesats. LesscommonbutwithgrowingflightheritageareX-bandsystems. Theuseofeven higherRFfrequenciesandlasercommunicationalreadyhassomeflightheritageoncubesats,but withlimited(oryettobedemonstrated)performance.Ka-bandsystemsforcubesatsarecurrently indevelopment,butTRLstatusisstillrelativelylow.Ontheotherhand,lasercommunicationisa spaceflightreadytechnologythatwillmostlikelyseeincreasedperformanceinthenearfuturefor onboardlasersystems.Alternatively,afewgroupsareworkingonasymmetriclasercommunication, butitisstillarelativelylowTRLtechnology.

References

Altunc,S.,Kegege,O.,Bundick,S.,Shaw,H.,Schaire,S.,Bussey,G.,. . . O’Conor,D. (2015). X-bandCubeSatCommunicationSystemDemonstration. In29thAnnualAIAA/USUCon- ferenceonSmallSatellites.Logan,Utah. Babuscia,A.,Corbin,B.,Knapp,M.,Jensen-Clem,R.,&deLooSaraSeager,M.V.(2013).Inflat- able antenna for cubesats:Motivation for development and antenna design.ActaAstronautica, 91 ,322-332. Boshuizen,C.R.,Mason,J.,Klupar,P.,&Spanhake,S.(2014).Resultsfromtheplanetlabsflock constellation.In28thAnnualAIAA/USUConferenceonSmallSatellites.Logan,Utah. Duncan,C.B.,Smith,A.E.,&Aguirre,F.H. (2014). IrisTransponder–Communicationsand Navigation for Deep Space.In28thAnnualAIAA/USUConferenceonSmallSatellites.Logan, Utah. FrenchSouthAfricanInstituteofTechnology.(2015).Products.http://www.cput.ac.za/blogs/ fsati/products.(Accessed:2015-11-02) Genc,A.,Turpin,T.,Yasin,T.,&Baktur,R.(2012).Activeintegratedmeshedpatchantennasfor smallsatellites.MicrowaveandOpticalTechnologyLetters,54 (7),1593-1595.

109 Hanson,J.,Chartres,J.,Sanchez,H.,&Oyadomari,K.(2014).TheEDSNIntersatelliteCommu- nicationsArchitecture. In28thAnnualAIAA/USUConferenceonSmallSatellites. Logan, Utah. Hatziathanasiou, I., & McLaren, C. (2014). Flexible S-Band TTC (Telemetry, Tracking, and Command)forSmallSpacecraftinLEO. In28thAnnualAIAA/USUConferenceonSmall Satellites.Logan,Utah. IEEE.(2009).IEEEStandardLetterDesignationsforRadar-FrequencyBands.IEEEStd.521-2002. (Approved12September2002,Reaffirmed17June2009) Johnson,S.K.,Reinhart,R.C.,&Kacpura,T.J.(2012).Connect’sapproachforthedevelopment ofthreesoftwaredefinedradiosforspaceapplication. In2012IEEEAerospaceConference. BigSky,Montana. JPLStudiesMissions,TechforFutureInterplanetaryCubesats. (2015). http://spacenews.com/ jpl-studies-missions-and-technologies-for-future-interplanetary-cubesats. (Ac- cessed:2015-10-01) Kneller,E.W.,Hyer,K.L.,McIntyre,T.,Jones,D.K.,&Swenson,C. (2012). Cadet: AHigh DataRateSoftwareDefinedRadioforSmallSatApplications. In26thAnnualAIAA/USU ConferenceonSmallSatellites. Lurie,H. (2014). Modularsoftwaredefinedradiosforspacetoearthcommunications. In28th AnnualAIAA/USUConferenceonSmallSatellites.Logan,Utah. Lyons,R.,Platt,D.,Reeve,J.,Rockeberger,D.,&Tamir,R. (2015). Enhancedsmallsatellite communicationsystemforremoteplanetaryexploration. In66thInternationalAstronautical Congress.Jersusalem,. Montano,R.,Neveu,N.,Palacio,S.,Martinez,E.,Jackson,D.R.,Fink,J.C.P.W.,&Provence, R.S. (2014). Developmentoflow-profileantennasforcubesats. In28thAnnualAIAA/USU ConferenceonSmallSatellites.Logan,Utah. NationalAeronauticsandSpaceAdministration. (2013a). CubesatProximityOperationsDemon- stration (CPOD). https://www.nasa.gov/directorates/spacetech/small_spacecraft/ cpod_project.html#.VhxVjrwy360.(Accessed:2015-10-12) NationalAeronauticsandSpaceAdministration. (2013b). EdisonDemonstrationofSmallsatNet- worksMission: AofAdvanced,Affordable,COTS-basedNanosatellitesthatEnable Cross-LinkCommunicationandMultipointPhysics.(NASAFacts) NationalAeronauticsandSpaceAdministration.(2013c).NASALaserCommunicationSystemSets Record with Data Transmissions to and from Moon. http://www.nasa.gov/press/2013/ october/nasa-laser-communication-system-sets-record-with-data-transmissions-to -and-from/#.VfHATrwy0Yp.(Accessed:2015-09-10) NationalAeronauticsandSpaceAdministration. (2014). IntegratedSolarArrayandReflectarray Antenna(ISARA)forHighBandwidthCubesats. https://www.nasa.gov/sites/default/ files/files/ISARA_Fact_Sheet-15Oct14.pdf.(NASAFacts) National Aeronautics and Space Administration. (2015). Optical Communications and Sen- sor Demonstration (OCSD). http://www.nasa.gov/images/content/745978main_ocsd _cubesats_full.jpg.(Accessed:2015-09-11) Ochoa,D.,Hummer,K.,&Ciffone,M.(2014).DeployableHelicalAntennaforNano-Satellites.In 28thAnnualAIAA/USUConferenceonSmallSatellites.Logan,Utah. Palo,S.,O’Connor,D.,DeVito,E.,Kohnert,R.,Crum,G.,&Altunc,S. (2014). Expanding CubeSatCapabilitieswithaLowCostTransceiver. In28thAnnualAIAA/USUConference onSmallSatellites.Logan,Utah. Pelton,J.N.(2006).TheBasicsofSatelliteCommunications.ProfessionalEducationInternational, Inc.

110 Salas,A.G.,Stupl,J.,&Mason,J. (2012). Modulatingretro-reflectors: technology,linkbudgets andapplications.In63rdInternationalAstronauticalCongress.Naples,Italy. Schoemaker,R.,&Bouwmeeste,J. (2014). Evaluationofbluetoothlowenergywirelessinternal datacommunicationfornanosatellites. InSmallSatellitesSystemsandServicesSymposium. PortoPetro,Majorca,Spain. Voss, H.D., Dailey, J.F., Crowley, J.C., Bennett, B.,&White, A.J. (2014). TSATGLob- alstarELaNa-5ExtremelyLow-EarthOrbit(ELEO)Satellite. In28thAnnualAIAA/USU ConferenceonSmallSatellites.Logan,Utah. Wayne,D.,Obukhov,D.,Phipps,A.,Tran,M.,Book,K.,&Lovern,M.(2015).DesignandTesting ofaCubeSat-SizedRetroreflectorPayload.In29thAnnualAIAA/USUConferenceonSmall Satellites.Logan,Utah. Welle,R.P.,Janson,S.,Rowen,D.,&Rose,T. (2015). Cubesat-scalelasercommunications. In 31stSpaceSymposium,TechnicalTrack.ColoradoSprings. Wertz,J.R.,Everett,D.F.,&Puschell,J.J.(Eds.).(2011).SpaceMissionEngineering:TheNew SMAD.MicrocosmPress. White,B.,Morgan,H.,&Murbach,M. (2007). SOAREX-VIRe-entryFlightTestExperiment - ElectronicSystemsoftheSlottedCompressionRamp(SCRAMP)Probe. InInternational PlanetaryProbeWorkshop- IPPW-5.,France. Xie, S., Lee, G. X., Low, K.-S., & Gunawan, E. (2014). Wireless sensor network for satellite applications:Asurveyandcasestudy.UnmannedSystems,02 .

111 10 Integration, Launch and Deployment

10.1 Introduction In2014, one hundredandthirty sevensmallspacecraftwerelaunched versus fortyeightlarger spacecraft. Forecastsshowthatthebalancewillshiftevenmoretowardssmallspacecraftinthe nearfuture. Stateofthearttechnologiesinlaunchvehicles,integration,anddeploymentsystems arerespondingtothechangingsmallspacecraftmarkettosupportnew,advancedmissionswith diversetechnologiesthatwilltakesmallspacecraftfurtherintobothspaceandthefuture. Sincelaunchvehiclecapabilitiesusuallyexceedtherequirementsoftheprimarycustomer,there isusuallyenoughresidualmass,volume,andotherperformancemarginsavailablefordeliveryof smallspacecraftonamission.Smallspacecraftcanexploitthissurpluscapacityforaninexpensive ride to space.A large market of adapters and deployment technologies has been created to compactly housemultiplesmallspacecraftonexistinglaunchers. Thesetechnologiesprovidebothasecure attachmenttothelauncheraswellasmechanismsfordepartureattheappropriatetime. This ride-sharemethodisthefirstandstilltheprimarywayofputtingsmallspacecraftintoorbit,but thenewtechnologicaladvancementsshowthatthepopularityofclassicalride-sharingmightslowly decreaseintheupcomingyears. Dedicatedride-sharing, whereanintegratorbooksacomplete launchandsellstheavailablecapacitytomultiplespacecraftoperatorswithoutthepresenceofa primarycustomer,isanewandinterestingapproachinthesector. Although not a new idea, using orbital maneuvering systems to deliver small spacecraft to intendedorbitsisanothergrowingtechnology.Severalcommercialcompaniesaredevelopingorbital tugstobelaunchedwithstateoftheartlaunchvehiclestoanapproximateorbit,butthenpropel themselvestoanotherorbitwiththeiron-boardpropulsionsystemwheretheywilldeploytheir hostedsmallspacecraft. Inthefuture,theexpandingcapabilitiesofsmallpayloadswillalsodemanddedicatedlaunchers. Formissionsthatneedaveryspecificorbit,interplanetarytrajectories,preciselytimedrendezvous, orspecialenvironmentalconsiderations,flyingthespacecraftasaprimarypayloadmaybethebest methodofascent. Thiswillenablefieldsfromtechnologydevelopmenttohardsciencestotake advantageofthequickiterationtimeandlowcapitalcostofsmallspacecrafttoyieldnewand excitingadvancesinspacecapabilitiesandunderstanding.

10.2 StateoftheArt 10.2.1 LaunchIntegrationServices Generally,thelaunchvehiclecustomerdecideswhethersecondarypayloadswillsharearidewith a primary payload and if so, how these secondary payloads are dispensed. In most cases, the launchvehicle(LV)customeristheprimarypayload. However,therearecaseswhereaprogram orintegrationcompanycandetermineride-sharepossibilities. Moreflexibilitymaybeavailable tosecondarypayloadsthatarefundedthroughsuchaprogram, althoughthemissionschedule isgenerallydecidedbytheprimarypayload. Typicalride-shareintegrationservicesaregeneral servicesprovidedbytheseintegrationcompaniesthatfocusonLVintegrationsanddonotvary duetomissionrequirementsoftheprimarypayload.Standardizedservicesincludesystemtesting, engineering development support, hardware of the dispenser, and necessary integration such as spacecraft-to-dispenseranddispenser-to-LV.Ride-shareintegrationservicesmaydependheavily ontheprimarypayloadandcanincludede-integration(e.g., executingaseparationmaneuver), missionandscience-specificservices,specialanalysesrelatedtohardwareandintegrationservices, andisolatedventing,shock,vibration,andthermalenvironmentalcontrol.

112 Examples of launch integration companies are given below.These companies purchase the excess capacityonexistingrocketsandintegrateasmanysmallpayloadsaspossibleintothiscapacity, thereforecontributetheusageofthelaunchvehiclewithhigherefficiency.

AdaptiveLaunchSolutions(ALS): AdaptiveLaunchSolutionsprovideslaunchintegration servicesforsmallspacecraftonandDeltalaunchvehicles. Thecompanyisresponsiblefor mission integration,thermal,coupled load,contamination,vibration,acoustic,shock,circuit,power, andventingmodels, analysisandtest. ALSdevelopsAuxiliaryPayloadSupportUnitmission softwareprovidingsequencedpowerswitchingandseparationvalidationtoeachauxiliarypayload separationsystem(AdaptiveLaunchSolutions,2015).

CommercialSpaceTechnologies(CST): CommercialSpaceTechnologiesLtd. isaconsul- tancycompanyregisteredandbasedinLondon,witharepresentativeofficeinMoscow. CSThas negotiatedandprocuredLVsforsmallspacecraftcustomers,havingmanagedtheinteractionbe- tweenlaunchproviderandcustomerfor33successfulmissions. Thishasbeenachievedwiththe useoffivedifferentLVslaunchedfromthreedifferentlaunchsites(CommercialSpaceTechnologies, 2015).

ISIS: InnovativeSolutionsinSpace(ISIS)isaspacecraftcompanybasedintheNetherlandsand established in 2006.The company is focused on spacecraft in the range of 1 to 20 kg and supplying components,andlaunchservices.InJune2014,thecompanysent23cubesatsintoorbitonaDnepr rocketanddeployedthemfromtheirQuadPackdispenser. ISISisinchargeoftheQB50launch campaignscheduledfor2016,aninitiativetosendfiftyuniversity-builtcubesatstoconductresearch inEarth’slowerthermosphere(InnovativeSolutionsinSpaceB.V.,2015).

Qinetiq: QinetiQNorthAmerica(QNA)isacompanywithexpertiseinlaunchvehicleprocure- ment, design, analysis, manufacturing oversight, integration, testing, mission management and launch. The company is supporting over twenty of the manifested Falcon 9 missions (Qinetiq, 2015).

MoogCSAEngineering: MoogCSA,locatedinMountainView,CA,hasbeenassistingcom- mercialandmilitaryaerospacecustomersformorethanthirtyyearstoprovidevibrationisolation systems, tuned mass dampers for vibration control, softride spacecraft isolation systems, shock testservices,andspacecrafttransportshippingcontainers.Thecompanyalsoprovidesintegration supportforitscustomers(MoogCSAEngineering,2015).

Nanoracks: Nanoracks,foundedin2009,isacompanylocatedinHouston,Texas,whichhostsac- commodation and an array of equipment for experiments on ISS. The company offers ISS-deployment services to its customers since 2014.In 2015, NanoRacks teamed up with to offer services fortheNewShepardSuborbitalVehicle(NanoRacksLLC,2015a).

SpaceflightServices: SpaceflightServices,foundedin2010andbasedinSeattle,providesrou- tineaccesstospacefordeployedandhostedsmallpayloadsbyusingpublishedcommercialpricing, standardinterfaces,andfrequentflightopportunities.Specificintegrationservicesprovidedinclude engineeringanalysis,spacecraft-to-dispenserandLVintegration,flightservice,andstandardinter- faceoptionsforpayloads.Spaceflighthasputitsfirstpayloadintoorbitin2013,haslaunchedeighty onespacecraftsincethenandhasoveronehundredandthirtyfivespacecrafttodeploythrough

113 2018(SpaceflightServices,2015).Thecompany’sSSPS(SpaceflightSecondaryPayloadSystem)is designedtotransportsecondaryandhostedpayloadstospaceusingtheexcesscapacityoncom- mercial launch vehicles.The SSPS can accommodate up to five 300 kg spacecraft, or many smaller spacecraft,oneachofitsfiveportsandoperatesindependentlyfromtheprimarylaunchvehicleto simplifypayloadandmissionintegration(EuropeanSpaceAgency,2015a). Thecompanyisalso developingaspacetug(SHERPA),whichbuildsuponthecapabilitiesoftheSSPSbyincorporating propulsionandpowergenerationsubsystems,whichcanmaneuveritssecondarypayloadstohigher LEOaltitudes,GEO,oreveninterplanetarytrajectories.ThefirstSHERPAmissionismanifested onaSpaceXFalcon9earlyin2016witheightyninepayloadsonboard(SpaceflightServices,2015).

UTIAS/SFL: TheUniversityofTorontoInstituteforAerospaceStudiesSpaceFlightLaboratory (UTIAS/SFL)provideslaunchservicesforsmallspacecraft.Thelaboratoryhasarrangedlaunches formorethantenspacecraftfromdifferentcountriessince2002.PastlauncheshaveincludedIndian (PSLV) and Russian (Rockot, COSMOS-3M, Dnepr, Soyuz) vehicles.The laboratory has a dispenser systemcalledtheXPODwhichcanbeusedforanysizeofspacecraftupto16 kg(UTIAS/SFL, 2015).

TriSeptCorporation: TriSeptCorporation hasbeenintegratingspacecraftranging from thesize ofschoolbusestocubesatsoverthepasttwentyoneyears.Specifictosmallspacecraft,thecompany hasphysicallyintegratedoverseventyfourpayloadsonbothsuborbital,LEO,andGEOlaunches onmultiplespacecraftmissions. TriSeptprovidesspacecraftprovidersatotalmissionintegration service,fromconceptdevelopment,interfacerequirementsdefinition,launchvehicleselectionand contracting,missionanalyses,integrationhardwareprovisions,fitchecksandpathfinders,integra- tion,test,andpayloadcertification,tolaunchandspacecraftdeployment. Thecompanycurrently servesastheleadintegratorfortheOperationallyResponsiveSpace(ORS)Office,managingthe Office’scomplexmultiplespacecraftride-sharemissions,suchastheORS-3mission,whichconsisted ofthirtyonedistinctpayloadsinNovember2013,andtheORS-4mission,whichissettolaunch thirteenpayloadsonthefirstlaunchoftheSuperStrypismalllaunchvehicle.TriSeptCorporation isalsodevelopingtheFANTM-RiDEfamilyofdispensersystemsandmanifestingseveraltraditional anddedicatedride-sharelaunchmissionstoservethesmallspacecraftindustry(Lim,2015).

SurreySatelliteTechnologyLtd(SSTL): SSTL,majority-ownedbyEADS,builds andoperatessmallspacecraft.Onthelauncherside,thecompanynegotiateswithlaunchproviders toprocurecosteffectivelaunchopportunities(SurreySatelliteTechnologyLtd,2015).

TyvakNano-SatelliteSystemsLLC: TyvakNano-SatelliteSystemsLLCprovideslaunchser- vices for small spacecraft and has launch experience with payloads ranging from 1 kg to 100 kg.To dateover120spacecrafthavebeensuccessfullylaunchedand40additionalspacecraftarecurrently manifested. TheintegrationservicesforNASA’sfirstinter-planetarycubesat(MarCO)missionto Marsishandledbythecompany. Tyvakprovidesacompletelaunchsupportsolutionincluding developmentoflaunchvehiclepayloadinterfacesandassociateddocumentation,spacecrafttesting andqualification,developmentofspacecraftaccommodationsincludingstandardizeddeployment systems, launch manifesting documentation including frequency allocation and ODAR analysis. Tosupportitslaunchactivitiesthecompanyoffersanumberofstandardizeddeployersincluding systemscompatiblewith1U,3U,6Uand12Uspacecraft(Puig-Suari,2015).

114 10.2.2 DedicatedLaunchersofSmallSpacecraft

Inthecontextofthisreport,launchvehicleswithtotalLEOcapacityof500 kgorlessareconsidered tobededicatedlaunchersforsmallpayloads. Smallspacecrafthavebeeninorbitformorethan fifteen years. However, their popularity (and the annual number of small spacecraft launches) hasnotbeensignificantuntil2013,thereforearobustmarketofsmalllaunchershasnotstillyet developed. Asthecapabilitiesofsmallspacecraftareincreasing, theyarestartingtodrivethe demandinthemarket. Thissectionsummarizesthecurrentlaunchvehiclesthathaveoperated since2000(orplantooperateinthenearfuture)toserveasdedictedlaunchersforthesesmall spacecraft,andTable10.2summarizesprimarylaunchers.

Pegasus: ThePegasus(Figure10.1),anair-launchedvehiclebuiltbyOrbitalSciences,isasmall- tomedium-liftlauncherthathasaheritageofsuccessfullaunchessince1996.Thesystemisableto deliver 450 kg to LEO with three solid stages.Different variants of the vehicle have a flight history of fortytwomissionsbetweensince1990,thirtysixofwhicharefullysuccessful.Therocket’svariant carried NASA Interface Region Imaging Spectrograph (IRIS) mission (183 kg) in June 2013.There aretwoPegasuslaunchesonthemanifestdedicatedforsmallspacecraftsin2016and2017. The firstmissionwillcarryeightCycloneGlobalNavigationSatellites(CYGNSS)(20 kgeach)tospace, andthesecondmissionwillinjecttheIonosphericConnectionExplorer(ICON)(279 kg)intoorbit (Clark,2014;OrbitalATK,2015b).ThesystemisoperationalwithaTRLof9.

Figure10.1.PegasusLaunchSystem,mountedunderneathaLockheed1011jet.Imagecourtesyof OrbitalATK.

Minotaur: Thelauncherfamily,alsoproducedbyOrbitalSciences,isanothermedium liftvehiclecurrentlyavailable.Outoftheentirefamily,theMinotaurI(Figure10.2)ismoresuited tosmallspacecraftsinceithasthelowestpayloadcapacityandcost. Thevehiclehasconducted elevenmissionswitha100%successrate,deliveringsixtytwospacecraftintoorbit.TheMinotaur IisdesignedwithfoursolidstagesfromaconvertedMinutemanballistic. Withapayload capacityof580 kgtoLEO,thevehiclecancarrymanysmallspacecraftintoorbitinasinglemission.

115 Figure10.3. VLS-1onthelaunchpadbe- Figure10.2.MinotaurILaunchVehicle.Im- foretheexplosionin2003.Imagecourtesyof agecourtesyofNASA. IAE/FAB.

On20November2013,aMinotaurIplacedtwentyeightsmallspacecraft(allbutonewerecubesats) andtwoexperimentpackagesintoorbit. Alargermemberofthefamily,theMinotaurV,isafive-stagevehicleandisdesignedtoplace upto630 kgofpayloadintoaGTO,or340 kgonatrans-lunartrajectory. Thevehiclemadeits maidenflightin2013carryingtheLunarAtmosphereandDustEnvironmentExplorer(LADEE) (383 kg) spacecraft.However it has not yet carried any orbital payload (Orbital ATK, 2015a).Since thesystemisoperational,theTRLis9.

SuperStrypi: Anothervehicleonmarketwhichcanbecalledasadedicatedsmallspacecraft carrierisSuperStrypi.Thisvehicle,alsoknownastheLowEarthOrbitingNanosatelliteIntegrated DefenseAutonomousSystem(LEONIDAS),isathree-stagelauncherdevelopedjointlybytheIn- novativeSatelliteLaunchProgramattheUniversityofHawaiiincooperationwithSandiaNational LaboratoriesandAerojet.Thevehiclehasasimple,rail-launched,spin-stabilizeddesignwithfixed finsandcoldgasattitudecontrolsystemforsecondstageandthirdstagemaneuveringandorbital insertion. Payload-to-orbitisabout275 kgto400 kmSunsynchronousorbitfromPacificMissile RangeFacility(PMRF)inKauai,Hawaiiandabout320 kgto400 kmequatorialorbitfromUSeast coastlaunchsites(AerojetRocketdyne,2015).Theunsuccessfulfirstflightofthesystemoccurred inOctober2015. TheTRLofthesystemis6. Thesystemisdesignedtointegratepayloadswith theNASAAmesNanosatelliteLaunchAdapterSystem(NLAS).

10.2.3 LaunchersWhichOfferRide-SharingOpportunitiesforSmallSpacecraft Asseenfromtheprevioussection,therearecurrentlyonlyafewlaunchersthatallowssmallspace- crafttorideasprimarypayloads.Themajorityofsmallspacecraftarecarriedtoorbitassecondary payloads,utilizingtheexcesslaunchcapabilityofthelargerrockets.Standardride-sharingconsists ofaprimarymissionwithsurplusmass,volume,andperformancemarginswhichareusedbyother spacecraft. Thesespacecraftarealsocalledsecondarypayloads,auxiliarypayloadsorpiggyback

116 Table10.1.PrimaryPayloadLaunchers

Product Manufac- LEO Numberof Description Launch Status turer Capacity Secondary Method Payloads Launched ToDate Minotaur1 Orbital 580 kg 4-stage,all >46 Land TRL9 ATK solid Minotaur5 Orbital 630 kg(to 5-stage,all 0 Land TRL9 ATK GTO) solid Pegasus Orbital 450 kg 3-stage,all 0 Air TRL9 ATK solid Super University 275 kgto 3-stage,all 0 Land TRL6 Strypi ofHawaii, 400 km solid Sandia SSO, National 320 kgto Laborato- 400 km ries, equatorial Aerojet spacecraft. Forbotheducationalandcommercialsmallspacecraft,severalinitiativeshavehelped providetheseopportunities. NASA’scubesatlaunchinitiative, forexample, hasprovidedrides toanumberofschoolsandNASAcenters. AsofAugust2015,thirtysevencubesatshavebeen launched,andsixteenmorearescheduledtogointospaceinthenexttwelvemonthswithinthis program(NationalAeronauticsandSpaceAdministration,2015b). Fromthesecondarypayloaddesigners’perspective,ride-sharearrangementsprovidefarmore optionsforimmediatelaunchathighTRL.Sincealmostanylargelaunchercanfitasmallpayload withinitsmassandvolumemargins,thereisnoshortageofoptionsforcraftthatwanttoflyasa secondarypayload.Ontheotherhand,therearedownsidesofhitchingaride.Thelaunchdateand trajectoryisdeterminedinfavoroftheprimarypayloadandthesmallercrafthavetotakewhatis available. Alsoinsomecases,theyneedtobedeliveredtothelaunchoperatorandbeintegrated ontheadapterweeksbeforetheactuallaunchdate. Generallythesecondarypayloadsaregiven permissiontobepoweredonanddeployedoncethelaunchvehiclehassuccessfullycompletedits primarymission. Thissectionliststhelaunchvehicleswhichofferedride-shareopportunitiesto smallspacecraftinthelastfifteenyearsandTable10.2summarizestheselaunchvehicles.

Antares: The(Figure10.4),knownasTaurusIIduringitsearlydevelopment,madeits inauguralflighton21April2013.Itcarriedfourcubesats(threefromNASAAmesand oneDovefromPlanetLabs).Afterthisdemonstrationflight,thevehiclehadthreesuccessfulflights toISSwithitsprimarypayloadCygnusCargoVehicleonboard. Thevehiclehadacatastrophic failureduringitslaunchon28October2014withArkyd-3spacecraft(PlanetaryResources)and aRACEcubesat(NASAJPL/UT-Austincubesat)onboard. Thenextlaunchofthevehicleis plannedfor2016.Sincethesystemisoperational,theTRLis9.

117 Figure 10.5. 5. Image courtesy Figure10.4.Antares.ImagecourtesyofOr- of ESA/CNES/–Photo Optique bitalATK. VideoCSG.

Ariane5: Ariane5(Figure10.5)isaEuropeanheavyliftlaunchvehicletodeliverpayloadsinto geostationarytransferorbit(GTO)orLEO.AlthoughAriane5isaworkhorseforEurope,there havebeenveryfewsecondarymissionsinthepastatopthisvehicle.ThefirstexamplewasAmsat P3D,a400 kgamateurradiospacecraft, whichwasinjectedintohighlyellipticalorbitin2000. TheSMART-1spacecraft(367 kg)wasflownasasecondarypayloadintogeostationarytransfer orbitin2003andthentraveledtoorbittheMoonusingitsownpropulsionsystem. In2009,two demonstration spacecraft for the infraredwarning system (SPIRALE), each weighing 120 kg,hitched aridetoellipticalequatorialorbit. TheAriane5isabletocarryuptoeight100 kg(standard) payloadsorfour180 kg(banana)payloadsonitsASAP(ArianeStructureforAuxiliaryPayload) platform(Leschly,Sprague,&Rademacher,1999).Sincethesystemisoperational,theTRLis9.

Atlas&Delta: TheEvolvedExpendableLaunchVehicle(EELV)program’sboosters,theAtlas andDelta, havebeencommonsecondarylaunchersforsmallspacecraftprogramstodate. The EELVSecondaryPayloadAdapter(ESPAring)hasflowneverythingfromlargerpayloadslikethe NASALCROSS(LunarCraterObservationandSensingSatellite)missiontoseveralcubesatsin PolyPicosatelliteOrbitalDeployers(P-PODs). TheAtlasV(Figure10.6)candeliverfrom9,800 kgtoalmost19,000 kgintoa200 kmLEOorbit at28.7 inclinationdependingonconfiguration(UnitedLaunchAlliance,LLC,2015a). Starting withitsmaidenlaunchinAugust2002,thevehiclehashadanear-perfectsuccessrate.Thevehicle hadcarriedmorethanthirtysecondarypayloadstoorbittodate.Sincethesystemisoperational, theTRLis9. The DeltaII (Figure 10.7) can deliver from approximately 1,870 kg to 3,470 kg to LEO depending on configuration (, LLC, 2015b).In 2000 the 6kg Munin (Swedish Institute ofSpacePhysics), andin2003the64 kgChipsat(NASA)andthe28 kgXSS10(AFRL),were launchedatopaDeltaII.Alsoin2011,thevehiclecarriedfivecubesatsasapartoftheNASA’s ELANA program. Another member of the family, the Delta IV, can deliver from 9,200 kg to over

28,000 kgtoa200 kmLEOat28.7 inclinationdependingonconfiguration(UnitedLaunchAlliance,

118 Figure 10.6. Atlas 5. Image courtesy of Figure 10.7. Delta 2. Image courtesy of NASA. NASA.

LLC, 2015c).The vehicle carried AFRL’s 70 kg ANGELS spacecraft as a secondary payload in 2014. TheDeltaIVHeavyisthemostpowerfulmemberofthefamilywith29,000 kgcarryingcapacityto LEO. In 2004, the vehicle allowed a ride for AFRL’s two Nanosat-2 spacecraft (23 kg each). Since thesesystemsareoperational,theTRLis9.

Dnepr: The Dnepr had its first flight in 1999 and has had twenty successful launches since then.The baseline version can lift 3600 kg into a 300 km LEO at 50.6 inclination,or2300 kg toa300 kmSSOat98.0 inclination.ThisRussianvehiclehasbeenusedextensivelybysecondary payloadssinceitsfirstflights. Ithascarriedmorethan120smallspacecraft(200 kgorless)to date. DuringApril2007launch,thevehicleliftedthirteensmallspacecraft(eachlessthan35 kg) togetherwithone165 kgsatellite. InNovember2013,itcarriedthirtytwospacecraftintoorbit, thirtyofwhichweresatellitesweighinglessthan150 kg(including23cubesats). InJune2014, itcarriedthirtysevenspacecraftintoorbit,thirtysixofwhichweresatellitesweighinglessthan 185 kg (including twenty six cubesats).This launch is still the record for the most satellites orbited inasinglelaunch(excludingthepayloadscarriedtoISSviacargomissions). Sincethesystemis operational,theTRLis9.

Falcon9: TheFalconfamilyofrocketsfromSpaceExplorationTechnologies(SpaceX)isproving tobeanothervaluableassettothesmallspacecraftcommunity. SpaceX’sonlycurrentlauncheris theFalcon9(Figure10.8),atwo-stageLOX/RP-1vehiclecapableofliftingover13,000 kgtoLEO (SpaceExplorationTechnologiesCorp.,2015). SpaceX’scontractswithNASAtoprovidecargo services and eventually crewed missions to the International means those opportunities toride-sharewillcontinueintothefarfuture. Ofallthe19launchestodate,17havebeenfully successful.Although it is capable, has not been very active for carrying secondary payloads. Onlyduringitssecondmissionin2010,itliftedeightcubesatstogetherwithitsprimaryDragon payload. However,aboardtheDragonmodule,itcarriesmanycubesatstoISSwhichwerethen deployedintospacefromthedeployersatthestation. Sincethesystemisoperational,theTRLis 9.

119 Figure 10.8. Falcon 9. Image courtesy of Figure 10.9.H-IIA. Image courtesy of JAXA. SpaceX.

H-IIA/B: TheH-IIA/BaretwoJapaneselaunchsystems. TheH-IIA(Figure10.9)firstflew in2001andhasbeenlaunchedtwentyeighttimesbyOctober2015withasinglefailure. HII-B performeditsmaidenflightin2009andfivesuccessfullaunchessincethen. HII-Aisabletocarry 15000 kgtoLEOwhereasHII-Bcancarryupto16500 kgtothisorbit(JapanAerospaceExploration Agency,2015).Duringitslaunches,HII-Acarriedmorethantwentyfivesmallspacecraftintoorbit, seven of which were cubesats.HII-B did not directly injected any payloads to orbit yet, but it carried fourteencubesatsaboardtheHTVin2012,2013and2015;thesespacecraftweredeployedtheKibo moduleoftheISS.Sincethesystemisoperational,theTRLis9.

LongMarch: TheChineseLongMarchfamily(Figure10.10)hasnotbeenveryactiveforflying secondarypayloadstodate,howeverthenewmemberofthefamily,LongMarch6,liftedtwenty small spacecraft in September 2015, at weights ranging from 1.5 kg to 130 kg. Since the system is operational,theTRLis9.

Figure10.10. LongMarch. Imagecourtesy Figure10.11.Minotaur-C.Imagecourtesyof ofCALT. OSC.

120 Minotaur-C: Firstlaunchedin1994,Minotaur-C(Figure10.11))hassixsuccessfullaunchesand threefailurestodate.Thelastsuccessfulflightofthevehiclewasin2004.Nosmallspacecrafthad beencarriedbyMinotaur-Ctodate(oneofthefailedmissionshadthree1Ucubesatsonboard), butconsideringitscapabilitiesthevehicle’sTRLis9.

PSLV: ThePolarSatelliteLaunchVehicle(PSLV)(Figure10.12)isalaunchsystemdeveloped andoperatedbytheIndianSpaceResearchOrganisation.Thevehiclehadthirtylaunchessinceits maidenflightin1993,twentyeightofwhichwerefullysuccessful. Todate,thevehiclehascarried morethanthirtyfivesmallspacecraftassecondarypayloadsintoorbitinvarioussizes. Sincethe systemisoperational,theTRLis9.

Rockot: Rockot(Figure10.13isaRussianspacelaunchvehiclethatcanlaunchapayloadof

1,950 kgintoa200 kmLEOwith63 inclination. Thesystemhasitsfirstorbitalmissionin1994 followedbytwentyfivemissions,threeofwhichfullyorpartiallyfailed. Theonlymissionthat Rockotcarriedsecondarypayloadsonwasin2003,wherethevehicleliftedsixcubesatsandtwo small spacecraft of 65 kg.Since the system is operational, the TRL is 9.

Figure 10.12. PSLV. Image courtesy of Figure10.13.Rockot.Imagecourtesyofrus- ISRO. sianspaceweb.com.

Soyuz: Soyuz(Figure10.14)isaRussianlaunchvehiclefamilywithlargeheritageofmissions andcurrentlytheonlyman-ratedlaunchertotheISS.ThefirstSoyuzhaditsmaidenflightin1966. WiththeretirementofSoyuz-Uin2015,onlytwovariantsofthefamilyareinusefromnowon: Soyuz-FGandSoyuz-2.Dedicatedtomannedlaunches,sinceitsfirstflightin2001,Soyuz-FGhas onlyoncecarriedsecondarypayloads,deliveringthreesmallspacecrafttoorbitduringitsJuly2012 mission. Soyuz-2,ontheotherhand,hasliftedmorethantwentysecondarypayloads. Sincethe systemisoperational,theTRLis9.

Vega: Thefirst(Figure10.15)liftedoffon13February2012fromFrenchGuianacarrying eightsmallspacecraft(ALMASat1,e-st@r,,MaSat-1,PW-Sat,ROBUSTA,Unicubesat-GG, ). Thesecondmissionin2013carriedonecubesat(ESTCUBE1)andtwoothersmall spacecraft(Vnredsat1andProbaV).Thevehiclehashadthreemoresuccessfullaunches,butnone

121 Figure10.14. Soyuz. ImagecourtesyofAri- Figure10.15. Vega. ImagecourtesyofAri- anespace. anespace. ofthemcontainedsmallspacecraft.VegawilllaunchablockofnineSkyboxImagingspacecraftin 2016-2017(Foust,2015b).Sincethesystemisoperational,theTRLis9.

Table10.2:SecondaryPayloadLaunchers

Product Manufac- LEO Description Numberof Launch Status turer Capacity Secondary Method Payloads Launched ToDate Antares Orbital 5000 kg 2-stage,liq- >4 Land TRL9 Sciences uid+solid Ariane5 European 20000 kg 2-stage,all 4(?) Land TRL9 Space liquid Agency (+solid boosters) AtlasV United 19000 kg 2-stage,all >45 Land TRL9 Launch liquid Alliance (+solid boosters) DeltaII United 3470 kg 2/3-stage, >11 Land TRL9 Launch allliquid Alliance DeltaIV United 28000 kg 2-stage,all 1(?) Land TRL9 Launch liquid Alliance (+solid boosters)

122 Table10.2:SecondaryPayloadLaunchers

Product Manufac- LEO Description Numberof Launch Status turer Capacity Secondary Method Payloads Launched ToDate Dnepr Yuzhny 4500 kg 3-stage,all >122 Land TRL9 Machine- liquid Building Plant Falcon9 SpaceEx- 13150 kg 2-stage,all >19 Land TRL9 ploration liquid Technolo- gies H-IIA/B Mitsubishi 10000 kg/ 2-stage,all >31 Land TRL9 Heavy 16500 kg liquid Industries (+solid boosters) Long China 11200 kg 3-stage,all >22 Land TRL9 March Academy liquid ofLaunch Vehicle Technology Minotaur- Orbital 1320 kg 4-stage,all 0 Land TRL9 C Sciences solid PSLV Indian 3250 kg 4-stage, >52 Land TRL9 Space solid&liquid Research (+solid Organiza- boosters) tion Eurockot 1950 kg 3-stage,all >8 Land TRL9 Launch liquid Services Soyuz OKB-1, 7800 kg 3-stage,all >26 Land TRL9 TsSKB- liquid Progress (+liquid boosters) Vega European 1500 kg 3+1stage, >11 Land TRL9 Space solid&liquid Agency

10.2.4 DedicatedRide-Share Adedicatedride-shareisamissionwhereathirdpartyintegratorpurchasesanentirelaunchfrom alaunchvehicleproviderandthencontracts,manifests,andintegratesmultiplesmallspacecrafton thatmissionintheabsenceofaprimarypayload.Thisapproachremovestheconstraintofthesmall spacecraftproviderstoadheretoaprimaryspacecraftprovider’smissionrequirementsandprovides

123 thesmallspacecrafttheabilitytocontrolmoreofthemissionparameters. Dedicatedride-shareis expectedtoincreasethenumberandfrequencyoflaunchopportunitiesforsmallspacecraft,while atthesametime,providingthecostbenefitofsplittingthelaunchcostandcapacityonasingle mission. Untilnow,twocompanieshaveannouncedtheirdedicatedride-sharecontracts,butmore missionofthistypewillpossiblyfollow.

SpaceflightServices: ThecompanypurchasedaSpaceXFalcon9rocketforitsfirstdedicated ride-sharemissiontoSSOinlate2017. Thislaunchwillbenamedthe“2017SunSynchExpress”. Themissionmanifestincludesmorethantwentyspacecraftrangingfrom3Ucubesatsupto575 kg spacecraft(Foust,2015a).

TriSeptCorporation: TriSeptCorporationwillbeanotherintegratorofferingdedicatedride- sharemissionswithitsFANTM-RIDEsystem. Althoughthescheduleofthefirstdedicatedflight isnotofficiallyannounced,an2015reportstatesthatthismission,sRS-1,maybeplannedfor2017 (SecondaryPayloadRideshareAssociation,2015).

10.2.5 OrbitalManeuveringSystems Oneofthemaindisadvantagesofridingasasecondarypayload(evenonadedicatedride-share mission)istheinabilitytolaunchintoyourdesiredorbit. Theprimarypayloaddeterminesthe orbitaldestination,sothesecondarypayloadorbitusuallydoesnotperfectlymatchthecustomer’s needs. However,byusingaspacetug,secondarypayloadswillbeabletomaneuvermuchcloser intotheirdesiredorbits.

Figure10.16.SHERPA.ImagecourtesyofSpaceflightIndustries.

SHERPA: SHERPA(ShuttleExpendableRocketforPayloadAugmentation)(Figure10.16)isa free-flyingspacetug,whichisabletomaneuveratotalof1500 kgpayload,developedbySpaceflight Services.The system features five 61 cm diameter ports, each capable of carrying payloads weighing upto300 kg. ThesystemincludestheESPAringfromMoogCSAEngineering,theQuadPackcubesatde- ployer from Innovative SolutionsinSpace,LightBandasthe separation systemfornon-containerized

124 spacecraftfromPlanetarySystemsCorporation,launchvehicleseparationsystemfromRUAG,and commandanddatahandlingsubsystemfromAndrewsSpace.Thefirstmission,scheduledfor2016, isplannedtodelivereightyninepayloads(intotalover1200 kg)intoSSOatopaFalcon9vehicle. ToprovidethecapabilitytoperformLEOaltitudeshifts,ormaneuverstoageosynchronous transfer orbit and trans-lunar injection orbits,the upcoming variants of the system will incorporate a propulsion system, solar arrays, and an Attitude Determination and Control System.The propulsion 1 systemwillbeabletosupplyamaximumof2200 m s vfororbitchangemaneuvers. The solar arrays will be able to offer 50 W power to each of the five ports.The company is also planningtohavemultipleSHERPAringsonasinglelaunchvehicleinthefuture(EuropeanSpace Agency,2015b).

10.2.6 OrbitalandSuborbitalRides Beyondlaunchordeploymentofpayloadsintoorbit,thereareopportunitiesforcustomerswhowant toflytheirexperimentforashorterdurationonasuborbitalflightorwhowanttorecovertheir experimentafteritisexposedtothespaceenvironmentforaperiodoftime. Variouscompanies andsystemshavedevelopedtoservetheseneeds.

Nanoracks Internal Payloads: NanoRacks offers an in-orbit system that provides payload opportunities on the International Space Station using the cubesat form factor. The company hasdifferentmicrogravityexperimentopportunitiesattheU.S.NationalLabontheISSsuchas Nanohubs,NanoRacksPlatform-3(Figure10.17),NanoRacksCentrifuge,NanoRacksMicroscope, andNanoRacksMixStix.Eachofthesesystemsofferdifferenttestopportunitiesundermicrogravity conditions(NanoRacksLLC,2015c).

NanoracksExternalPlatform(NREP): Thissystemisabletoaccommodateuptonine4U cubesat-sizepayloadsoutsideoftheInternationalSpaceStation,withdirectexposuretothespace environment,forastandardmissiondurationoffifteenweeks. AttachedtoISS,thesystemallows forhighdatarates,accesstostationpoweranddata,payloadreturn,riskmitigation,andfrequent serviceforitscustomers. Itwillbeusedforvariousapplicationssuchassensortesting,biological testing,flightqualification,andmaterialstesting. TheNREP(Figure10.18)waslaunchedtothe ISSinAugust2015,andisscheduledtobeoperationalstartingearlyspring2016(NanoRacksLLC, 2015b).

Figure10.17. NanoRacksPlatform3image Figure10.18. NanoRacksExternalPayload withcentrifugehousing. Imagecourtesyof Platform.ImagecourtesyofNanoracks. Nanoracks.

125 Figure10.19.TerrestrialReturnVehicleConcept.ImagecourtesyofIntuitiveMachines.

TerrestrialReturnVehicle(TRV): TheTerrestrialReturnVehicle(Figure10.19)isacom- mercialservicebeingdevelopedbyIntuitiveMachinesandNASAandaimstodeliverpayloadsfrom theISSbacktoEarth.ThesystemisdesignedtobestoredinthehabitablevolumeoftheISSuntil required.Whenloadedupwithitscargo,itwillbedeployedfromtheJapaneseExperimentModule (JEM)airlockandmakeacontrolledreentrybyusingitsguidanceandpropulsionsystems.Finally thecraft’sairfoilisdeployedandittouchesdownatitsdesignated. Thefirstre-entry flightoftheTRVfromtheISSisscheduledfor2016(IntuitiveMachinesLLC,2015).

10.2.7 DispensersforCubesats Thecubesatformfactorisaverycommonstandardforspacecraftsmallerthan10 kgandthere existwellestablisheddispensersandadaptorsforthem. Thefocusofthissectionisonintegration systemsconformingtothecubesatarchitecture.ThedispensersaresummarizedinTable10.3)

P-POD: Thecubesatformlendsitselftocontainerbasedintegrationsystems. Whileseveral systemsexist,thestandarddeployeristhePolyPicosatelliteOrbitalDeployer,orP-POD. TheP-POD(Figure10.20)isarectangularaluminumcontainerwhichcanholdupto100 ⇥ 100 340 mmofdeployablespacecraft,eitherthree1Ucubesatsorone3Ucubesat,oramixof ⇥ intermediatesizes.ThecontaineractsasaFaradaycage,sohostedpayloadsmeetelectromagnetic compatibility(EMC)standards. Deploymentisachievedbyapusherplateandspringejection system. ThemaindriverspringisalignedwiththecentralaxisoftheP-POD.Ifmorethanone spacecraftisloaded,additionalspringplungersplacedbetweencubesatsareusedtoprovideinitial separationbetweenpayloads.TheinteriorisanodizedwithaPTFE-impregnatedsolutiontoensure smoothdeployment. ThetubulardesignoftheP-PODpreventsrotationofthecubesatsduring 1 ejection,ensuringlineartrajectories. Theexitvelocityofthecubesatisdesignedtobe1.6 m s , thoughthecentralspringmaybereplacedtoachievedifferentexitvelocities. TypicallyP-PODs areconnectedtoalargersecondarypayloadinterfaceandnotdirectlytothelaunchvehicle. P-POD,withTRL9,hadanextensiveheritageonseverallaunchvehicles(AtlasV,DeltaII, TaurusXL,MinotaurI&IV,Falcon1&9,Vega,Dnepr,Rokot)withthedeploymentofoverone

126 Table10.3.Smallspacecraftdeployers

Product Manufacturer Status P-POD Spaceflight,Inc. TRL9 T-POD UniversityofTokyo TRL9 X-POD UTIASSpaceFlight TRL9 Laboratory ISIPOD ISIS TRL9 J-SSOD JapanAerospaceExploration TRL9 Agency(JAXA) RocketPOD EclipticEnterprises NLAS NASAAmesResearchCenter TRL9 NPSCul NavalPostgraduateSchool TRL9 CanisterizedSatellite PlanetarySystems TRL? Dispenser(CSD) Corporation AFTBulkheadCarrier UnitedLaunchAlliance TRL9 C-adapterplatform UnitedLaunchAlliance TRL9

hundredcubesatswith100%successrate(Puig-Suari,2015).

NanoRacksCubeSatDeployer(NRCSD): Nanorackscubesatdeployer(Figure10.21)isa systemtodeploycubesatsintoorbitfromtheJapaneseExperimentModuleofInternationalSpace Station. TheNRCSDisarectangulartubethatconsistsofanodizedaluminumplates,baseplate assembly,accesspanels,anddeployerdoors.TheNRCSDdeployerdoorsarelocatedontheforward end,thebaseplateassemblyislocatedontheaftend,andaccesspanelsareprovidedonthetop. Thecubesatsareejectedusingaspringandplungercombinationattherearofthedeployer.Each NRCSDiscapableofholding6Uofcubesatsandthesystemisabletodeploy48Uduringafull airlockcycle(NanoRacksLLC,2015d;NationalAeronauticsandSpaceAdministration,2015a).

Figure10.20. P-POD.Imagecourtesyof Figure10.21. NanoRackscubesatDeployer. CaliforniaPolytechnicStateUniversity. ImagecourtesyofNanoracks.

127 Figure 10.23. NLAS. Image courtesy of Figure10.24. Cubestack. Imagecourtesyof NASAAmesResearchCenter. MOOGCSAEngineering,LoadPath.

CanisterizedSatelliteDispenser(CSD): TheCanisterizedSatelliteDispenser(Figure10.22) is adeployment mechanism forsmall secondary or tertiary payloads developedby Planetary Systems Corporation.It supports 3U, 6U, 12U, and 27U form factors within a range of 1-30kg (Planetary SystemsCorporation,2015).

NanosatelliteLaunchAdapterSystem(NLAS): NLAS (Figure 10.23),developed by NASA Ames Research Center and theOperationallyResponsiveSpaceOfficeoftheUnitedStates AirForce,isasecondarypayloadadaptersystemaswellasa deployer.Itiscomposedofa6Udeployer,anadapterstructure andasequencer. TheNLASadapterstructureisabletode- ploy24Uofcubesats.Thesystemisdesignedtoaccommodate spacecraftmeasuring1U,1.5U,2U,3Uand6Ufordeployment intoorbit. Eachdispensercanaccommodateatotalpayload Figure 10.22. Canisterized Satel- weightofupto14 kg. Toincreasethenumberofsecondary liteDispenser. Imagecourtesyof payloads,multipleNLASwaferscanbestackedonthelaunch PlanetarySystemsCorporation. vehicle.

Cubestack: CubeStack(Figure10.24),developedbyMoogCSAEngineeringandLoadPathLLC, issimilartotheNASAAmesNanosatelliteLaunchAdapterSystem(NLAS)tolaunchcubesatsina waferconfiguration.LikeNLAS,CubeStackaccommodateseight3Udispensers,four6Udispensers, or other combinations of 3U and 6U dispensers. CubeStack is compatible with the Minotaur, ,Taurus,PegasusandFalconlaunchvehicles. ThedispenserwasusedduringtheORS-3 missioninNovember2013(MoogInc.,2015).

ESPASix-UMount(SUM): TheESPASix-UMount(Figure10.25),developedbyMoogCSA Engineering, mountsapairof3Ucubesatsorasingle6UcubesatonanESPAringport. The cubesatsaretertiarypayloadsthatsharetheportwithasecondaryspacecraftanddeployafter secondaryseparation.One6Uortwo3Uscanbedeployedfromeachport.UptosixSUMscanbe includedonanESPAring.

FANTM-RiDE: TheFANTM-RiDE(Figure10.26)smallspacecraftdispenserisdevelopedby TriSeptCorporationandMoogCSA.ItaimstodeploycubesatsfromanESPAringcompatible volume(610 610 710 mm).Both3Uand6Uspacecraftcanbeattachedalonginteriordispenser ⇥ ⇥

128 walls,leavingspaceforacentralspacecraft. Itiscompatiblewithmultiplevehiclesandadapters. Itisdesignedtobemasstuned,meaningthatitmaintainsthesamemasspropertiesregardlessof itscontents.Thispropertyallowsforlatescheduleadditionsorremovalsfromthelaunchschedule without affecting coupled load analyses. The integration services of the system is provided by TriSeptCorporation(Lim,2015).

Figure 10.26. FANTM-RiDE. Image cour- Figure10.25.ESPASUM.Imagecourtesyof tesy of MOOG CSA Engineering, TriSept MoogCSAEngineering. Corporation.

Rail-POD: TheRail-POD(Figure10.27)isadispenserdevelopedbyTyvaktodeploy1U,3U and6Uspacecraft,withasmallermasspenalty.Thusitistargetedatsmallerlaunchvehicleswith tightermassmargins.

RocketPod: EclipticEnterprisesdevelopson-boardimagingsystemsforusewithrockets,space- craft,andotherremoteplatforms. However,thecompanyalsoprovidescost-effectivespace-access solutionsforsmallspacepayloads. RocketPodcarriescubesatsecondarypayloadsontheexterior ofrockets. Thedevicemayalsobemountedontheinteriorofthepayloadfairingoronadapter ringsuchasESPAorCAP.Ejectionisachievedviaaspring-loadedmechanismliketheP-POD dispensers.

JapaneseExperimentModuleSmallSatelliteOrbitalDeployer(J-SSOD): TheJ-SSOD wasthefirstdispensertodeploysmallspacecraftfromtheInternationalSpaceStation. Itholds uptothree1Ucubesatspercase,sixintotal,thoughothersizesupto550 550 350 mmsize ⇥ ⇥ mayalsobeused. Thesystemisabletodeploy6Uduringafullairlockcycle. Thefirstuseofthe systemwasperformedinOctober2012,deployingtheRAIKO,FITSAT-1,WEWISH,NanoRacks cubesat-1/F-1andTechEdSatcubesats.

NavalPostgraduateSchoolCubesatLauncher(NPSCuL): TheNPSCuL(Figure10.28) isanadapterthatcanattachmultipleP-PODstoasingleESPAslot. Therearetwovarietiesof NPSCuL, Standard and Lite.NPSCuL-Standard has ten slots for 3U or 5U dispensers.Additionally 6Udispenserscanbeaccommodatedbyusingtwoadjacent3Uslots.NPSCuL-Litehaseightslots whichcansimilarlyaccommodate3Uor6Udispensers.

129 Figure 10.27. Tyvak 6U Rail-POD Dis- Figure 10.28. NPSCuL and NPSCuL- penser. Image courtesy of Tyvak Nano- Lite. ImagecourtesyofNavalPostgraduate SatelliteSystemsLLC. School.

ISIPOD: ISIPOD(Figure10.29),developedbyISIS,isalaunchadapterforsmallspacecraftthat adherestothecubesatinterfacestandard.Thesystemisabletodeploy1U,2Uand3Ucubesats.

XPOD: X-POD(Figure10.30),developedbyUniversityofTorontoInstituteforAerospaceStud- iesSpaceFlightLaboratory,isacubesatdeployerfor1U,2U,and3Ucubesats.Themaidenflight ofthesystemwas2008onaPSLVlaunch.

Figure 10.29. ISIPOD. Image courtesy of Figure 10.30. XPOD. Image courtesy of ISIS. UTIAS/SFL.

10.2.8 OtherAdaptersforSmallSpacecraft Non-cubesatpayloads havefeweravailableintegrationsystemssinceintegrationsystemsinthisclass areusuallycustomdesignedforspecificmissions.Thissectionliststheavailablelargeradaptersfor smallspacecraft.

EELV Secondary Payload Adapter (ESPA): The ESPA ring (Figure 10.31) is a multi-payload adapter for large primary spacecraft and six auxiliary spacecraft with a twenty four inch port diameterdevelopedbyMoogCSA.Itcansupportsixpayloadsupto318 kgeach. Itwasused forthefirsttimefortheSTP-1missionin2007. TheLRO/LCROSS(2009),OG2Constellation1 (2014)andAFSPC-4(2014)andOG2Constellation2(2015)missionsfollowed.TheESPAGrande (Figure 10.32) is a fifteen-inch version of the ESPA adapter.It can carry four 181kg payloads.

130 Figure10.31.ESPARing.Imagecourtesyof MoogCSAEngineering. Figure 10.32. ESPA Grande Ring. Image courtesy of Moog CSA Engineering, Orb- comm.

AFTBulkheadCarrier(ABC): WhenredesigningtheAtlasVupperstagepressure system,theOfficeofSpaceLaunch(OSL)replacedthreetankswithtwolargertanksleaving avolumeof508 508 762 mmattheaftendoftheupperstage. OSLseizedtheopportunityto ⇥ ⇥ convertthisexcessvolumeintosecondarypayloadspace. Thislocationoffersseveraladvantages despiteitsproximitytotheupperstagethruster.Inparticular,thesecondarypayloadiscompletely isolated from theprimary,therebyrelaxing electromagnetic interferenceandcontamination concerns of the primary payload.The adapter carries up to 80kg by utilizing the plate and struts previously usedtohousetheheliumtank.ABC(Figure10.33),whichmadeitsfirstflightin2010,canlaunch uptotwentyfourcubesatstoorbit.

Figure10.33.ABC.ImagecourtesyofNationalReconnaissanceOffice.

C-AdaptorPlatform(CAP): TheC-AdapterPlatform(Figure10.34),developedbyAdaptive Launch Solutions,is a cantileveredplatform capable of carryingup to 45 kg in a volumeof230 ⇥ 310 330 mm. The platform is attached to a C-adapter ring via a 203 mm clampband and is ⇥ compatiblewithAtlasVandDeltaIVlaunchvehicles.C-rings,mountedintheforwardadapterof

131 theCentaurupperstage,areessentiallylargealuminumringsusedasaninterfacebetweenpayload integrationsystemsandgroundsupportequipment. FourCAPscanbeintegratedperC-adapter. Each cap has a carrying capacity of 90 kg.The first flight of the system was in 2010.

AQUILA: TheAquilaadapter(Figure10.35),developedbyAdaptiveLaunchSystems,isableto support a primary payload mass of up to 6350kg.It can be used with and Delta IV launch vehicles.

Figure10.35. AQUILA.Imagecourtesyof Figure10.34.CAP.ImagecourtesyofULA. ULA.

10.2.9 SeparationSystems

While many separationsystems like the POD deployers make use ofa compressed spring mechanism, bandsystemsarealsoquitecommon.LightbandandMarmanclampseparationsystemsarewidely used,particularlyforlargerspacecraft.Lightband(Figure10.36)isamotorizedseparationsystem thatrangesfrom203 mmto965 mmindiameter. SmallerLightbandsystemsareusedtodeploy ESPAclassspacecraft,whilelargervariationsmaybeusedtoseparatetheentireESPAringitself. Lightband’smotorizedseparationsystemeliminatestheneedforpyrotechnicseparation,andthus deploymentresultsinlowershockandnopost-separationdebris.Marmanbandseparationsystems useenergystoredinaclampband,oftenalongwithsprings,toachieveseparation. TheMarman bandistensionedtoholdthepayloadinplace.SierraNevadaproducesaMarmanbandseparation systemknownasQwksep,whichusesaseriesofseparationspringstohelpdeploythepayloadafter clampbandrelease. Dependingonthelaunchvehicle,separationsystemsmayalreadybeinplace andavailabletosecondarypayloads.

10.3 OnTheHorizon

10.3.1 LaunchIntegrationServices

AU Launch Services: AU Launch Services, found in 2015, is an Adelaide-based Australian consultinggroupthatworksasanintegratorbetweencubesatmanufacturersandoverseaslaunch providers.

132 Figure10.36.MkIIMotorizedLightband.ImagecourtesyofPlanetarySystemsCorporation.

10.3.2 DedicatedLaunchersforSmallSpacecraft Asthecapabilitiesandnumbersofsmallspacecraftincrease,thetraditionalride-shareorpiggyback approachesbecomelessandlessconvenient.Thesurgeindemandforlaunchopportunitieshasalso stimulatedthedevelopmentofdedicatedlaunchersforthem.AlthoughmanyarestillinlowTRLs, thereareatleasttwentyfivenewlauncherprojectsstartedintherecentyearswhichaimtocarry smallspacecraft. Similartothestateoftheartsection,thelaunchvehicleswithLEOcapacityof 500 kgandlessareconsideredinthissectionofthereportandaresummarizedinTable10.4

AustralLaunchVehicle-2: TheAustralLaunchVehicle(ALV)(Figure10.37andFigure10.38) isapartiallyreusablesmallspacecraftlaunchvehiclefamily.Theprojecthasbeenindevelopment since2011. TheALVprojectconsistsofthedevelopmentoffourprogressivelymorecomplexand expensivevehicles,startingfromALV-0withALV-3beingthecommerciallaunchvehicle.TheALV isplannedtolaunchverticallyandafterstageseparationwilldeployaswiveling,obliquewingand anose-mountedpistonengine,flyingbacktothelaunchsiteasalargeUAV.TheALV-2design

Figure10.37.AustralLaunch VehicleConcept.Imagecour- Figure10.38.AustralLaunchVehicleConcept.Imagecour- tesyofHeliaqAdvancedEn- tesyofHeliaqAdvancedEngineering. gineering.

133 ismodularbyutilizingvariouscombinationsofboostersandupperstages,itwillbecapableto accommodate 3U (w/ one booster) to 27 U (with 6 boosters) payloads.The payload accommodation willconformtothePlanetarySystems’CanisterisedSatelliteDispenser(CSD)specifications.First flight of the ALV-0 small-scale test vehicle was held in December 2015. The ALV-2 vehicle is currentlyintheconceptualdesignphaseandthefirstorbitalflightofthisversionisexpectedin 2018-2019.Thecompanyisrunningseveralotherprojectsinparallelincludingthedevelopmentof theLOX/Methanerocketengines. Firsttestfiringoftheupperstageengineisplannedfor2016 (HeliaqAdvancedEngineering,2015).

AuroraS: AuroraisafamilyoflaunchvehiclesunderdevelopmentbyConspireTechnology,an Alabamabasedcompany, foundedin2013. Thefamilyisplannedtoconsistofthreemembers: AuroraS,AuroraX,andAuroraAir. AuroraSisthetwo-stagesmalllaunchvehiclecurrently being developed to launch small spacecraft to orbit, whose first stage will be an air-breathing engine.The system is planned to reach hypersonic velocities below 30 km altitude with no on-board oxidizer. AuroraSdevelopmentiscurrentlyinthedesignanddevelopmentphaseonthesystem level.Propulsionsystemhotfiringtestsareplannedbetween2017and2019,andtheflighttesting isestimatedtobeginin2022.Thecompanyestimatestobeginlaunchservicesin2025foralaunch costof$4M.ThetechnologiesdevelopedanddemonstratedthroughAuroraSwillthenbescaled upformorepowerfulvehicles,AuroraXandAuroraAir,withgreaterpayloadcapacity.TheTRL ofthesystemis2-3(ConspireTechnologyInc.,2015).

Figure10.39.BloostarConcept.ImagecourtesyofZero2Infinity.

Bloostar: Zero2Infinity’sBloostarlaunchvehicle(Figure10.39)usesaballoonasafirst-stage.A heliumballoonwillbelaunchedfromashipandwillcarrythesystemtoover20 kmaltitude,where the rocket is ignited.The system will be able to insert a 75kg payload into a 600km polar orbit. Payloadaccommodationcanhostasinglespacecraftormultiplepayloads. Thecompanystates thatintheeventofalaunchabort,thehigh-altitudeballoonwillbedetachedfromtheplatform andtheplatformwilldescendwithaparachute(Zero2Infinity,2015b). Thesystemwilluseliquid oxygen and liquid methane as propellants.The first stage will carry the system to 250 km altitude

134 Figure10.40.DNLVConcept.ImagecourtesyofIndependence-XAerospace.

1 andaninertialspeedof3.7 km s . Afterthesecondstageoperation,thesystemwillachievean 1 altitudeof530 kmwithvelocityof5.4 km s . Thethirdandfinalstagewillfireatleasttwice withacoastperiodtoachievethefinalorbit(Reyes,2014). Preliminarytestingofthesystemhas already started.In September 2013, an inflatable flexible pressurized vehicle flew to 27 km under a balloon.Atestversionofthepressure-fedlighthydrocarbon/oxygenenginewasfiredinSeptember 2014.Theenginewasignitedseveraltimesandthecoolingsystemfunctionedwell.Thefirstsmall- scaleprototypelaunchisplannedfor2016(Zero2Infinity,2015b). TheTRLofthesystemis5. Zero2Infinityexpectsthesystemtobeoperationalin2018(Zero2Infinity,2015a).

CubeCab: CubeCabisanewcompanywhichaimstoprovidelaunchesspecificallyfor1Uand 3U cubesats to 400 km polar orbit. The system will be released from an F-104 jet. The company estimatesitsfirstlaunchdateinlate2017or2018. Thecompanyiscurrentlymanufacturingtheir components,thereforetheTRLofthesystemis4(Cubecab,2015).

Dedicated Nano Launch Vehicle (DNLV): The DNLV (Figure 10.40) is a launch vehicle underconsiderationbyIndependence-XAerospacelocatedinMalaysia. Thevehicleisplannedto carrya100 kgpayloadtoa500 kmSSO.Thefirstflightofthesystemisplannedfor2019. The TRLofthesystemis2(Yamin,2015).

Demi-Sprite: The Scorpius Space Launch Company (SSLC),thesistercompanyofMicrocosm,isdeveloping theDemi-Sprite(Figure10.41)aspartofitslineofmodu- larScorpiusvehicles.TheDemi-Spriteisoneofthesmall- estvehiclesintheline. Thelauncherwillbeabletoput 160 kgpayloadsintoLEO.Itconsistsofacorestagesur- roundedbysixidenticalpodsthatcomposefirstandsec- ondstages.Keytothevehicle’ssimplicityistheabsence ofturbopumpsforpressurizingitsLOXandRP-1pro- pellants.Theonlymovingpartsonthevehiclearevalves andgimbals.Thesystemaimstoprovidestruelaunch-on- demandservicewithin8hoursofarrivalofthepayloadat thelaunchsite(ScorpiusSpaceLaunchCompany,2015). Thecoretechnologieshavebeenvalidatedintwosuccess- fulsuborbitalflightswiththeScorpiusSR-SandSR-XM vehicles,thereforetheTRLofthesystemissetto5. Figure10.41. Demi-SpriteMode. Im- DreamChaser: TheDreamChaser(Figure10.42),de- agecourtesyofMicrocosmInc. veloped by SierraNevada Corporation SpaceSystems,has

135 beendevelopedforbothcrewandcargotransportationtoLEO.Thevehiclewillalsobeableto supportsatelliteservicinganddeploymentmissions.Theorbitaltestflightofthevehicleisplanned for2017.

Figure10.42.DreamChaserConcept.ImagecourtesyofSierraNevadaCorporation.

Electron: RocketLabLtd.isaNewZealandbasedcompanythatdesignsandfabricatessounding rockets,smallspacecraftlaunchsystems,andpropulsionsystems. Thecompany’sElectronlaunch vehicle(Figure10.43)isatwo-stagesystemwhichusesturbo-pumpedLOX/RP-1engines. The pumpsarebattery-poweredelectricmotorsratherthanagasgenerator,expander,orpreburner. The system is designed to lift 150 kg to 500 kmSSO and the company states itcan be tailoredto circularorellipticalorbitsbetween45 and98 inclination. ThefirstElectronlaunchisplanned for2016,withcommercialoperationsscheduledtobeginin2017. Thecompanyplanstoprovide onehundredannuallaunches(RocketLabLtd,2015). Electronisoneofthethreesystemswhich hasawardedbyNASA’sVentureClassLaunchServices(VCLS)forcubesatmissionstoLEO.The vehicle’sdemonstrationflightunderthisprogramisexpectedinearly2017.

Figure10.43.ElectronModel.ImagecourtesyofRocketLab.

FireflyAlpha: FireFlySpaceSystemsisaprivateaerospacefirmbasedinAustin,Texasthat intendstolaunchsmallandmedium-sizedspacecrafttoorbit. Theirdesign,FireflyAlpha(Fig- ure10.44)isanall-compositevehicledesignedtolaunch400 kgpayloadstoLEOor200kgpayloads toSSO.Thesystemispropelledwithtwonearly-identicalliquid(LOX/methane)stages.Thefirst stagecontainstenidenticalenginecores,whichfacilitatesmassproduction(FireFlySpaceSystems, 2015).Thevehicleisslatedforitsfirstorbitallaunchin2018whichwillbefollowedbyfourmore.

136 Thecompanyaimstohavetwelveadditionallaunchesin2019. Theupgradedversion,Firefly- (FireflyBeta),tobeintroducedatalaterdate,willusetwostrap-onboosters. FireflyAlphais oneofthethreesystemswhichhasawardedbyNASA’sVentureClassLaunchServices(VCLS)for cubesatmissionstoLEO.

Figure10.44.FireflyAlphaConcept.ImagecourtesyofFireflySpaceSystems.

GOLauncher2: GOLauncher2(Figure10.45),developedbyGenerationOrbitLaunchServices, isanairlaunchedtwo-stagerocketsystemusingLOX/RP-1aspropellants. Thesystemwillbe capableofplacingpayloadsofupto45 kgintoLEOat0 to98.7 inclination. Thesystemusesa Gulfstreambusinessjettocarryitsrocketupintohighaltitudes. Adateforthefirstlaunchhas notbeensetyet(GenerationOrbitLaunchServices,Inc.,2015;Henry,2015).

Figure 10.45. GOLauncher System mounted underneath a Gulfstream jet. Image courtesy of GenerationOrbit.

Haas2C: The2Claunchvehicle(Figure10.46),currentlyunderdevelopmentbyArcaSpace Corporation,isatwo-stagesystembothfueledwithliquidoxygenandkerosene.Thecompanywas originallyestablishedin1999asanon-profitorganizationin.In2004,aspartoftheAnsari X-PrizeCompetition,itsuccessfullylauncheditsfirstrocket. ARCAselectedSpaceportAmerica astheirlaunchsiteandlaunchactivitiesarescheduledtostartin2016(ArcaSpaceCorporation, 2015;SpaceDaily,2015).

Figure10.46.Haas2CSystem.ImagecourtesyofArcaSpaceSorporation.

137 LauncherOne: VirginGalactic’sLauncherOne(Figure10.47)developmentbeganinmid-2012. Thesystem,oncereleasedfromitscarrierBoeing747aircraft,willusetworocketenginesforits orbital flights: “NewtonThree” main stage engine, and “NewtonFour” upper stage engine. The companyhasalreadyperformeda90secondhotfiringoftheNewtonThreeengine.VirginGalactic recentlyincreasedthelaunchcapacityofthesystemto400 kgtoLEOand200 kgtoSSO(Virgin Galactic,2015). LauncherOneisoneofthethreesystemswhichhasawardedbyNASA’sVenture ClassLaunchServices(VCLS)forcubesatmissionstoLEOandthecompanyexpectstobegin orbitalflighttestsby2017(Foust,2015c).

Figure10.47.LauncherOne.ImagecourtesyofVirginGalactic.

LynxMarkIII: XCORAerospacedevelopstheLynxfamilyofvehicles.Lynx(Figure10.48)isa piloted,two-seat,fullyreusableliquidrocket-poweredvehiclethattakes-offandlandshorizontally. TheLynxMarkIIIsystemisanadvancedversionofthissystemwhichwillcarryanexternaltop- mounteddorsalpodthatcanholdupperstagescapableofinsertingasmallspacecraftintoLEO.

Thepodwillbeabletodelivera10-15 kgpayloadto400 kmcircularorbitat28 inclination. ThecompanyisplanningtoinitiateflighttestsforLynxMarkIprototypein2016. Several technologiesforMarkIIIwillbedemonstratedduringthesetests.SpecificallyforMarkIII,analysis andexperimentalresultsverifyingkeypredictionshavebeenconducted,thereforetheTRLofthe systemis3(Papadopoulos,2015).

Figure10.48.LynxMarkIIIConcept.ImagecourtesyofXCOR.

138 Microwave Energy Transmission to Earth Orbit Rocket (): METEOR (Figure 10.49),under developmentbyEscapeDynamics,Inc.,isasingle-stage- to-orbit powered by beamed microwave energy. Thesystemutilizesmicrowaveenergytodeliverpowerto areusablespaceplaneasitascendsintoLowEarthOrbit. Microwave energyisbeamedontoaheatexchangerlo- catedonthespaceplaneandcoupledintothermalenergy whichinturnistransferredtothehydrogenpropellant. Thisheatedhydrogenisflowedthroughaturbopumpand exhaustedoutofanaerospikenozzle.Thecompanystates Figure10.49. METEORConcept. Im- thatthesystemwillallowspecificimpulsesabove750 s, agecourtesyofEscapeDynamics. greaterthanthetheoreticallimitsofchemicalrocketsat 460 s,andwillinitiallybecapableoflaunchinguptoa200 kgpayloadintoorbit,scalingupto 1,000 kgpayloadsinthefuture. Consideringthecurrentstatusofthetechnologydevelopmentof thesystem,theTRLis3.Thereisnoschedulefortheflighttestsyetbutitislikelythatthemaiden flightofthesystemwillbein2020s(EscapeDynamics,Inc.,2015).

Microsat Launch Vehicle (VLM-1): ApartnershipbetweenandtheGermanSpace Agency(DLR)aimstodeveloparocketforlaunchingpayloadsof150 kgintoequatorialandpolar orbits. Thesystem,theVLM-1,isplannedtohavethreestagesofsolidrocketmotors(Messier, 2015a).Therearenoestimateddateforthesystem’sfirstlaunch.

M-OV: M-OV (Figure 10.50) is an orbital launch vehicled developed by the Miami-based MISHAAL Aerospace Corporation founded in 2010.The vehicle intends to deliver spacecraft in 363 kg to 454 kg classtoLEO(MISHAALAerospaceCorporation,2015).

Figure10.50.M-OV.ImagecourtesyofMISHALLAerosapaceCorporation.

NanosatLaunchVehicle(NLV): TheNLV(Figure10.51)isatwo-stagevehicledevelopedby Garvey Spacecraft Corporation.The company’s initial goal is to deliver 10 kg payloads into 250 km LEO.Alargerversionwillthenbedesignedtoplacespacecraftweighingupto20 kgintoa450 km orbit(GarveySpacecraftCorporation,2015;Messier,2015b,2015c). Thevehiclewillbelaunched fromPacificSpaceportComplexAlaska(PSCA)onKodiakIsland(Messier,2015d). Asof2015, thestatictestingofNLVenginesisongoingandtherearevarioussubsystemswithhigherTRLs. ThereforetheTRLofthissystemis4.

Neptune N5: The Neptune Modular Series are launch systems developed by . Differentmembersof the family are assembled from identicalCommonPropulsionModules(CPMs).

139 Figure10.51.NLVConcept.ImagecourtesyofGarveySpacecraftCorporation.

AsingleCPMisabletolift145 kgto310 kmapogeeonsub-orbitaltrajectoryfor$350,000for dedicatedlaunch. TheCPMtestvehiclehasbeensuccessfullyflight-testedonsuborbitalflightsin 2014withseveralcubesatsonboard,andthefirstcommerciallaunchinscheduledinQ22016. TheN5(Figure10.52)isanorbitallaunchvehiclewithfive CPMs andable tolifta30 kgpayload to a circular polar orbit of 310 km.The first orbital launch is scheduled for Q4 2016 with a price tag of$1Mforadedicatedlaunch. TheN7isafour-stagelaunchvehicleassembledfromsevenCPMs andasolidupperstage. Ithasamaximumpayloadcapacityof60 kgtoapolar,circularorbit of 310 km. The company plans to take this system into operation by early 2017. The N9 maiden launchisprojectedformid2017andwilloffera75 kgtoa145 kmcircularpolarorbitcapability (Milliron,2015).

Figure10.52.N5Concept.ImagecourtesyofInterorbitalSystems.

NorthStarLaunchVehicle(NSLV): InJanuary2013,andtheAndøyaRocketRange spaceport announced that they will be developing a three stage orbital cubesat launch vehicle system calledNorthStar(Figure10.53)thatwilluseahybridmotor,clusteredindifferentnumbersand arrangements,andwillbeabletodelivera20-25 kgspacecraftinto250-350 kmpolarorbit. The firstflightofNSLVisscheduledtotakeplacein2021fromAndøyaRocketRange,Norway(Boiron, Faenza,Haemmerli,&Verberne,2015;NammoAS,2015;Verberne,Boiron,Faenza,&Haemmerli, 2015).

SagitariusAirborneLaunchSystem(SALS): CelestiaAerospace,locatedinBarcelona,is developingtheairborneSagitariusLaunchSystem.ThesystemwillbecomposedoftheMig-29UB

140 Figure10.53.NorthStarConcept.ImagecourtesyofNammoAS. jetsascarrierplanesandtheSpaceArrowrocketsfortheorbitalinjectionphase. Eachlaunchwill beabletoliftsixteen1Usizedcubesatstospace,eitherinaconfigurationoffourcubesatsaboard aSpaceArrowSMrocket, orinaconfigurationofsixteencubesatsaboardasingleSpaceArrow CM rocket.The rocket will then deliver the payloads into orbits between 400 and 600 km altitude. Celestiaintendstoperformitsmaidenflightin2016fromaSpanishairport(SpaceMart,2014).

SALVO: ThesystemisunderdevelopmentbyVentionsLLCforDARPA’sSALVOprogram. It will be capable of launching a single 5 kg 3U cubesat at a time. The rocket will be carried to the requiredaltitudewithaF-15jet.

SOAR: SwissSpaceSystems(S3)isacompanywhichplanstoprovideorbitallaunchesofminia- turized spacecraft and manned suborbital spaceflights.The airborne system will lift small spacecraft up to 250kg payloads atop an A300 jetliner (Figure 10.54).Once released from the plane, the sub- orbital reusable shuttle will carry its payload to an altitude of 700km.The first flight of the system isplannedin2018tocarrytheCleanSpaceOnespacecraftwhichwillpossiblybethefirstactive debris-removalmissionperformed(ÉcolePolytechniqueFédéraledeLausanne,2015).

Figure 10.54. SOAR shuttle atop Airbus Figure10.55. StratolaunchAirLaunchSys- A300.ImagecourtesyofS3. tem. Image courtesy of Stratolaunch Sys- tems.

StratolaunchAirLaunchSystem: TheStratolaunchAirLaunchSystem(Figure10.55)in- cludesacarrieraircraft,alaunchvehicleandintegrationsystem. Theaircraftsegment,whichwill bethelargestaircrafteverbuiltwithitswingspanof127 m,willbepoweredbysixBoeing747 engines to lift a multi-stage rocket up to 10 km.The production of this segment by Scaled Compos- itesisongoingandtheplaneisscheduledtomakeitsfirsttestflightin2016(Wall,2015).Forthe

141 rocketsegment,VulcanAerospacehasnotyetselectedalaunchsystemtobeused(Zimmerman, 2015).ThereforetheTRLofthecompletesystemis3.

Vulcan: TheVulcanrocket(Figure10.56)isalaunchvehiclecurrentlyunderdevelopmentby UnitedLaunchAlliance(ULA).ThevehiclewillbepoweredbytheBE-4rocketenginecurrently underdevelopmentwithBlueOriginandsolidrocketboosterstobeprovidedbyOrbitalATK.The companyplanstointegrateaninflatableaerodynamicdeceleratorandparachutestoitsfirst-stage boosterswhichwillallowmidaircaptureandrecoveryoftheboostersbyahelicopter.Thesystem isscheduledtohaveitsmaidenflightin2019(Ray,2015;Shalal,2015). AccordingtoULA,the Vulcancanreplacecompany’sAtlasVandDeltaIVlaunchvehiclesin2020s.

Figure10.56.Vulcan.ImagecourtesyofULA.

VLS-1: TheVLS-1(Figure10.3),theBraziliansmallspacecraftlauncherhasbeenunderdevel- opmentsince1979howeverhasnosuccessfulmissionsyet.Thenewprototypeisexpectedtocarry a payload of 200 to 400kg to polar orbit.Since the system had various engine tests, the TRL is 5 (Lele,2015).

Table10.4:LaunchersontheHorizon

Product Manufacturer LEO PlannedFirst Launch Status Capacity Flight Method Austral Heliaq 80-550 kgto 2019 Land/Air TRL2-3 Launch lowSSO Vehicle AuroraS Conspire 225 kg500 km 2025 Land TRL2-3 Technology SSO Bloostar zero2infinity 75 kgto 2018 Baloon TRL5 600 kmSSO CubeCab CubeCab 5kgto 2018 Air(F-104 TRL4 400 km FighterJet) Dedicated 100 kgto 2019 Land TRL2 NanoLaunch Independence- 500 km Vehicle X (DNLV) Aerospace

142 Table10.4:LaunchersontheHorizon

Product Manufacturer LEO PlannedFirst Launch Status Capacity Flight Method Demi-Sprite Scorpius 160 kg ? Land TRL5 SpaceLaunch Company/ Microcosm Dream Lockheed ? 2017 Atopanother TRL5 Chaser Martin(for launcher SierraNevada Corporation) Electron RocketLab 150 kgto 2017 Land TRL5 500 kmSSO Firefly FireflySpace 400 kg 2018 Land TRL4 Systems GOLauncher Generation 30 kgto ? Air TRL4 2 OrbitLaunch 425 km,30 (Gulfstream Services deg. Jets) Haas2C ARCASpace 400 kg 2016 Land TRL4 Corp. LauncherOne Virgin 225 kg 2017 Air(Boeing TRL5 Galactic 747) LynxMark XCOR 15 kgto ? Land TRL3 III Aerospace 400 km,28 (Horizontal) deg. METEOR Escape 200 kg 2020+ Land TRL3 Dynamics Microsat Brazilian 150 kgto ? Land TRL2 Launch SpaceAgency 300 km Vehicle (AEB), (VLM) German SpaceAgency (DLR) M-OV MISHAAL 454 kg ? Land TRL3 Aerospace Nanosat Garvey 20 kgto ? Land TRL4 Launch Spacecraft 450 km Vehicle Corporation (NLV) Neptune Interorbital 40 kgto 2017 Land TRL5 N5/N7 Systems 310 km,75 kg to310 km NorthStar Nammo 20 kgto 2021 Land TRL3 Launch Group 350 km Vehicle (NSLV)

143 Table10.4:LaunchersontheHorizon

Product Manufacturer LEO PlannedFirst Launch Status Capacity Flight Method Sagitarius Celestia 16nanosats 2016 Air TRL4 Launch Aerospace to600 km (Mig-29UM System fighterjet) SALVO VentionsLLC 5 ? Air(F-15E TRL3 (SmallAir figherjet) Launch Vehicleto Orbit) SLS(Space Boeing,ATK, 5 2018 Land TRL5 Launch Pratt& System) Whitney Rocketdyne, NASA,and others SOAR SwissSpace 250 kg 2018 Land TRL4 Systems Stratolaunch Vulcan ? ? Air(Strato- TRL3 AirLaunch Aerospace launch) System Vulcan(Next United ? 2019 Land TRL? Generation Launch Launch Alliance System- NGLS) VLS-1 Brazil ? ? Land TRL5

10.3.3 PayloadAdaptorsandOrbitalManeuveringSystems Multi-payload Utility LiteElectric (MULE) Stage: The MULE Stage (Figure 10.57), developed jointly by BusekSpacePropulsion,AdaptiveLaunchSolutions,and OakmanAerospaceisamaneuveringsystembasedonan ESPAring.Thesystem,withitsonboardpropulsionand 1 powersystems,will becapable ofproviding10 m s v todeliver four 180kg payloadsto avarietyoforbits and EarthEscapemissions.

HatchBasket: The HatchBasket (Figure 10.58), de- veloped by Altius Space Machines partnering with Nanoracks,isaconceptthatenablessmallspacecraft(up toforty3UcubesatsfromoneESPA-classspacecraft)to Figure 10.57. MULE Stage. Image be launched to a higher altitude than is possible from courtesyofULA. normalISSdeployments. TheHatchBasket,asthename

144 Table10.5.PayloadAdaptersontheHorizon

Product Manufacturer Description Status OrbitalManeuvering MoogCSA Propulsionsystemis TRL5 System integratedintoESPA ringallowingadapter toactasan independent spacecraft MULEStage OakmanAerospace Propulsionsystemis TRL2 (Avionics),Busek integratedintoESPA SpacePropulsion ringallowingadapter (HallThrusters), toactasan AdaptiveLaunch independent Solutions(S/C spacecraft Integration) HatchBasket AltiusSpace Propulsionsystemis TRL2 Machines,NanoRacks integratedintoESPA ringallowingadapter toactasan independent spacecraft PropulsiveCubestack Moog/Loadpath Propulsionsystemis TRL2 integratedinto cubestackdispender allowingittoactas anindependent spacecraft PAM-G ISRO Propulsiveforthstage TRL2 ofGSLV suggests,wouldreplacetheconventionalhatch. AftertheCygnuscargovehiclecompletesitsmis- sionattheISS,itwouldmaneuvertoahigheraltitudeusingpropellantreservedforcontingencies duringtheapproachtothestation,thendeploythepayloads. Cygnuscouldgouptoaltitudesof 500 kmandstillhaveenoughpropellantfordeorbiting.

PropulsiveCubeStack: ThePropulsiveCubeStack(Figure10.59)systemisproposedbyMoog andLoadpath,whereapropulsivestageisaddedtothecubestackadapter.Thissystemiscurrently underconceptdevelopment(Maly,2014).

PayloadAssistModuleforGSLV(PAM-G): ThePAM-G,underdevelopmentbyIndian SpaceResearchOrganisation,willbecapableofliftingpayloadstohigherorbitsafteritsseparation fromGSLV.Itwillbepoweredbyahypergolicliquidmotorwithrestartcapability,derivedfrom PSLV’sfourthstage.

145 Figure10.59. PropulsiveCubestack. Image courtesyofMoogInc.. Figure10.58. Hatchbasket. Imagecourtesy ofAltiusSpaceMachines.

10.4 Conclusion

Awidevarietyofintegrationanddeploymentsystemsexisttoproviderideshareopportunitiesfor smallspacecraftonexistinglaunchvehicles.Whileleveragingexcesspayloadspacewillcontinueto beprofitableintothefuture,dedicatedlaunchvehiclesandnewintegrationsystemsarebecoming populartofullyutilizetheadvantagesprovidedbysmallspacecraft. Dedicatedlaunchvehicles maybeusedtotakeadvantageofrapiditerationandmissiondesignflexibility, enablingsmall spacecrafttodictatemissionparameters.Newintegrationsystemswillgreatlyincreasethemission envelopeofsmallspacecraftridingassecondarypayloads. Advancedsystemsmaybeusedtohost secondarypayloadsonorbittoincreasemissionlifetime,expandmissioncapabilities,andenable orbit maneuvering.In the future these technologies may yield exciting advances in space capabilities.

References

AdaptiveLaunchSolutions.(2015).Launchintegrationservice.http://www.adaptivelaunch.com. (Accessed:2015-09-11) AerojetRocketdyne. (2015). SuperStrypi. http://www.rocket.com/super-strypi. (Accessed: 2015-09-09) Arca Space Corporation.(2015).Haas2c.http://www.arcaspace.com/en/haas2c.htm.(Accessed: 2015-10-06) Boiron,A.J.,Faenza,M.G.,Haemmerli,B.,&Verberne,O. (2015). Hybridrocketmotorup- scalinganddevelopmenttestcampaignatnammoraufoss. In51stAIAA/SAE/ASEEJoint PropulsionConference.Orlando,FL.doi:10.2514/6.2015-4044 Clark, S. (2014). Pegasus rocket selected to launch ICON satellite. Spaceflight Now. http://spaceflightnow.com/2014/11/20/pegasus-rocket-selected-to-launch -icon-satellite.(Accessed:2015-09-09) CommercialSpaceTechnologies.(2015).Launchintegrationservice.http://commercialspace.co .uk/en/about/.(Accessed:2015-09-11) ConspireTechnologyInc.(2015).AuroraSLaunchVehicleStatus- September2015 (Tech.Rep.). Huntsville,Alabama:Author Cubecab.(2015).CubeSatstoLEO.http://cubecab.com.(Accessed:2015-10-06) École Polytechnique Fédérale de Lausanne. (2015). Orbitalcleanupsatellitetobelaunchedin partnershipwiths3orbital. http://actu.epfl.ch/news/orbital-cleanup-satellite-to -be-launched-in-partne.(Accessed:2015-10-04)

146 EscapeDynamics,Inc.(2015).NASASST-SoARequestforInformation(Tech.Rep.).9596Metro AirportAve.,Broomfield,CO80021:Author EuropeanSpaceAgency.(2015a).Sherparidesharemission.https://directory.eoportal.org/ web/eoportal/satellite-missions/content/-/article/sherpa.(Accessed:2015-09-12) EuropeanSpaceAgency. (2015b). SHERPARideshareMission. https://directory.eoportal .org/web/eoportal/satellite-missions/content/-/article/sherpa. (Accessed: 2015- 10-10) FireFlySpaceSystems.(2015).Fireflyspacesystems.http://www.fireflyspace.com.(Accessed: 2015-10-06) Foust,J. (2015a). SpaceflightIndustriesBuysFalcon9Launch. SpaceNews. http://spacenews .com/spaceflight-industries-buys-falcon-9-launch.(Accessed:2015-10-10) Foust, J. (2015b). VegaToLaunchSkyboxSatellites. SpaceNews. http://spacenews.com/ vega-to-launch-skybox-satellites/#sthash.mGJeLSWc.dpuf.(Accessed:2015-09-08) Foust, J. (2015c). Virgin galactic’s on schedule for 2016 first launch. Space- News. http://spacenews.com/virgin-galactics-launcherone-on-schedule-for-2016 -first-launch.(Accessed:2015-10-06) GarveySpacecraftCorporation. (2015). NanosatLaunchVehicle(NLV). http://www.garvspace .com/NLV.htm.(Accessed:2015-10-07) GenerationOrbitLaunchServices,Inc. (2015). GOLauncher2. http://www.generationorbit .com/golauncher2.html.(Accessed:2015-10-06) HeliaqAdvancedEngineering.(2015).Heliaqadvancedengineering- developeroftheaustrallaunch vehicle.http://heliaq.com.(Accessed:2015-10-05) Henry,C. (2015). GenerationOrbitGainsGOLauncher2Commitments,PlansGOLauncher3. SatelliteToday. http://www.satellitetoday.com/launch/2015/06/05/generation-orbit -gains-golauncher2-commitments-plans-golauncher-3.(Accessed:2015-10-06) InnovativeSolutionsinSpaceB.V.(2015).Launchintegrationservice. http://www.isispace.nl. (Accessed:2015-09-11) IntuitiveMachinesLLC. (2015). Terrestrialreturnvehicle. https://intuitivemachines.com/ Aerospace/trv/.(Accessed:2015-10-10) JapanAerospaceExplorationAgency. (2015). H-iialaunchvehicle. http://global.jaxa.jp/ projects/rockets/h2a.(Accessed:2015-09-13) Lele,A.(2015).Theneedforalaunchvehicledevelopmentorganization:Learningfrombrazil’sex- perience.TheSpaceReview.http://www.thespacereview.com/article/2753/1.(Accessed: 2015-09-09) Leschly,K.,Sprague,G.,&Rademacher,J.(1999).CarrierspacecraftusingAriane-5GTOpiggy- backlaunch.ActaAstronautica,45 . Lim,D. (2015). TriseptresponsetoNASARFIforinputstothesmallspacecrafttechnologystate oftheartreport (Tech.Rep.). 14425PenrosePlace, Suite270, Chantilly, 20151: TriSeptCorporation. Maly, J. (2014). Cubesat payload accommodations and propulsive adapters. In 11th annual cubesat developer’s workshop. San Louis Obispo, California. http://mstl.atl.calpoly.edu/~bklofas/Presentations/DevelopersWorkshop2014/ Maly_Cubesat_Payload_Accommodations.pdf.(Accessed:2015-10-04) Messier, D. (2015a). Agreement signed for brazilian/german microsat launcher. Parabolic Arc. http://www.parabolicarc.com/2015/01/11/agreement-signed-braziliangerman -microsat-launcher.(Accessed:2015-10-06) Messier,D. (2015b). GarveySpacecraftPerformsSuccessfulStaticTestatFAR. ParabolicArc. http://www.parabolicarc.com/2014/04/05/garvey.(Accessed:2015-10-07)

147 Messier,D. (2015c). GarveySpacecraftPerformsSuccessfulStaticTestatFAR. ParabolicArc. http://www.parabolicarc.com/2014/04/05/garvey.(Accessed:2015-10-07) Messier,D. (2015d). Garveyspacecrafttoconductflightsoutofalaska. ParabolicArc. http:// www.parabolicarc.com/2015/06/09/garvey-spacecraft-conduct-flights-alaska. (Ac- cessed:2015-10-07) Milliron,R.(2015).UltraLow-CostSpaceAccess:InterorbitalSystems’NEPTUNERocketSystem GoesOperational(Tech.Rep.).Mojave,CA:InterorbitalSystems. MISHAAL Aerospace Corporation. (2015). The m-ov orbital vehicle. http://www .mishaalaerospace.com/orbital-vehicle.(Accessed:2015-10-07) MoogCSAEngineering. (2015). Launchintegrationservice. http://www.csaengineering.com. (Accessed:2015-09-11) Moog Inc. (2015). ESPARing&PayloadAdapters. http://moog.com/products/spacecraft -payload-interfaces.(Accessed:2015-10-02) NammoAS.(2015).TheResponsive,Green,andAffordableSatelliteLaunchService(Tech.Rep.). NammoRaufossAS,P.O.Box162,NO-2831Raufoss,Norway:Author. NanoRacksLLC. (2015a). Launchintegrationservice. http://nanoracks.com. (Accessed: 2015- 09-11) NanoRacksLLC. (2015b). Nonaracks- externalplatform. http://nanoracks.com/products/ external-platform.(Accessed:2015-10-08) NanoRacks LLC. (2015c). Nonaracks - internal payloads. http://nanoracks.com/products/ internal-payloads.(Accessed:2015-10-08) NanoRacksLLC. (2015d). SmallsatDeployment. http://nanoracks.com/products/smallsat -deployment/.(Accessed:2015-10-10) National Aeronautics and Space Administration. (2015a). NanoRacks CubeSat Deployer. http://www.nasa.gov/mission_pages/station/research/experiments/1350.html. (Ac- cessed:2015-11-04) NationalAeronauticsandSpaceAdministration. (2015b). NASAOpensNewCubeSatOpportu- nitiesforLow-CostSpaceExploration. http://www.nasa.gov/press-release/nasa-opens -new-cubesat-opportunities-for-low-cost-space-exploration.(Accessed:2015-09-13) OrbitalATK.(2015a).Minotaur.https://www.orbitalatk.com/flight-systems/space-launch -vehicles/minotaur.(Accessed:2015-09-09) OrbitalATK.(2015b).NASASelectsOrbital’sPegasusRockettoLaunch8CYGNSSScienceSatel- lites. https://www.orbitalatk.com/news-room/releaseorbital.asp?prid=9. (Accessed: 2015-09-09) Papadopoulos,K.(2015).Nasarequestforinformationonstateoftheartsmallspacecrafttechnology (Tech.Rep.).2901EnterpriseLane,Midland,TX:XCORAerospace,Inc. Planetary Systems Corporation. (2015). Planetary systems corporation. http://www .planetarysystemscorp.com.(Accessed:2015-10-02) Puig-Suari, J. (2015). TyvakNanosatelliteSystemsResponsetoNASARFI:NNA15ZRD001L (Tech.Rep.).Irvine,California:TyvakNanoSatelliteSystemsInc. Qinetiq. (2015). Launchintegrationservice. https://www.qinetiq-na.com. (Accessed: 2015-09- 11) Ray, J. (2015). ULA unveils its future with the Vulcan rocket family. Space- flightNow.http://spaceflightnow.com/2015/04/13/ula-unveils-its-future-with-the -vulcan-rocket-family.(Accessed:2015-10-04) Reyes, T. (2014). Balloon launcher Zero2Infinity Sets Its Sights to the Stars. Universe- Today . http://www.universetoday.com/115391/balloon-launcher-zero2infinity-sets -its-sights-to-the-stars.(Accessed:2015-10-05)

148 RocketLabLtd.(2015).Electron.http://www.rocketlabusa.com.(Accessed:2015-10-06) Scorpius Company.(2015).CriticalTechnologiesforNextGenerationLaunchSystems andSpacecraft.http://www.scorpius.com.(Accessed:2015-10-06) SecondaryPayloadRideshareAssociation. (2015). SecondaryPayloadAdaptersandInterfaces. In 17th Annual Small Payload Rideshare Symposium. https://www.sprsa.org/sites/ default/files/conference-presentation/Rideshare2015_Secondary-Adapters_Tech -Committee_Maly-Rev0.pdf.(Accessed:2015-10-10) Shalal, A. (2015). Launch provider picks Orbital ATK rocket motors in Aerojet set- back. Reuters . http://www.reuters.com/article/2015/09/22/lockheedmartin-boeing -orbitalatk-idUSL1N11S2VW20150922.(Accessed:2015-10-04) SpaceExplorationTechnologiesCorp. (2015). Falcon9. http://www.spacex.com/falcon9. (Ac- cessed:2015-09-10) SpaceDaily. (2015). Spaceport America and ARCA to jointly test Launch Vehicles and High Altitude UAVs. SpaceDaily. http://www.spacedaily.com/reports/Spaceport_America _and_ARCA_to_jointly_test_Launch_Vehicles_and_High_Altitude_UAVs_999.html. (Ac- cessed:2015-10-06) Spaceflight Services.(2015).Launchintegrationservice.http://www.spaceflightindustries.com. (Accessed:2015-09-11) SpaceMart. (2014). A new approach to the delivery of satellites to orbit. SpaceMart. http://www.spacemart.com/reports/A_new_approach_to_the_delivery_of_satellites _to_orbit_999.html.(Accessed:2015-10-07) SurreySatelliteTechnologyLtd.(2015).SurreySatelliteTechnologyLtd.http://www.sstl.co.uk. (Accessed:2015-09-10) UnitedLaunchAlliance,LLC. (2015a). AtlasV:MaximumFlexibilityandReliability. http:// www.ulalaunch.com/products_atlasv.aspx.(Accessed:2015-09-10) UnitedLaunchAlliance,LLC.(2015b).DeltaII:TheIndustryWorkhorse.http://www.ulalaunch .com/products_deltaii.aspx.(Accessed:2015-09-10) UnitedLaunchAlliance,LLC. (2015c). DeltaIV:The21stCenturyLaunchSolution. http:// www.ulalaunch.com/products_deltaiv.aspx.(Accessed:2015-09-10) UTIAS/SFL. (2015). Products & services: Low-cost launch service. http://utias-sfl.net/ ?page_id=233.(Accessed:2015-09-10) Verberne,O.,Boiron,A.J.,Faenza,M.G.,&Haemmerli,B. (2015). Developmentofthenorth starsoundingrocket:Gettingreadyforthefirstdemonstrationlaunch.In51staiaa/sae/asee jointpropulsionconference.Orlando,FL.doi:10.2514/6.2015-4045 .(2015).We’rebuildingrocketsthatwilllaunchthesmallsatelliterevolution.http:// www.virgingalactic.com/satellite-launch.(Accessed:2015-10-06) Wall, M. (2015). Paul allen launches ’vulcan aerospace’ to boost private space travel. space.com. http://www.space.com/29117-vulcan-aerospace-paul-allen-private -spaceflight.html.(Accessed:2015-10-04) Yamin, I. (2015). DNLV Launch Vehicle Specifications (Tech. Rep.). Office 8, Biotechnology IncubationCentre,TechnologyParkMalaysiaCorpS/B,LebuhrayaPuchongSg.Besi,Bukit Jalil,57000KualaLumpur,Malaysia:Independence-XAerospaceSdnBhd. Zero2Infinity. (2015a). Bloostar: Theshortcuttoorbit (Tech.Rep.). RondadeCanFatjós/n 08290,CerdanyoladelVallès,Barcelona,Spain:Author. Zero2Infinity. (2015b). zero2infinity will launch nanosatellites from the stratosphere. http://www.0ll00.com/2014/10/zero2infinity-will-launch-nanosatellites-from -the-stratosphere.(Accessed:2015-10-05) Zimmerman, R. (2015). Stratolaunch shifts to the small sat market. Be-

149 hindTheBlack. http://behindtheblack.com/behind-the-black/points-of-information/ stratolaunch-shifts-to-the-small-sat-market/.(Accessed:2015-10-04)

150 11 Ground Data Systems and Mission Operations

11.1 Introduction

Agrounddatasystemconsistsofanetworkofgroundstationsandcontrolcenters,suchasthe SpacecraftOperationsControlCenter(SOCC),thePayloadOperationsControlCenter(POCC) andtheMissionControlCenter(MCC).Thesenetworksmaybelocatedatthesamegeographical locationdependingonthetype,sizeandcomplexityofthemission. Howeverforsmallspacecraft missions,thereisoftennodistinctionbetweenMCC,SOCCandPOCCasthesedifferentnetworks supporttheoverallobjectiveofthespacecraftandtheusersofthedatageneratedbythemission.

Figure11.1. Functionalrelationshipbetweenspacesegment,groundsegmentandfinaluserina cubesatmission.

Figure 11.1 shows the functional relationship between the spacesegment and the ofaspacemission. Thegroundsegmentsupportsthespacesegment(spacecraftandpayload),relayingthemission datatothefinalusers.Tosupportthespacecraftmission,thegrounddatasystemmustcommand andcontrolthebusandpayload,monitortheirhealth,trackthespacecraft’spositionanduseADCS sensorinformationtoreportthespacecraft’sattitude(Larson&Wertz,2004).

151 11.1.1 Smallspacecraftgrounddatasystems

Thegrounddatasystemsarchitectureforsmallspacecraftmissionswilloftentakeadifferentform thantheclassicalarchitecturesusedforlargerspacecraftmissions. Thelow-costparadigmshift andtheaccessibilityofcommercial-off-the-shelf(COTS)technologyforthespacesectorhavenot onlychangedhowdesignersthinkaboutspacecraft,butalsothegrounddatasystemsarchitecture. Tolowerthecostsofasmallspacecraftgrounddatasystem,theentiresmallspacecraftmission isfrequentlymanagedfromasinglemodifiedlabroom. Thegroundstationiseitherafixedor mobileCOTSantennaconnectedtomissioncontrolusingstandardcabling. Tracking,Telemetry andCommand(TT&C)forbothplatformandpayloadismanagedbyasinglecomputer. Figure11.2illustratesthevarietyingrounddatasystemarchitecturesthatcanbeusedforsmall spacecraftmissions. Figure11.2ashowstheAirForceSatelliteControlNetwork(AFSCN)asan exampleofaclassicalgrounddatasystemsetup.ThetopologyoftheAFSCNishierarchical,with twelvenodesorganizedaroundacentralmasternodeatSchrieverAFB,CO.Figure11.2bdepicts thedistributednetworkofgroundstationsusedforthePhoneSatprojectasitwassupportedby 1,343 volunteer nodes organized in a distributed topology.Figure 11.2c illustrates the common small spacecraftgroundsegmenttopology,whereasinglenodeconsistsofauniversitygroundstationand controlroom. Understringentpowerandvolumebudgetconstraints,smallspacecraft(primarilycubesatplat- forms)missionstypicallyuseacademicoramateurgrounddatasystemswithonlyoneantenna, limitingtheabilitytocommunicatewithmorethanonespacecraftsimultaneously. Thisimpact restrictscubesatstoorbitsbelowGeosynchronous(GEO)altitudes,astheyareunabletocarry far-rangingradiodishesorutilizeamorepowerfulantenna.Otherdisadvantagesincludelessband- width,lowerdatarateandlessthroughputcapabilityfortheentiremission. Peer-to-peertopologiesarealsopossiblewithalargenumberofad-hocnodesparticipatingon avoluntarybasisand,despiteovercrowdingofthefrequencybands(typicallyUHF,VHFandS- band),theindividualnodesinthetopologycanbeinterchangeable. Foranexhaustivetreatiseon thecharacteristicsofsmallspacecraftgrounddatasystems,refertoSchmidt(2011). Additionally, theservicesprovidedbycubesatsgroundstationsgenerallydonotprovidethesamesecurity,relia- bilityandlatencyasclassicalgrounddatastations.Largerandmorecomplexspacecraftusuallyuse ConsultativeCommitteeforSpaceDataSystems(CCSDS)standardsbasedlong-haulcommunica- tionprotocols. Onthecontrary,cubesatsprimarilyuseTCP/IPbasedcommunicationprotocols, whichprovideslowerdatacommunicationreliabilityandperformance(deCola,Ernst,&Marchese, 2007).

11.1.2 AmateurandNon-Amateurcommunicationsbands

Traditionally, amateurradiobandshavebeenthepreferredmeansforcubesatstocommunicate withthegroundformanydifferentreasons. However,cubesatsareincreasinglyshiftingfromlow- performancemissionstohigher-complexityscienceortechnologymissions. Thelargeramountof dataproducedbythesehigher-complexitymissionsnecessitateshighercommunicationdatarates thanamateurbandscanprovide. Fromaregulatorypointofview,smallspacecraftmissionsmustadheretothesameradiospec- trumregulationsthatapplytolargerspacecraft. IntheU.S.forexample,theseregulationsare governedbytheFederalCommunicationsCommission(FCC).Amateurradiofrequenciesforcom- municationshavelicensesthataresimpleandquicktoobtain. Sincethiskindoflicenseisnot availabletogovernmententities,whosemissionsareregulatedbytheNationalTelecommunications andInformationAdministration(NTIA),anumberofpartnershipshaveemergedbetweengovern-

152 (a)TheUSAirForceSatelliteControlNetwork(AFSCN)isanexampleofaconventionalhierarchicalgrounddata systemsetup.ImagecourtesyofUSAF.

(b) The 1343 nodes that participated on a volun- (c) An example of a smallsat mission managed and tarybasisinthedistributedgrounddatasystemar- operated using a single ground station only. Image chitecture of Phonesat. Image courtesy of http:// courtesyofPetrDlouhý,WikimediaCommons,Public www..org. Domain.

Figure11.2.Variousgrounddatasystemarchitecturesencounteredinsmallspacecraftmissions.

153 mententitiesandacademia.Forinstance,anumberofcubesatmissionsdevelopedbyNASAAmes ResearchCenterareoperatedfromtheMOCatSantaClaraUniversity. Similarradiofrequency regulationsexistinothercountries,andtheseregulatoryissuescanmakesmallspacecraftpartner- shipsincreasinglydifficult.Itistheresponsibilityofthedeveloperstoensuretheyfollowtheproper regulationsastheybuildandoperatetheirspacecraft. Inmostadministrations,unlikeotherRFspectrumusers,radioamateursmaybuildormodify transmittingequipmentfortheirownusewithintheamateurspectrumwithouttheneedtoobtain governmentcertificationoftheequipment,andthiscanbeabigadvantageindesigningtelecommu- nicationsystemsforcubesats.Licensedamateurscanalsouseanyfrequencyintheirbands(rather thanbeingallocatedfixedfrequenciesorchannels)andcanoperatemediumtohigh-poweredequip- mentonawiderangeoffrequenciesaslongastheymeetcertaintechnicalparametersincluding occupiedbandwidth,powerandmaintenanceofspuriousemission. Forexample,theInternational AmateurRadioUnionhasallocatedcubesatsinthespectrumbetween437.100and437.575MHz, withamaximumsinglesatellitebandwidthallocationof20kHz. Thiswasdonetoprotectthe existingandfutureamateurradiovoicesatellites(vandeGroenendaal,2012). While available bands at 2.4 GHz and 5.8 GHz for amateur spacecraft communication are increas- inglycrowded,higherfrequencyamateurbandsrequireuncommonmicrowavepartstoimplement transceivers,andworkingwith10 GHzorhigherrequireelectricpowertypicallynotavailablein cubesats. Moreover, encryptionisnotgenerallypermittedintheamateurradioservice, except forthespecialpurposeofspacecraftcontroluplinks. Forthesereasons,cubesatmissionsaremov- ingtohigher,non-amateurfrequencybandstosupporttheirdatarequirements. Forinstance,the 1.5UcubesatDynamicIonosphereCubesatExperiment(DICE),launchedin2011,usedthe460- 470 MHzmeteorological-satellitebandwithL3Cadetradiostoproducea1.5 Mbpsdownlinkdata ratetosupportitssciencemission(Klofas&Leveque,2012).Ascubesatmissionsabandonamateur radiobandsforhigher-speedfrequencies,theradiosandgroundstationsgetdifficultandexpensive tobuild. Non-amateurradiolicenses,ontheotherhand,prohibitautonomousbeaconingofsatel- litedata. Thisisabigdisadvantagebecausethecubesatteamscannolongerrelyontheexisting networkofamateurradiooperatorstodownlinkbeacondata. Non-amateursatellitelicensesare usuallypoint-to-point,soallgroundstationscommandingandreceivingsatellitedatamustbeon thesameterritoryandmustbelicensed,whichisanexpensiveandtime-consumingprocess(Klofas &Leveque,2012). CubesatprogramscouldusehigherfrequenciesineithertheC-bandorX-bandtoreducethe volumeandmassofboththetransceiverandantenna. Thiswillalsoincreasethebandwidthto supportpayloadsthathaveasignificantdatadownlinkrequirement. However,designersneedto considertheutilityofadditionalbandwidthwithdecreasedsizeandmassagainstincreasedrequired powertoclosethelink with the since the energy-per-bit is lowered forthesame power consumption(Schroer,June,2009). Ascubesatpowergenerationsystemsbecomemoreeffective andthreeaxisstabilityisachieved,higheroperatingfrequenciesbecomeincreasinglyfeasiblewhile permittingsmallercomponentsandincreasedantennagain. Theusermustcarefullyevaluateall theprosandconsthatAmateurandNon-Amateurbandsprovideinordertoselectanddefinethe mostappropriatetelecommunicationsolutiontomeetthemissionrequirements.

11.2 Stateoftheart Theultimategoalforsmallspacecraftnetworkgroundstationsistorelayallitsdownklinkeddataas soonasithascommencedoperationsandcontinueuntilalltheintendeddatahasbeendownlinked. Theoretically, data is downlinked to the different active ground stations during its entire pass, howeveractivegroundstationsarenotalwaysavailableforeverypassasthereareanumberof

154 otherspacecrafttransmittingdatatothem.Groundstationnetworksforsmallspacecraftutilization havegreatlyimprovedinthelastfewyearsasmanycompaniesareproducinganddevelopingthe newstateoftheartsystems. Somecompaniesfocusmoreonsingleproductsthathaveyettobe validatedinspace,othersconsolidateandextendtheircurrentserviceswithturnkeysolutionswhich addmorecapabilityandavailabilitytotheiralreadywelldevelopedgrounddatasystems.

11.2.1 Turnkeysolutions Turnkeysolutionscanbeagoodoptionfordesignerswhowanttofocusmoreonthepayloadand thesystemengineeringofthespacecraft.Thegroundoperationscanbecommissionedtocompanies whichprovidefullcapabilityandsupportforthespacecraftgroundcommunications.Table11.1lists somecompaniesororganizationsthatdevelopandprovideturnkeysolutionsforsmallspacecraft grounddatasystems. AssuredSpaceAccessTechnologies(ASAT)isanaffiliatedcorporationformedtodevelopthe ATLASglobalnetworkofcommerciallyavailablespacecraftgroundstations,aimedatproviding affordablecloudbasedsolutionsfor spaceaccess. ItprovidesglobalTT&C operations systems usingtheAmazonVirtualCloud,whichinterfacesconnectivityfortheusertothegroundstations. ThesupportedfrequencybandsinwhichATLASoperatesaremainlyS,XandUHF,howeveran extensionofthecapabilitytotheKa-bandisplannedfor2017(AssuredSpaceAccessTechnologies, 2014).Figure11.3showshowtheATLASgroundserviceworkswiththecloudservice(ontheleft) andthelocationsoftheantennasaroundtheglobe(ontheright).

(a)Functionaldiagram (b)Locationsoftheownedandoperatedantennas

Figure11.3.ATLASgroundsystem.ImagecourtesyofAssuredSpaceAccessTechnologies(2014).

KSATLiteisalow-costgroundstationantennanetworkdesignedtosupportdifferentphasesof smallspacecraftmissions. Itretainsallthemajoradvantagesoftheexistingandhighlysuccessful KSATnetwork,includingtheimplementationofmoreflexibleoptionsandproceduresintermsof priorityallocation,availabilityandpassselection.TheKSATnetworkhasalonglegacyofground datasystemsoperationswithuniquelocatedpolarstationsinthearcticandantarcticregions(see Figure11.4),providingfrom85%to100%availabilityonpassesforpolarorbitspacecraft. The networkalsooperatesmid-latitudegroundstations,providingaccessformanyotherorbits. The baseline for KSAT antennas is the 3.7 m platform, which provides X-band and S-band for the

155 Table11.1.Turnkeysolutionsforgroundsystems

Product Manufacturer Status Supportedbands ATLASGlobal ASAT TRL9forground S,X,UHFbands Network infrastructure,TRL8 (Ka-bandfrom2017) forsoftware integration KSATLite KongsbergSatellite TRL9 X-bandandS-band ServicesAS downlinkandS-band uplink.VHF,UHF. Ka-bandsupport from2016 SurreyGround SurreySatellite TRL9 S-bandforuplinkand Segment TechnologyLtd downlinkandX-band downlink ISISSmallSatellite InnovativeSolutions TRL9 Amateurand GroundStation InSpaceB.V. non-Amateur protocolsforVHF, UHF,S-band EndeavorTT&C TYVAKInc. TRL8+ VHF,UHFand 2.2-2.29GHz (S-band) OpenSystemofAgile Espace,Inc. TRL8 S-bandforU/Land GroundSystems D/LAdditional (OSAGS) HF/VHF/UHF receivecapability GAMALINKGround GAMALINK TRL7+ ProvidesVHF/UHF StationNetwork packandS-band pack.Additional RangingandGPS supportavailable. SatelliteTrackingand ClydeSpace TRL8 VHF,UHF,L-band ControlStation and2.4GHz (STAC)

156 Figure11.4. KSATgroundstationsinthepolarregion(Svalbard,Norway). Imagecourtesyof KongsbergSatelliteServicesAS(2015). downlinkandS-bandfortheuplink. Inaddition,KSATLiteoffersVHFandUHFcapacitiesthat supportavarietyofsystemconfigurations. Ka-bandsupportforthesmallspacecraftmarketis plannedtobeintegratedin2016(KongsbergSatelliteServicesAS,2015). Innovative Solutions in Space B.V. (ISIS) also offers turnkey ground station solutions,supporting cubesatsandsmallspacecraftintheUHF,VHFandS-bandforamateurandnon-amateurradio bands. TheOpenSystemofAgileGroundStations(OSAGS)supportshigh-frequencycommunications forsmallspacecrafts. OwnedbyEspace,Inc.,OSAGSisalow-costnetworkofthreeequatorialS- bandground stations locatedinKwajalein,Cayenne,andSingapore,basedonsoftwaredefinedradio (Cahoy, 2012).The stations operate in S-band with a 2.025-2.0120GHz uplink and 2.20-2.30GHz downlinkfrequency.Theagilesystemcansupportdifferentspacecraftmissionssimultaneouslyand isreadilyavailableforanysmallspacecraftmissioninneedofgroundsegmentsupportforlittle cost.SatellitesarerequiredtousededicatedsoftwareprovidedbyEspace,Inc.,andtheymusthave theproperS-bandcapabilitiestocommunicatewiththesystem. GovernmentsponsoredmissionsoftenusetheturnkeysolutionsofferedbytheSpaceNetwork (SN) (National Aeronauticsand SpaceAdministration, 2007),Near EarthNetwork (NEN) (National AeronauticsandSpaceAdministration,2010)andDeepSpaceNetwork(DSN)(NationalAeronau- ticsandSpaceAdministration,2015),collectivelyknownasSpaceCommunicationsandNavigation (SCaN).TheDSNofferstheonlyexistingsolutionforspacecrafttrackingandcommunicationsbe- yond Earth orbit.The Air Force Satellite Control Network (AFSCN) is even more tightly controlled. TheAirForcedoesmaketheservicesoftheJointSpaceOperationsCenter(JSpOC)availableto thepublic,inparticularspacesituationalawarenessintheformoftwo-linedelementsets(TLE)for trackingsatellites,andconjunctionalerts(potentialcollisions).AGIhasdevelopedasimilarsystem inthecommercialsectorcalledtheCommercialSpaceOperationsCenter(ComSpOC). Somecompaniescanalsoprovidespecificindividualcomponentstousersthatwanttoassemble their own customized ground stations.For example, Helical Communication Technologies specializes in quadrifilar helical antennas,made of four helical filars or windings that support right and left hand

157 circularlypolarizedsignals. Theseantennasreceiveandtransmitsignalsfromthegroundstation toLow EarthOrbit (LEO) amateurradio satellitesat frequencybetween 300and3000 MHz,and are particularly useful to receive small spacecraft signals shortly after launch without the need forantennatrackingpositioningequipmentandassociatedtrackingsoftware. Duetothenearly omni-directionalpattern,thequadrifilarhelicalantennaprovidesgoodgainatlowelevation. KSATandISISarealsoabletoprovidesingleantennacomponentsthatcaninterfacewithmany differentgrounddatasystems. Forexample,BringYourOwnDevice(BYOD)isasolutionfrom KSATwhichprovidesKSATruggedantennastobeimplementedandinterfacedwithcustomers ownbackendequipment.

11.2.2 GroundDataSystemsHardwareandSoftware Everygroundstationneedshardwareandsoftwarecomponentstooperateandsupportspacecraft missions. Thereareanumberofconceptualsystemsfortrackingandcommandinghundredsor thousandsofsmallspacecraftandemulationtoolsalsoplayanimportantroleforthesetypesof missions and systems.Table 11.2 lists some companies that provide front end and back end hardware andsoftwareforgroundstations. QuantumGNDisaturnkeygrounddatasystemsolutionofferedbyKratos/RTLogicdesigned specificallyforsmallspacecraftapplications. ItisacompleteC2-to-RF(CommandandControl communicationtoRadioFrequencysignalprocessing)turnkeysmallspacecraftgrounddatasystem packagethatincludeseverythingfromtheC2systemthroughthegroundnetworktotheground modem,givingapre-integratedandeasy-to-usesolution.QuantumGNDiscomprisedofquantum- CMDforasmallspacecraftC2,qFEPforfront-endprocessing,encryptionanddecryption,and qRADIOfornetworktransportandRFsignalprocessing. Allthesecomponentsarealsoavailable separatelyandindependentlyforuserswhoneedonlyparticularcomponentsfortheircustomized grounddatasystem.AblockdiagramonhowquantumGNDworksisshowninFigure11.5.

Figure11.5.QuantumGNDblockdiagram.ImagecourtesyofRTLogic(2015).

Forsystemengineeringandtestingofaspacecraftconstellation,SoftFEPcanemulatethousands ofspacecraftinaconstellationandtheirgroundnetworks.Itdynamicallyexercisestheconstellation management,groundpayloadandTT&Csoftwareandsimulatestheentireend-to-endmulti-node communicationsystem.Ithasbeenusedtomodelcomplexspacetogroundcommunicationsystems andalsotoemulatethousandsofdatachannelstotestthesoftwareapplicationsthatprocessthat data.

158 Table11.2.Hardwareandsoftwareforgroundsystems

Product Manufacturer Status Typeofproduct quantumGND RTLogic TRL9 quantumCMD: Commandand Control(C2) software;qFEP: Front-EndProcessors forencryptionof commandsand decryptionof telemetry;qRadio: digitalIFfront-ends andIP-Modem;T4: softwareframework ISISGSKitGround InnovativeSolutions TRL9 UVTransceiver: Station InSpace containsthemodem andthegainblocks; RotatorController: usedtocontrolthe azimuthandelevation rotator SoftFEP AMERGINT TRL8+ Emulationground systemssoftware Distributed SSBV TRL9 Hardwareand Simulation&Test softwareelementsall Environment(DSTE) operatingwithina singlereference platformand environment.

159 The Distributed Simulation & Test Environment (DSTE) is a family of standard products designed and developed by SSBV Space and Ground Systems to support simulation, assembly, integration and testing of spacecraft, subsystems and payloads. All the elements of DSTE are basedonmodularhardwareandsoftwarearchitecturethatutilizesthelatesttechnologytoenable multi-purposemodulesandcomponentsinacommonandreconfigurablespacecraftandinstrument simulationandtestenvironment.

11.3 AlternativeSolutions Apossiblealternativetousingmission-specificgroundstationsaltogetheristocommunicatewith satellitephonedatanetworkssuchasIridium,andGlobalstar. TechEdSat-1,a 1U cubesat launched in October 2012,had a mission goal to investigate this alter- nativeinter-satellitecommunicationmethod. ThespacecrafthadQuakeGlobalQ1000andQ9602 modemsonboardtotestcommunicationswithboththeIridiumandOrbcommconstellations(Löf- gren,2013).Unfortunately,thespacecraftwasforcedtodisableitsmodemsbeforecommunications couldoccurduetoadelayoftheFCClicense. InApril2013,anotherexperimentincludingan IridiummodemflewasanadditionalpayloadattachedtotheoutsideoftheBellPhoneSat’sframe (Green,2013). ThisexperimentsuccessfullycommunicatedthespacecraftlocationtotheIridium constellation,whichthensenttheinformationtothemissionteamviaemail. Theteamsawim- provementsindatarateandsignalqualityascomparedtocommunicationswithamateurradio groundstations.TheexperimentwasalsoabletotransmittenhoursofdatatotheIridiumconstel- lationovera24 hourperiod,whichisasignificantimprovementovertypicalspacecraft-to-ground transmissiondurationsforcubesats(Green,2013). Inter-satellitecommunicationwastestedagain usingTechEdSat-3p,a3UcubesatlaunchedinAugust3,2013(Harding,2013).Afterdeployment, TechEdSat-3psucessfullycommunicatedwiththeIridiumsatellitenetworkusingtworedundant QuakeGlobalQ9602modems. TheTransformationalSatelliteCommunicationsSystem(TSAT)fundedbytheUSAFsuccess- fullytestedasimplexGlobalstarmodemfromNearSpaceLaunch. Thistestwasrepeatedbythe GlobalstarExperimentandRiskReductionSatellite(GEARRS)andGEARRS2flightsalsosuc- cessfully tested a duplex Globalstar modem (Voss & Dailey, 2015). A NASA suborbital flight, Sub-OrbitalAerodynamicRe-entryEXperiments(SOAREX-VI),testedaTrackingandDataRelay Satellite(TDRS)modemfromLJT&AssociatescalledtheLCT-2binAugust2008(White,Mor- gan,&Murbach,2007). However,astheTDRSsystemisadministeredbyNASA,theremightbe regulatorycomplicationsforconsumerspacecraftwishingtouseit. Thesemissionsareactivelyprovingthevalueofinter-satellitecommunicationstorelaydatato the ground,withpotential forsavedcostsand improvedquality thatcanresult from small spacecraft exchanginggroundstationswithexistingsatellitephoneconstellations.

11.4 Onthehorizon Asthegrounddatasystemsandcommunicationoptionsforsmallspacecraft,particularlycubesats, expand,engineersmustconsiderthetrade-offbetweendataquality,datavolumeandcost. Inthe past,severalmissionsdependedentirelyonamateurradiogroundstationstosupportspacecraft operationandcommunication,andtheamateurradiocommunityhasprovedtobeinvaluableto thecubesatcommunity. Asmissioncomplexityanddatarequirementsincrease,moreprojectsare lookingtonon-amateurgroundstationsandotheroptionslikeinter-satellitecommunicationsor laseropticalcommunications.Theseoptions,however,tendtopresenthighercostsduetotheneed forassociatedradiofrequencylicensesandbespokesoftwarespecifictoagivenserviceprovider.

160 Further, theserviceitselfmaybepricedbasedondatasizeorcommunicationduration. Many factorscanaffectthecost, dataqualityandsizeofeachcommunicationmethod, andforsome ofthesemethodsthefactorsareeitheronlybeginningtobeunderstoodinthecontextofsmall spacecraftoperations,ortheyhaveyettobeencountered. Therelationshipbetweendataquality, datasizeandcostforthesecommunicationmethodsmustbestudiedoverthecomingyearsasthe variousmethodsareanalyzedbycurrentandfuturesmallspacecraftmissions. Withtheneedtospeeduptransmissionofhigh-ratesciencedataandduetoincreasingdemand for S-band and X-band telecommunications, the Ka-band, at 26 GHz,is now considered the spectrum ofthefutureforNASAsmallspacecraftmissions. Atthesametime,NASAisalsoexploringlaser communicationtechnologyforitsfuturemissionsandinvestinginlasercomterminaldevelopment. Opticalsystemsthattransmitinformationusinglaserbeams,ratherthanaradiosignal,offerthe potentialtogreatlyincreasethevolumeofinformationthatcanbetransmittedbyaspacecraftper unitpowerrequired.Thiscuttingedgetechnologyhasalreadybeensuccessfullydemonstratedfrom lunarorbittoEarthbytheLunarAtmosphereandDustEnvironmentExplorer(LADEE)mission, whichwasoperatedandmanagedbyNASAAmesResearchCenter.TheOpticalCommunications and Sensor Demonstration (OCSD) mission led by the Aerospace Corporation, and funded by NASA’sSmallSpacecraftTechnologyProgram,willaddresstwocrosscuttingcapabilitiesofinterest to NASA: optical communications systems and low-cost sensors for proximity operations for cubesats andotherspacecraft.Thiswilldemonstratespace-to-groundopticalcommunicationslinksthatwill beperformedwithagroundbasedopticaltrackingsystemusingacommercial300 mmtelescope, controlledbycustom-builthighaccuracypointingsystems. Inlightofthedistributedandhighlydynamicgrounddatasystemtopologyforsmallspacecraft missions,thereisaneedforcoordinationbetweenthegroundstationsinvolved.Thiscoordination canbeachievedthroughcommon,openlyavailablesoftwareforthemanagementofagrounddata system. TheGlobalEducationalNetworkforSatelliteOperations(GENSO)system,bytheEuro- peanSpaceAgency(ESA),isasoftwarenetworkingstandardforuniversitieswhichallowsaremote operatortocommunicatewiththeirsmallspacecraftusingparticipatingamateurradiogroundsta- tionsaroundtheglobe(Leveque,Puig-Suari,&Turner,2007).Datacollectionforagivenspacecraft couldincreasefromminutesperdayviaonegroundstationtoseveralhoursperdayviathistype ofnetwork. Otherindependentgroundstationnetworksincludethenow-defunctMercuryGround StationNetworkandtheJapaneseGroundStationNetwork(BryanKlofas,2006). Planning&schedulinganddatamanagementaretwoareasofongoingresearchwithinthefield ofsmallspacecraftgrounddatasystemssoftware.Thefuturewillseeanincreasingnumberofsmall spacecraftmissionsinvolvingnotonlysinglespacecraftbutswarms,constellationsandformationsof spacecraft(Raymond,Bristow,&Schoeberl,2000).Adistributedinfrastructureofsmallspacecraft madeupofdozens,ifnothundreds,ofunitswouldallowlow-costhigh-resolutionEarthobservation andsciencemissions.However,thescalabilityofmissionoperationswithoutsignificantautomation islimited.SiewertandMcClure(1995)recallsthatthenumberofoperatorstypicallyscaleslinearly withthenumberoftelemetrynodesrequiredtomonitorthespacecraft.Theauthorsproposethat, assumingabestcasescenarioinwhichasinglesmallspacecraftrequiresroughlytenoperatorsto ensuremissionsuccess(notincludingpayloadoperators),aconstellationofhundredsofspacecraft wouldrequirethousandsofoperatorsandthusaninordinateoperationsbudget. Inthecubesat realm, whereoperationsbudgetsaregenerallyscarce, conventionaloperationswouldrequirean unrealisticcommitmentfromtheacademicandamateurcommunity. Tokeepcostslowandallow fortheemergenceofnext-generationdistributedsmallspacecraftplatforms,itwillthereforebecome necessaryforthespacecrafttoperformcertainoperationsautonomouslyinorbitorautomatically fromtheground. Thechallengesrelatedtopartiallyorfullyautonomousoperationsandmulti- missionoperationscentersforsmallspacecraftclustersareongoingfieldsofresearch.

161 11.5 Conclusion

Fromthemomentoflaunch,theonlyconnectionbetweenthespacecraftandEarthisthroughthe communicationsystem.This,togetherwiththegroundsegment,isresponsibleforsendingscientific databacktoEarthinthespecifiedqualityandquantitytogetherwithengineeringdatareporting theconditionofthespacecraft.Thecommunicationssystemalsoprovidesthecapabilityoftracking thespacecraftandcommandingittotakecertainactions. Dependingontherequirementsandprioritiesoftheuser,differenttypesofsolutionstobuild andassembleagroundstationareavailableinthemarket. Iftheuserwantstofocusmoreonthe payloadandthesystemengineeringofthespacecraft,somecompanieshavepre-definedturnkey solutions, which provide full capability and support for the spacecraft ground communications. Other possible solutions are customizing the ground station with specific components (such as antennas, transceivers, modemsandsoftware)thatcanbeprovidedbydifferentmanufacturers. Theusercanchooseallthedifferentpiecesofhardwareandsoftwareneededforthispurposeand haveacustomizedgroundstationassembled.Finally,anothervaluablesolutionforsmallspacecraft tocommunicatewithEarthisusinginter-satellitecommunicationsrelays. Somecubesatmissions havealreadydemonstratedthesecapabilities. Whicheversolutionturnsouttobethemostreasonableandappropriate,itmustbeensured that the chosen ground system can provide cost-effective,accurate and on-time space communication duringthewholemission.

References

AssuredSpaceAccessTechnologies.(2014).Atlas.(Accessed:2015-11-02) BryanKlofas.(2006).AmateurRadioandtheCubeSatCommunity.InAMSATSpaceSymposium. Cahoy,K.e.a. (2012). S-BandcubesatcommunicationswiththeOpenSystemofAgileGround Stations(OSAGS).InCalPolyCubesatDevelopers’Workshop.SanLuisObispo. deCola, T., Ernst, H.,&Marchese, M. (2007). PerformanceanalysisofCCSDSFileDelivery Protocolanderasurecodingtechniquesindeepspaceenvironments.CNIT- ItalianNational ConsortiumforTelecommunications. Green,M.(2013).Phonesatflightdemonstrations:Successfulphonesatmissioncompleted.http:// www.nasa.gov/directorates/spacetech/small_spacecraft/phonesat.html. (Accessed23 August2013) Harding, P. (2013). Japan’s HTV-4 launches supplies and science to the ISS. http://www .nasaspaceflight.com/2013/08/japans-htv-4-launches-supplies-scienceiss/. (Ac- cessed23August2013) Klofas,B.,&Leveque,K.(2012).Thefutureofcubesatcommunications:Transitioningawayfrom amateurradiofrequenciesforhigh-speeddownlinks.InAMSATSymposium.Orlando,FL. KongsbergSatelliteServicesAS.(2015).KSAT- KongsbergSatelliteServices.(Accessed:2015-11- 02) Larson,W.J.,&Wertz,J.R. (2004). Spacemissionanalysisanddesign(3rded.). ElSegundo, CA:MicrocosmPress. Leveque,K.,Puig-Suari,J.,&Turner,C.(2007).GlobalEducationalNetworkforSatelliteOpera- tions(GENSO).In21stAnnualAIAA/USUConferenceonSmallSatellites.Logan,Utah. Löfgren,H.e.a. (2013). Techedsat: aminimalandrobust1ucubesatarchitectureusingplug- and-playavionics. In9thIAASymposiumonSmallSatellitesforEarthObservation.Berlin, Germany.

162 NationalAeronauticsandSpaceAdministration. (2007). SpaceNetworkUsers’Guide(SNUG) (Tech.Rep.No.450-SNUG). GoddardSpaceFlightCenter,Greenbelt,Maryland: Author. http://esc.gsfc.nasa.gov/assets/files/SN_UserGuide.pdf.(Accessed:2015-11-02) NationalAeronauticsandSpaceAdministration.(2010).NearEarthNetwork(NEN)Users’Guide (Tech.Rep.No.453-NENUG).GoddardSpaceFlightCenter,Greenbelt,Maryland:Author. http://esc.gsfc.nasa.gov/assets/files/453-UG-002905%282%29.pdf. (Accessed: 2015- 11-02) NationalAeronauticsandSpaceAdministration. (2015). DSNTelecommunicationsLinkDesign Handbook(Tech. Rep. No. 810-005).Deep Space Network Project Office,Organization 920,Jet PropulsionLaboratory,CaliforniaInstituteofTechnology,4800OakGroveDrive,Pasadena, California:Author.http://deepspace.jpl.nasa.gov/dsndocs/810-005/.(Accessed:2015- 11-02) Raymond,C.A.,Bristow,J.O.,&Schoeberl,M.R. (2000). Needsforanintelligentdistributed spacecraftinfrastructure.InNASAEarthScienceTechnologyWorkshop.Arlington,VA. RTLogic. (2015).(Accessed:2015-11-02) Schmidt,M. (2011). Groundstationnetworksforefficientoperationofdistributedsmallsatellite systems.In UniversitaetWuerzburg:SchriftenreiheWuerzburgerForschungsberichteinRobotik undTelematik.Wuerzburg. Schroer,M.P. (June,2009). Nps-scat: Acubesatcommunicationssystemdesign,test,andinte- gration.Monterey,CA. Siewert,S.,&McClure,L.H. (1995). Asystemarchitecturetoadvancesmallsatellitemission operations.In9thAIAA/UtahStateUniversityConferenceonSmallSatellites.Logan,UT. vandeGroenendaal,H.(2012).Personalcommunication.. Voss,H.,&Dailey,J. (2015). Technology,Service,Education: Globalstar24/7forLEO. In12th AnnualCubeSatDevelopers’Workshop.CalPoly,SanLuisObispo,California. White,B.,Morgan,H.,&Murbach,M. (2007). ELECTRONICSYSTEMSOFTHESLOTTED COMPRESSIONRAMP(SCRAMP)PROBE.InFifthAnnualInternationalPlanetaryProbe Workshop. Bordeaux,France.

163 12 Passive Deorbit Systems

12.1 Introduction There hasbeen rapid growth inspace flight in the past decade as the price for building and launching asmallspacecrafthasbecomerelativelyinexpensiveforcommercialspaceprograms,government spaceagenciesanduniversities.Ithasbeenestimatedthatasaresultofspaceflight,therehasbeen anaccumulationofspacedebrisconsistingmorethan700,000particleswithadiameter1-10 cmand over20,000pieceswithdiameters>10 cminorbitbetweenGeostationary(GEO)andLowEarth Orbit(LEO)altitudes. Figure12.1isarepresentationofthedebrisaroundEarth. Theobjective of the NASA Orbital Debris Program along with the Inter-Agency Space Debris Coordination Committee(IADC)istolimitthecreationofspacedebrisandtheyhavemandatedeitheralifetime requirementforallspacecraftorstorageinagraveyardorbit. Thelifetimerequirementis25 year post-missionor30 yearafterlaunchifunabletobestoredinagraveyardorbit.

Figure12.1.Distributionofspacedebris.ImagecourtesyofEuropeanSpaceAgency(2015).

SmallspacecraftaretypicallylaunchedintoLEOasitisamoreaccessibleandlessexpensive orbittoobtain: thereishighavailabilitytoLEOthroughallcommerciallaunchproviders; the closeproximitytoEarthreducesmassandpowerrequirementsthecommunicationsystem;itcan employarelativelysmallpropulsionsystem; andtheradiationenvironmentisrelativelybenign. SmallspacecraftthatarelaunchedatoraroundISSaltitude(400 km)naturallydecayinwellunder 25years. Howeveratorbitaltitudesbeyond600 km,itcannolongerbeguaranteedthatasmall spacecraftwillnaturallydecayin25 yearsduetouncertaintyofatmosphericdensity, asseenin Figure12.2. Asthemajorityofthosespacecraftareunabletobeparkedinagraveyardorbitdue torequiredexcesspropellanttoincreasetheiraltitude,theonlyoptionforsmallspacecraftinlower orbitsistodeorbit.

12.2 StateoftheArt Sincedeorbitsystemsarestillintheirinfancy,therearefewhighTRLdevicesguaranteedtosatisfy the 25 year requirement. Deorbit techniques can be either passive or active, although the primary focushasbeeninthedesignofpassivemethods. Activedeorbitingrequiresattitudecontroland

164 Figure 12.2.Orbit altitudes yielding 25 year lifetime.Used with permission from Analytical Graph- icsInc.(2015). surpluspropellantpostmission. Forexample,asteereddragsailreliesonafunctioningattitude system post mission for control. This can be challenging for small spacecraft, as this demand “increasescomplexityandcannibalizespreciousmassandvolume”(Bonin,Hiemstra,Sears,&Zee, 2013). Evenifenoughexcesspropellantwascarriedforanactivedecayapproachandadequate attitudecontrolcapabilitypostmissionwasassured, thismethodrequirescontinuousoperation untilreentryismet,makingitinconvenientandcostlyforasmallspacecraftmission(Boninet al.,2013).Incontrast,passivedeorbitmethodsrequirenofurtheractivecontrolafterdeployment. Therefore,thestateoftheartsectionwillfocusonpassivedeorbitmechanisms.Table12.1displays currentstateofthearttechnologyforpassivedeorbitsystems.

Table12.1.Passivedeorbitsystems

Product Manufacturer Status RODEO CompositeTechnology TRL7 Development,Inc. AEOLDOS ClydeSpace TRL7/8 TerminatorTape TethersUnlimited TRL8/9

12.2.1 PassiveDeorbitSystems Severalsmallspacecraftmissionshavebeendevelopedandlaunchedtodemonstratepassivedeorbit technologiesusingadragsailorboom,suchasNanoSail-D2andCanX-7. NanoSail-D2,deployed fromFASTSATinlateJanuary2011intoa650 kmaltitude72 inclinationorbit,demonstrated

165 Figure12.3.CanX-7deployeddragsail Figure12.4. AEOLDOScanmultiply representation.Image courtesy of Bonin the average frontal area of a typical etal.(2013). cubesatmissionalmost100-fold.Image courtesyofClydeSpace(2014). deorbitcapabilityofalargelowmasshighsurfaceareasail(Boninetal.,2013).The3Uspacecraft, developedatNASAMarshallSpaceFlightCenter,reenteredEarth’satmosphereinSeptember2011. CanX-7,stillinorbitataninitial800 kmSSO,planstodeployedadragsaildevelopedandtested atUniversityofTorontoInstituteforAerospaceStudiesSpaceFlightLaboratory(UTIAS-SFL) (showninFigure12.3). Composite Technology Development, Inc.has developed the Roll-Out DeOrbiting device (RODEO) thatconsistsofalightweightfilmattachedtoasimple,ultra-lightweight,roll-outcompositeboom structureandsuccessfullydeployedonsuborbitalRocketSat-813 August 2013(Turseetal.,2014). ClydeSpacecollaboratedwiththeUniversityofGlasglowtoconstructtheAerodynamicEnd-of- LifeDeorbitsystemforcubesats(AEOLDOS),wherealightweight,foldable“aerobrake”madefrom amembranesupportedbyboom-springsthatopenthesailtogenerateaerodynamicdragagainst theupperatmosphere(Harknessetal.,2014). Figure12.4isarepresentationoftheAEOLDOS membraneafterdeployment. In addition to drag sails, an electromagnetic tether has also been shown to be an effective deorbitmethod.Anelectromagnetictetherusesaconductivetethertogenerateanelectromagnetic forceasthetethersystemmovesrelativetoEarth’smagneticfield. TethersUnlimiteddeveloped Terminator Tape that uses a burn-wire release mechanism to actuate the ejection of the Terminator’s cover,deployinga30 mlongconductivetape(electromagnetictether)attheconclusionofthesmall spacecraftmission(Hoyt,Barnes,Voronka,&Slostad,2009).CurrentlyonorbitwithAerocube-V cubesats,theterminatortapemoduleisexpectedtoactivateattheendof2015andthreemore cubesatTerminatorTapemodulesaremanifestedforflightin2016(TethersUnlimited,Inc.,2014).

12.3 Conclusion Smallspacecraftdeorbitsystemsarerelativelyimmaturebutarenecessarytomeetspacedebris mitigationrequirements. Asmostsmallspacecraftareunabletorelocatetoagraveyardorbitdue topropulsionlimitations,deorbitsystemdevelopmenthasfocusedonpassivedevices.NanoSail-D2, DeorbitSailandCanX-7areallcubesatplatformsthathavesuccessfullydemonstratedtheutiliza- tionofdragsailsfordeorbitinginLowEarthOrbitwithinthe25 yearpostmissionrequirement. TerminatorTapeisanotherdeorbitoptionthatuseselectromagnetictethersthatiscurrentlybeing flownonAerocube-Vcubesat.

166 Figure12.5. PerformancecurveofTerminatorTapefor1Ucubesatsinorbitsupto1200 kmand for 3U cubesats up to 950 km.Image courtesy of Tethers Unlimited, Inc. (2014).

Figure12.6. LabeleddiagramoftheDeorbitsailconcept. ImagecourtesyofUniversityofSurrey (2015).

167 References

AnalyticalGraphicsInc.(2015).AnEvaluationofCubeSatOrbitalDecay.http://www.agi.com/. (Accessed:2015-10-29) Bonin,G.,Hiemstra,J.,Sears,T.,&Zee,R.E. (2013). TheCanX-7DragSailDemonstration Mission: EnablingEnvironmentalStewarshipforNano- andMicrosatellites. In27thAnnual AIAA/USUConferenceonSmallSatellites. ClydeSpace.(2014).CUBESATDISPOSAL- AEOLDOS:AerodynamicEnd-Of-LifeDeOrbitSys- tem. http://www.clyde-space.com/cubesat_shop/de-orbit_devices/349_aeoldos. (Ac- cessed:2015-07-29) European Space Agency. (2015). Space debris. http://www.esa.int/Our_Activities/ Operations/Space_Debris.(Accessed:2015-10-23) Harkness,P.,McRobb,M.,Lutzkendorf,P.,Milligan,R.,Feeney,A.,&Clark,C. (2014). De- velopmentstatusofAEOLDOS:Adeorbitmoduleforsmallsatellites. Advances in Space Research. Hoyt,R.P.,Barnes,I.M.,Voronka,N.R.,&Slostad,J.T. (2009). TheTerminatorTape: A Cost-EffectiveDe-OrbitModuleforEnd-of-LifeDisposalofLEOSatellites. InAIAASpace 2009Conference. TethersUnlimited, Inc. (2014). TheTerminatorTapeandTerminatorTetherSatelliteDeorbit Systems:Low-Cost,Low-MassEnd-of-MissionDisposalforSpaceDebrisMitigation.http:// www.tethers.com/TT.html.(Accessed:2015-08-01) Turse,D.,Keller,P.,Taylor,R.,Reavis,M.,Tupper,M.,&Koehler,C. (2014). Flighttesting ofalowcostde-orbitingdeviceforsmallsatellites. InProceedingsofthe42ndAerospace MechanismsSymposium.NASAGoddardSpaceFlightCenter. UniversityofSurrey. (2015). DeOrbitSailMissionOverview. http://www.surrey.ac.uk/ssc/ research/space_vehicle_control/deorbitsail/mission/index.htm. (Accessed: 2015-10- 7)

168 13 Conclusion

Thisreporthasprovidedanoverviewandassessmentofthestateoftheartforsmallspacecraft technology. Sincethelastreportmanysmallspacecrafttechnologieshavematuredtotheextent thateverysubsystemnowoffersaselectionofpreviouslyflown(TRL9)hardware. Overthenext decadethisselectionisexpectedtoincreasedramaticallyasnewtechnologiesarematuredandthe costofdesigning,buildingandlaunchingasmallspacecraftcontinuestofall. Thisreportwillberegularlyupdatedasemergingtechnologiesmatureandbecomestateof theart. Anycurrenttechnologiesthatwereinadvertentlymissedwillbeidentifiedandincluded insubsequentversions. Readerinputiswelcome; pleaseemail[email protected]and include“stateoftheartreport”inthesubjectline.

169 Form Approved

REPORT DOCUMENTATION PAGE OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To) 01-12-2015 TechnicalPublication 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER SmallSpacecraftTechnologyStateoftheArt

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER MissionDesignDivision

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION NASAAmesResearchCenter REPORT NUMBER MoffettField,California94035-1000 A–

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) NationalAeronauticsandSpaceAdministration NASA Washington,DC20546-0001 11. SPONSOR/MONITOR’S REPORT NUMBER(S) NASA/TP–2015–216648/REV1 12. DISTRIBUTION/AVAILABILITY STATEMENT Unclassified-Unlimited SubjectCategory Availability:NASACASI(443)757-5802 13. SUPPLEMENTARY NOTES An electronic version can be found at http://ntrs.nasa.gov.

14. ABSTRACT Thisreportprovidesanoverviewofthecurrentstateoftheartofsmallspacecrafttechnology.Itwasfirstcommissionedby NASA’sSmallSpaceraftTechnologyProgram(SSTP)inmid-2013inresponsetotherapidgrowthininterestinusingsmall spacecraftformanytypesofmissionsinEarthorbitandbeyond,andrevisedinmid-2015.Forthesakeofthisassessment, smallspacecraftaredefinedtobespacecraftwithamasslessthan180kg.Thisreportprovidesasummaryofthestateofthe artforeachofthefollowingsmallspacecrafttechnologydomains:CompleteSpacecraft,Power,Propulsion,Guidance NavigationandControl,Structures,MaterialsandMechanisms,ThermalControl,CommandandDataHandling, Communications,Integration,LaunchandDeployment,GroundDataSystemsandOperations,andPassiveDeorbitDevices. Duetothehighmarketpenetrationofcubesats,particularemphasisisplacedonthestateoftheartofcubesat-related technology.

15. SUBJECT TERMS spacecraft,technology,nanosat,smallsat

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER 19a. NAME OF RESPONSIBLE PERSON a. REPORT b. ABSTRACT c. THIS PAGE ABSTRACT OF STIHelpDesk(email:[email protected]) PAGES 19b. TELEPHONE NUMBER (Include area code) U U U UU (443)757-5802 Standard Form 298 (Rev. 8/98) Prescribed by ANSI Std. Z39.18