Deviations from Optimal Alignment in the Sagittal Plane

Total Page:16

File Type:pdf, Size:1020Kb

Deviations from Optimal Alignment in the Sagittal Plane DEVIATIONS FROM OPTIMAL ALIGNMENT IN THE SAGITTAL PLANE Foot and Toes 1. Claw Toes • Claw toes is a deformity of the toes characterized by hyperextension of the metatarsophalangeal (MTP) joint, combined with flexion of the proximal interphalangeal (PIP) and distal interphalangeal (DIP) joints. • The abnormal distribution of weight may result in callus formation under the heads of the metatarsals or under the end of the distal phalanx. • Sometimes the proximal phalanx may subluxate dorsally on the metatarsal head. • Calluses may develop on the dorsal aspects of the flexed phalanges from constant rubbing on the inside of shoes. • In essence, this deformity reduces the area of the BoS and, as a result, may increase postural sway and decrease stability in the standing position. • A few of the many suggested etiologies for this condition are as follows: the restrictive effect of shoes, a cavus-type foot, muscular imbalance, ineffectiveness of intrinsic foot muscles, neuromuscular disorders, and age-related deficiencies in the plantar structures. 2. Hammer Toes • Hammer toe is described as a deformity characterized by hyperextension of the MTP joint, flexion of the PIP joint, and hyperextension of the DIP joint. • Callosities (painless thickenings of the epidermis) may be found on the superior surfaces of the PIP joints over the heads of the first phalanges as a result of pressure from the shoes. • The tips of the distal phalanges also may show callosities as a result of abnormal weight-bearing. • The flexor muscles are stretched over the MTP joint and shortened over the PIP joint. • The extensor muscles are shortened over the MTP joint and stretched over the PIP joint. • If the long and short toe extensors and lumbrical muscles are selectively paralyzed, the intrinsic and extrinsic toe flexors acting unopposed will buckle the PIP and DIP joints and cause a hammer toe. Knee 1. Flexed Knee Posture • Flexed knee standing posture can result from knee flexion contractures. In flexed knee, the LoG shifts posteriorly to the axes of knee joint. This shift creates an external flexion moment at the knee joint, which is balanced by internal extension moment created by activity of quadriceps to maintain erect position. • The increase in muscle activity needed to maintain a flexed knee posture subjects the tibiofemoral and patellofemoral joints to greater-than-normal compressive stress and can lead to fatigue of the quadriceps femoris and other muscles if the posture is maintained for a prolonged period. • Knee flexed posture also results in increased activity of hip extensors, soleus and gastrocnemius. POSTURAL ABNORMALITIES - ZAS Page 1 2. Hyperextended Knee Posture (Genu Recurvatum) • Hyperextension at the knee is usually caused either by limited dorsiflexion at the ankle or by a fixed plantarflexion position of the foot and ankle called equinus. • Hyperextended knee results in anterior shifting of LoG to the knee joint axis. This results in an external extensor moment and puts the posterior joint capsule under tension. • Hyperextended knee results in - a. Lengthening of posterior capsule and cruciate ligaments making the joint more unstable. b. Abnormal compression between anterior portion of femoral condyles and tibial plateaus. Pelvis 1.Excessive Anterior Pelvic Tilt • In a posture in which the pelvis is excessively tilted anteriorly, the lower lumbar vertebrae are forced anteriorly. • The upper lumbar vertebrae move posteriorly to keep the head over the sacrum, thereby increasing the lumbar anterior convexity (lordotic curve). The LoG is therefore at a greater distance from the lumbar joint axes than is optimal and the extension moment in the lumbar spine is increased. • The posterior convexity of the thoracic curve increases and becomes kyphotic to balance the lordotic lumbar curve and maintain the head over the sacrum. • Similarly, the anterior convexity of the cervical curve increases to bring the head back over the sacrum. • Increases in the anterior convexity of the lumbar curve during erect standing increases the compressive forces on the posterior annuli and may adversely affect the nutrition of the posterior portion of the intervertebral disks. Head 1. Forward Head Posture • A forward head posture is one in which the head is positioned anteriorly and the normal anterior cervical convexity is increased with the apex of the lordotic cervical curve at a considerable distance from the LoG in comparison with optimal posture. • The constant assumption of a forward head posture causes: Abnormal compression on the posterior zygapophyseal joints and posterior portions of the intervertebral disks Narrowing of the intervertebral foramina in the lordotic areas of the cervical region. • The cervical extensor muscles may become ischemic because of the constant isometric contraction required to counteract the larger than normal external flexion moment and maintain the head in its forward position. The posterior aspect of the zygapophyseal joint capsules may become adaptively shortened, and the narrowed intervertebral foramen may cause nerve root compression. POSTURAL ABNORMALITIES - ZAS Page 2 Vertebral Column 1. Lordosis and Kyphosis • The term lordosis refers to the normal sagittal plane anteriorly convex curves in the cervical and lumbar regions of the vertebral column. The term kyphosis refers to the normal sagittal plane posteriorly convex curves in the thoracic and sacral regions of the vertebral column. • Sometimes an abnormal increase in the normal posterior convexity may occur, and this abnormal condition also may be called a kyphosis. • This condition may develop as a compensation for an increase in the normal lumbar curve, or the kyphosis may develop as a result of poor postural habits or osteoporosis. • Dowager’s hump is an easily recognizable excessively kyphotic condition that is found most often in postmenopausal women who have osteoporosis. The anterior aspect of the bodies of a series of vertebrae collapse as a result of osteoporotic weakening. The vertebral body collapse causes an immediate lack of anterior support for a segment of the thoracic vertebral column, which bends forward, causing an increase in the posterior convexity (the hump) and an increase in compression on the anterior aspect of the vertebral bodies. • Diseases such as tuberculosis or ankylosing spondylosis also may cause abnormal increases in the posterior convexity of the thoracic region. • A gibbus or humpback deformity may occur as a result of tuberculosis, which causes vertebral fractures. • Gibbus or humpback deformity is easily recognized by the gibbus (hump), which forms a sharp posterior angulation in the upper thoracic vertebral column. POSTURAL ABNORMALITIES - ZAS Page 3.
Recommended publications
  • Neonatal Orthopaedics
    NEONATAL ORTHOPAEDICS NEONATAL ORTHOPAEDICS Second Edition N De Mazumder MBBS MS Ex-Professor and Head Department of Orthopaedics Ramakrishna Mission Seva Pratishthan Vivekananda Institute of Medical Sciences Kolkata, West Bengal, India Visiting Surgeon Department of Orthopaedics Chittaranjan Sishu Sadan Kolkata, West Bengal, India Ex-President West Bengal Orthopaedic Association (A Chapter of Indian Orthopaedic Association) Kolkata, West Bengal, India Consultant Orthopaedic Surgeon Park Children’s Centre Kolkata, West Bengal, India Foreword AK Das ® JAYPEE BROTHERS MEDICAL PUBLISHERS (P) LTD. New Delhi • London • Philadelphia • Panama (021)66485438 66485457 www.ketabpezeshki.com ® Jaypee Brothers Medical Publishers (P) Ltd. Headquarters Jaypee Brothers Medical Publishers (P) Ltd. 4838/24, Ansari Road, Daryaganj New Delhi 110 002, India Phone: +91-11-43574357 Fax: +91-11-43574314 Email: [email protected] Overseas Offices J.P. Medical Ltd. Jaypee-Highlights Medical Publishers Inc. Jaypee Brothers Medical Publishers Ltd. 83, Victoria Street, London City of Knowledge, Bld. 237, Clayton The Bourse SW1H 0HW (UK) Panama City, Panama 111, South Independence Mall East Phone: +44-2031708910 Phone: +507-301-0496 Suite 835, Philadelphia, PA 19106, USA Fax: +02-03-0086180 Fax: +507-301-0499 Phone: +267-519-9789 Email: [email protected] Email: [email protected] Email: [email protected] Jaypee Brothers Medical Publishers (P) Ltd. Jaypee Brothers Medical Publishers (P) Ltd. 17/1-B, Babar Road, Block-B, Shaymali Shorakhute, Kathmandu Mohammadpur, Dhaka-1207 Nepal Bangladesh Phone: +00977-9841528578 Mobile: +08801912003485 Email: [email protected] Email: [email protected] Website: www.jaypeebrothers.com Website: www.jaypeedigital.com © 2013, Jaypee Brothers Medical Publishers All rights reserved. No part of this book may be reproduced in any form or by any means without the prior permission of the publisher.
    [Show full text]
  • Basic Biomechanics
    Posture analysis • A quick evaluation of structure and function • Doctor views patient from behind (P-A) and from the side (lateral) • References points of patient’s anatomy relative to plumb (a position of balance) 9/3/2013 1 Posture analysis • Lateral View – Knees (anterior, posterior, plumb, genu recurvatum) – Trochanter (anterior, posterior, plumb) – Pelvis (anterior, posterior, neutral pelvic tilt) – Lumbar lordosis (hypo-, hyper-, normal) – Mid-axillary line (anterior, posterior, plumb) – Thoracic kyphosis (hyp-, hyper- normal) – Acromion (anterior, posterior, plumb) – Scapulae (protracted, retracted, normal) – Cervical lordosis (hypo-, hyper-, normal) – External auditory meatus (anterior, posterior, plumb) – Occiput (extended, neutral, flexed) 9/3/2013 2 Posture analysis • Posterior – Anterior View – Feet (pronation, supination, normal) – Achilles tendon (bowed in/out, normal) – Knees (genu valga/vera, normal - internal/external rotation) – Popliteal crease heights (low, high, level) – Trochanter heights (low, high, level) – Iliac crest heights (low on the right/left, normal) – Lumbar scoliosis (right/left, or no signs of) – Thoracic scoliosis (right/left, or no signs of) – Shoulder level (low on the right/left, or normal) – Cervical scoliosis (right/left, or no signs of) – Cervical position (rotation, tilt, neutral) – Mastoid (low on the right/left, or normal) 9/3/2013 3 …..poor postures 9/3/2013 4 Functional Anatomy of the Spine • The vertebral curvatures – Cervical Curve • Anterior convex curve (lordosis) develop in infancy
    [Show full text]
  • ICD-9CM Coding Achilles Bursitis Or Tendinitis 726.71 Adhesive
    ICD-9CM CODING OF COMMON CHIROPRACTIC CONDITIONS CONDITION ICD-9CM coding Achilles bursitis or tendinitis 726.71 Adhesive capsulitis of shoulder 726 Anklyosing Spondylitis (spine only) 720 Anterior cruciate ligament (old disruption) 717.83 Bicipital tenosynovitis 726.12 Boutonniere deformity 736.21 Brachial neuritis or radiculitis 723.4 Bunion 727.1 Bursitis of knee 726.6 Calcaneal spur 726.73 Carpal tunnel syndrome 354 Cervical radiculitis 723.4 Cervical spondylosis with myelopathy 721.1 Cervical spondylosis without myelopathy 721 Cervicalgia 723.1 Chondromalacia of patella 717.7 Claw hand (acquired) 736.06 Claw toe (acquired) 735.5 Coccygodynia 724.79 Coxa plana 732.1 Coxa valga (acquired) 736.31 Coxa vara (acquired) 736.32 de Quervain's disease 727.04 Degeneration of cervical intervertebral disc 722.4 Degeneration of thoracic or lumbar intervertebral disc 722.5 Disc Degeneration (Cervical with myelopathy) 722.71 Disc Degeneration (Lumbar with myelopathy) 722.73 Disc Degeneration (Thoracic) 722.51 Disc Degeneration (Cervical) 722.4 Disc Degeneration (Lumbar) 722.52 Disc Degeneration (Thoracic with myelopathy) 722.72 Disc displacement without myelopathy (Thoracic) 722.11 Disc displacement of without myelopathy (Cervical ) 722 Disc displacement without myelopathy (Lumbar) 722.1 Dupuytren's contracture 728.6 Entrapment syndromes 354.0-355.9 Epicondylitis (Lateral) 726.32 Epicondylitis (Medial) 726.31 Flat foot-Pes planus (acquired) 734 Fracture (Lumbar) 805.4 Ganglion of tendon sheath 727.42 Genu recurvatum (acquired) 736.5 Genu valgum
    [Show full text]
  • A Case Report on Charcot-Marie-Tooth Disease with a Novel Periaxin Gene Mutation
    Open Access Case Report DOI: 10.7759/cureus.5111 A Case Report on Charcot-Marie-Tooth Disease with a Novel Periaxin Gene Mutation Sorabh Datta 1 , Saurabh Kataria 1 , Raghav Govindarajan 1 1. Neurology, University of Missouri, Columbia, USA Corresponding author: Sorabh Datta, [email protected] Abstract Charcot-Marie-Tooth (CMT) disease is one of the most common primary hereditary neuropathies causing peripheral neuropathies. More than 60 different gene mutations are causing this disease. The PRX gene codes for Periaxin proteins that are expressed by Schwann cells and are necessary for the formation and maintenance of myelination of peripheral nerves. Dejerine-Sottas neuropathy and Charcot-Marie-Tooth type 4F (CMT4F) are the two different clinical phenotypes observed in association with PRX gene mutation. This article describes a case of an elderly male with a novel mutation involving the PRX gene. Categories: Genetics, Internal Medicine, Neurology Keywords: neurology, sensorimotor neuropathy, congenital, gene expression, genetic mutation, protein, pes cavus, demyelinating diseases, charcot-marie-tooth, autosomal recessive disorder Introduction As per the Dyck classification in the year 1970, primary hereditary neuropathies are divided into hereditary motor sensory neuropathy (HMSN) and hereditary sensory autonomic neuropathy (HSAN) [1]. Charcot- Marie-Tooth (CMT) disease is a type of HMSN with an estimated prevalence of 1 in 2,500 [2]. CMT can follow autosomal recessive (ARCMT), X-linked recessive, and also an autosomal dominant pattern. CMT type 4 is a rapidly increasing ARCMT disease form in HMSN, although CMT type 1 and 2 still account for the most substantial proportion of the patient population [3]. CMT4F is a severe, demyelinating subtype of CMT type 4 and is characterized by childhood onset of slowly progressing weakness in the distal muscles associated with atrophy.
    [Show full text]
  • ICD-9 to ICD-10 Mapping Tool Courtesy Of: the Paperwork Project
    ICD-9 to ICD-10 Mapping Tool Courtesy of: The Paperwork Project Spinal Subluxation ICD-9 ICD-10 M99.00 Segmental and somatic dysfunction, Head region (occipito-cervical) 739.0 Segmental and somatic dysfunction, Head region (occipito-cervical) M99.10 Subluxation complex (vertebral), Head region M99.01 Segmental and somatic dysfunction, Cervical region 739.1 Segmental and somatic dysfunction, Cervical region M99.11 Subluxation complex (vertebral), Cervical region M99.02 Segmental and somatic dysfunction, Thoracic region 739.2 Segmental and somatic dysfunction, Thoracic region M99.12 Subluxation complex (vertebral), Thoracic region M99.03 Segmental and somatic dysfunction, Lumbar region 739.3 Segmental and somatic dysfunction, Lumbar region M99.13 Subluxation complex (vertebral), Lumbar region M99.04 Segmental and somatic dysfunction, Sacral region 739.4 Segmental and somatic dysfunction, Sacral region M99.14 Subluxation complex (vertebral), Sacral region M99.05 Segmental and somatic dysfunction, Sacroiliac, hip, pubic regions 739.5 Segmental and somatic dysfunction, Sacroiliac, hip, pubic regions M99.15 Subluxation complex (vertebral), Pelvic region 839.08 Closed dislocation, Multiple cervical vertebra (injury) S13.101_ Dislocation of unspecified cervical vertebra (injury) ** 839.20 Closed dislocation, Lumbar vertebra (injury) S33.101_ Dislocation of unspecified lumbar vertebra (injury) ** 839.21 Closed dislocation, Thoracic vertebra (injury) S23.101_ Dislocation of unspecified thoracic vertebra (injury) ** 839.42 Closed dislocation, Sacrum,
    [Show full text]
  • The Nutrition and Food Web Archive Medical Terminology Book
    The Nutrition and Food Web Archive Medical Terminology Book www.nafwa.
    [Show full text]
  • Posture Analysis
    POSTURE ANALYSIS PRESENTED BY MWADZIWANA LOUIS LAW WHAT IS POSTURE ? • Posture is a position of greatest efficiency, around your center of gravity, with muscles on all sides, exerting pull equally. CORRECT POSTURE Correct posture “Position in which minimum stress is placed on each joint.” (Magee) Maintains the natural curves Faulty posture Any position that increases stress on joints Create muscle imbalances, ligamentous tension, circulatory occlusion CAUSES OF POOR POSTURE • Positional factors/Habitual • Appearance of increased height (social stigma) • Muscle imbalances/contractures • Pain e.g. ICD pleural effusion • Respiratory conditions CAUSES OF POOR POSTURE • Structural factors • Congenital anomalies • Developmental problems • Trauma • Disease FACTORS AFFECTING POSTURAL ANALYSIS • Subject must be minimally clothed • The subject must assume a comfortable and relaxed posture • Subjects who use orthotic or assistive devices should be assessed with and without them to determine their effectiveness in correcting posture. • relevant medical history and other information THE SPINAL COLUMN • Primary curves • Thoracic spine • Sacrum • Secondary curves • Cervical spine • Lumbar spine LATERAL VIEW • Head and neck: • Plumb line: The line falls through the ear lobe to the acromion process. • Common faults include: • Forward head: • Flattened lordotic cervical curve • Excessive Lordotic curve LATERAL VIEW Shoulder: • Plumb line: It falls through the acromion process. • Common faults include: • Forward shoulders • Lumbar Lordosis LATERAL VIEW •
    [Show full text]
  • Osteotomy Around the Knee: Evolution, Principles and Results
    Knee Surg Sports Traumatol Arthrosc DOI 10.1007/s00167-012-2206-0 KNEE Osteotomy around the knee: evolution, principles and results J. O. Smith • A. J. Wilson • N. P. Thomas Received: 8 June 2012 / Accepted: 3 September 2012 Ó Springer-Verlag 2012 Abstract to other complex joint surface and meniscal cartilage Purpose This article summarises the history and evolu- surgery. tion of osteotomy around the knee, examining the changes Level of evidence V. in principles, operative technique and results over three distinct periods: Historical (pre 1940), Modern Early Years Keywords Tibia Osteotomy Knee Evolution Á Á Á Á (1940–2000) and Modern Later Years (2000–Present). We History Results Principles Á Á aim to place the technique in historical context and to demonstrate its evolution into a validated procedure with beneficial outcomes whose use can be justified for specific Introduction indications. Materials and methods A thorough literature review was The concept of osteotomy for the treatment of limb defor- performed to identify the important steps in the develop- mity has been in existence for more than 2,000 years, and ment of osteotomy around the knee. more recently pain has become an additional indication. Results The indications and surgical technique for knee The basic principle of osteotomy (osteo = bone, tomy = osteotomy have never been standardised, and historically, cut) is to induce a surgical transection of a bone to allow the results were unpredictable and at times poor. These realignment and a consequent transfer of weight bearing factors, combined with the success of knee arthroplasty from a damaged area to an undamaged area of joint surface.
    [Show full text]
  • Hughston Health Alert US POSTAGE PAID the Hughston Foundation, Inc
    HughstonHughston HealthHealth AlertAlert 6262 Veterans Parkway, PO Box 9517, Columbus, GA 31908-9517 • www.hughston.com/hha VOLUME 26, NUMBER 4 - FALL 2014 Fig. 1. Knee Inside... anatomy and • Rotator Cuff Disease ACL injury. Extended (straight) knee • Bunions and Lesser Toe Deformities Femur • Tendon Injuries of the Hand (thighbone) Patella In Perspective: (kneecap) Anterior Cruciate Ligament Tears Medial In 1992, Dr. Jack C. Hughston (1917-2004), one of the meniscus world’s most respected authorities on knee ligament surgery, MCL LCL shared some of his thoughts regarding injuries to the ACL. (medial “You tore your anterior cruciate ligament.” On hearing (lateral collateral collateral your physician speak those words, you are filled with a sense ligament) of dread. You envision the end of your athletic life, even ligament) recreational sports. Today, a torn ACL (Fig. 1) has almost become a household Tibia word. Through friends, newspapers, television, sports Fibula (shinbone) magazines, and even our physicians, we are inundated with the hype that the knee joint will deteriorate and become arthritic if the ACL is not operated on as soon as possible. You have been convinced that to save your knee you must Flexed (bent) knee have an operation immediately to repair the ligament. Your surgery is scheduled for the following day. You are scared. Patella But there is an old truism in orthopaedic surgery that says, (kneecap) “no knee is so bad that it can’t be made worse by operating Articular Torn ACL on it.” cartilage (anterior For many years, torn ACLs were treated as an emergency PCL cruciate and were operated on immediately, even before the initial (posterior ligament) pain and swelling of the injury subsided.
    [Show full text]
  • Hammer Toe Information Sheet
    Fitter Feet For Life Hammer toe information sheet. (ref. A15) A hammer toe is a deformity of the first small toe joint with in toes. (proximal inter-phalangeal joint) This deformity can occur in the second, third, fourth or fifth (relatively rare) toes, causing it to be permanently bent, resembling a hammer. This abnormality can create pressure on the foot when wearing shoes and cause discomfort and problems walking. The joints themselves can be arthritic and painful. There is a choice of different procedures to straighten a hammer toe. This information sheet has been written to help you choose which procedure is best for you. Fig 1 Hammer toe . Fig 2 Arthrodesis with K wires . Fig 3. Smart toe implant An arthrodesis is a surgical procedure to treat hammer toes. The deformed joint is fully removed and the apposing bone ends fused together in a corrected position. The joint will no longer move. The joint closer to the end of the toe will still move. The joint where the toe joins the foot will also continue to move. 1 Fitter Feet For life. 34 North Street. London SW40HD 0207 627 4901 Fitter Feet For Life 1. K-Wire Arthrodesis. Traditionally hammer toe correction is performed by arthrodesis surgery using K-Wires. The procedure is successful in most cases and has been performed for many years. The deformed joint is removed and the bone ends are secured together with a K-wire which protrudes though the tip of the toe. The foot must be kept dry, dressed and the k-wire protected in a post operative shoe for six weeks after the operation.
    [Show full text]
  • Page 1 of 4 COPYRIGHT © by the JOURNAL of BONE and JOINT SURGERY, INCORPORATED LAMPLOT ET AL
    COPYRIGHT © BY THE JOURNAL OF BONE AND JOINT SURGERY, INCORPORATED LAMPLOT ET AL. RISK OF SUBSEQUENT JOINT ARTHROPLASTY IN CONTRALATERAL OR DIFFERENT JOINT AFTER INDEX SHOULDER, HIP, OR KNEE ARTHROPLASTY http://dx.doi.org/10.2106/JBJS.17.00948 Page 1 Appendix TABLE E-1 Included Alternative Primary Diagnoses ICD-9-CM Code Diagnosis* 716.91 Arthropathy NOS, shoulder 716.95 Arthropathy NOS, pelvis 716.96 Arthropathy NOS, lower leg 719.45 Joint pain, pelvis 719.91 Joint disease NOS, shoulder *NOS = not otherwise specified. Page 1 of 4 COPYRIGHT © BY THE JOURNAL OF BONE AND JOINT SURGERY, INCORPORATED LAMPLOT ET AL. RISK OF SUBSEQUENT JOINT ARTHROPLASTY IN CONTRALATERAL OR DIFFERENT JOINT AFTER INDEX SHOULDER, HIP, OR KNEE ARTHROPLASTY http://dx.doi.org/10.2106/JBJS.17.00948 Page 2 TABLE E-2 Excluded Diagnoses* ICD-9- ICD-9- ICD-9- ICD-9- CM Code Diagnosis CM Code Diagnosis CM Code Diagnosis CM Code Diagnosis 274 Gouty arthropathy NOS 696 Psoriatic 711.03 Pyogen 711.38 Dysenter arthropathy arthritis- arthritis NEC forearm 274.01 Acute gouty arthropathy 696.1 Other psoriasis 711.04 Pyogen 711.4 Bact arthritis- arthritis-hand unspec 274.02 Chr gouty arthropathy 696.2 Parapsoriasis 711.05 Pyogen 711.46 Bact arthritis- w/o tophi arthritis-pelvis l/leg 274.03 Chr gouty arthropathy w 696.3 Pityriasis rosea 711.06 Pyogen 711.5 Viral arthritis- tophi arthritis-l/leg unspec 274.1 Gouty nephropathy NOS 696.4 Pityriasis rubra 711.07 Pyogen 711.55 Viral arthritis- pilaris arthritis-ankle pelvis 274.11 Uric acid nephrolithiasis 696.5 Pityriasis NEC & 711.08
    [Show full text]
  • Congenital Anomalies and in Utero Antiretroviral Exposure in Human Immunodeficiency Virus– Exposed Uninfected Infants
    Supplementary Online Content Williams PL, Crain MJ, Yildirim C, et al; Pediatric HIV/AIDS Cohort Study. Congenital anomalies and in utero antiretroviral exposure in human immunodeficiency virus– exposed uninfected infants. Published online November 10, 2014. JAMA Pediatr. doi:10.1001/jamapediatrics.2014.1889. eTable 1. Frequency of Specific Major Congenital Anomalies Within Anomaly Categories eTable 2. Anomalies Reported Among Children Exposed to Atazanavir During the First Trimester eTable 3. Association of Timing of the First ARV Exposure During Pregnancy With Congenital Anomalies by ARV Drug Class and for Specific ARV Drugs This supplementary material has been provided by the authors to give readers additional information about their work. © 2014 American Medical Association. All rights reserved. Downloaded From: https://jamanetwork.com/ on 09/24/2021 eTable 1. Frequency of Specific Major Congenital Anomalies Within Anomaly Categories # of children with at Total # of least one major anomaly in Anomaly anomalies category Category (Total=242) (Total=201) List of Major Anomalies Musculoskeletal 72 59 Polydactyly (15), torticollis/muscular anomaly (12), clubfoot, talipes, other foot deformity (9), congenital dislocation of hip (5), craniosynostosis (4), plagiocephaly (4), pectus excavatum/funnel chest (3), lower limb anomaly (3), hypertelorism/other face or skull anomaly (3), spina bifida occulta/spine anomaly (3), syndactyly (3), inguinal hernia (2), diaphragmatic hernia/Morgagni, genu recurvatum/bowed legs, rib/sternum anomaly, scoliosis/congenital
    [Show full text]