The Human Blood Atlas A1 17

Total Page:16

File Type:pdf, Size:1020Kb

The Human Blood Atlas A1 17 Sponsored by Produced by the Science/AAAS Custom Publishing Office www.proteinatlas.org Blood cell types Hematopoietic Stem Cell Blood cells make up approximately 40% of the blood volume and originate from stem cells in the bone marrow, where they mature into erythrocytes (red blood cells), platelets, and a large number of white Common Common blood cell populations that circulate throughout the body. Myeloid Progenitor Lymphoid Progenitor Erythrocytes (red blood cells) are small non-nucleated cells that transport oxygen and represent the most numerous cell type in the blood. Platelets circulate in the blood until they are activated by tissue damage, Mastcell Myeloblast Erythrocytes Platelets NK cell Lymphocytes where they aid in blood clot formation. Granulocytes are a category of white blood cells involved in defending against bacteria and parasites. They are characterized by the presence of granules in their cytoplasm that contain, e.g., defensins, lysozymes and histamines. Cell types include neutrophils (most common), eosinophils, Basophil Neutrophil Eosinophil B cell T cell and basophils. Monocyte Myeloid Plasmacytoid Monocytes are the largest of the white blood cells and are involved in Dendritic Cell Dendritic Cell immune responses to bacteria, viruses, and fungi. They can differentiate into macrophages that can penetrate into tissues and perform defense functions. Dendritic cells are regulators of immune responses. They engulf and present fragments of pathogens to T cells in lymph nodes, enabling the Macrophage adaptive immune response. Natural killer (NK) cells are involved in innate immunity and release Introduction to the Human Protein Atlas cytotoxic granules to fight tumors and cells infected by a virus. The Human Protein Atlas (www.proteinatlas.org) is an open access database with RNA and protein profiles of all genes across cells, tissues, and organs in the human body. A subsection of this database, the Human Blood Atlas, focuses on the expression levels of all human protein-coding genes in major blood immune B cells produce antibodies to fight infections as part of the adaptive cell populations. In addition, the proteins actively secreted to blood (the Human Secretome) are described. immune response. T cells regulate the adaptive immune response and consists of many different cell types. 68 355 40 225 53 67 7 54 Eosinophil Neutrophil Basophil T-reg 35 24 9 20 Naive 42 8 CD4 T-cell 15 12 Intermediate 24 106 48 monocyte 18 7 Naive 15 Non-classical Naive CD8 T-cell The genes in human blood cells monocyte 7 B-cell 19 8 114 15 Each node in this network shows the number of genes that are active in a specific immune cell Classical 18 7 22 17 10 monocyte MAIT population—both the number of genes enriched (high relative abundance of the protein) in a Memory 7 T-cell B-cell single cell type (red) and the number of genes enriched in several related cell types (yellow). For 9 Plasmacytoid 34 8 7 details and list of genes, see www.proteinatlas.org/blood. 7 10 DC 45 Memory 44 38 CD8 T-cell 22 15 11 266 NK-cell 21 Myeloid Memory 10 12 13 97 51 DC 8 GdTCR CD4 T-cell 16 Function of blood proteins Blood coagulation The liquid portion of blood is called plasma. It No annotated function Complement pathway contains a complex mixture of proteins including Acute phase clotting factors, antibodies, hormones, and enzymes, Apolipoprotein as well as sugars and fat particles. The abundance Other Chemokine of blood proteins varies considerably, with only 10 Cell adhesion Blood disease and immune activation proteins making up more than 90% of the total Developmental protein Interferon protein mass. Albumin is the most abundant, while Defense Certain proteins are essential for activating immune cells upon infection and their dysfunction signaling proteins like cytokines and hormones Immunity leads to infectious disease susceptibility. Other proteins play critical roles in regulating Interleukin appear at much lower concentrations. The Human immunity. Proteins with such activating or inhibiting functions are interesting targets for drug Blood Atlas lists the functional role of all proteins Enzyme inhibitor development. Examples of pharmaceutical drugs include anti histamines that control predicted to be actively secreted into the blood allergic reactions and biopharmaceuticals used to lower the levels of cytokines in autoimmune Cytokine (figure on right) as well as their concentrations as diseases, such as multiple sclerosis (TNF-α) and psoriasis (IL-17). In addition, targeting proteins determined by mass spectrometry and/or Enzyme that limit immune responses—so called checkpoint inhibitors such as PD-L1 and CTLA4—can immunoassays (www.proteinatlas.org/blood). Growth factor boost the efficacy of immune cells, leading to dramatic improvements in patients with certain blood cancers, as well as showing promise in the treatment of solid tumors. Receptor Hormone Transport Neuropeptide A century of advances in immunology reflected in Nobel prizes awarded for discoveries involving blood cells and proteins 1977 1957 1962 Rosalyn Yalow 1984 2011 2015 Daniel Bovet Max Ferdinand Perutz and for the development of Georges Kohler and Ralph M. Steinman William C. Campbell 1945 radioimmunoassays César Milstein Discovery of the and Satoshi Ōmura 1908 Alexander Fleming, Ernst for his work on John Cowdery Kendrew 1999 2018 of peptide hormones Techniques for dendritic cell and its role for a novel therapy Paul Ehrlich Boris Chain, 1948 1952 antihistamine Structure of hemoglobin 1972 1980 1996 Günter Blobel James P. Allison producing monoclonal in adaptive immunity against infections by Side-chain theory about how 1913 Howard Walter Florey Arne Tiselius Selman Waksman 1955 1960 Gerald Edelman Roger Guillemin and Baruj Benacerraf, Jean Peter Doherty and for the discovery and Tasuko Honjo antibodies roundworm parasites antibodies tackle invaders Charles Richet 1919 1926 1930 for the discovery of for his research on for discovering Vincent du Vigneaud 1958 Frank MacFarlane Burnet and Rodney Porter Andrew V. Schally Dausset, and George Snell 1987 Rolf Zinkernagel of the signal peptide Bruce A. Beutler and Discovery of cancer Ilya Ilyich Mechnikov Discovery of anaphylaxis, a Jules Bordet The Svedberg Karl Landsteiner penicillin and making it electrophoresis and streptomycin, the first for the first synthesis Fred Sanger and Peter Medawar Elucidating the for their discoveries Regulation of immune Nils Jerne Susumu Tonegawa How the immune that directs the Jules A. Hoffmann Tu Youyou therapy by inhibiting Identification of phagocytic life-threatening allergic Discovery of complement for his studies of proteins using Discovery of human blood groups and the into an antibiotic to cure the complex nature antibiotic to work of a polypeptide the structure Concept of immunological structure of of peptide hormone response by proteins on the Network theory for Genetic mechanism for the system recognizes transport of proteins Activation of innate for a novel therapy immune regulators cells that engulf intruders reaction to toxins factors in blood serum analytical ultracentrifuge methods system for typing blood infectious diseases of serum proteins against tuberculosis hormone of insulin tolerance antibodies production surface of cells the immune system construction of antibodies virus-infected cells in the cell immunity against Malaria (checkpoint inhibition).
Recommended publications
  • Download Issue
    Cell Circuitry || Science Teaches English || The Chicken Genome Is Hot || Magnets in Medicine SEPTEMBER 2002 www.hhmi.org/bulletin Leading Doublea Life It’s a stretch, but doctors who work bench to bedside say they wouldn’t do it any other way. FEATURES 14 On Human Terms 24 The Evolutionary War A small—some say too small—group of Efforts to undermine evolution education have physician-scientists believes the best science evolved into a 21st-century marketing cam- requires patient contact. paign that relies on legal acumen, manipulation By Marlene Cimons of scientific literature and grassroots tactics. 20 Engineering the Cell By Trisha Gura Adam Arkin sees the cell as a mechanical system. He hopes to transform molecular 28 Call of the Wild biology into a kind of cellular engineering Could quirky, new animal models help scien- and in the process, learn how to move cells tists learn how to regenerate human limbs or from sickness to health. avert the debilitating effects of a stroke? By M. Mitchell Waldrop By Kathryn Brown 24 In front of a crowd of 1,500, Ohio’s Board of Education heard testimony on whether students should learn about intelligent design in science class. DEPARTMENTS 2 NOTA BENE 33 PERSPECTIVE ulletin Intelligent Design Is a Cop-Out 4 LETTERS September 2002 || Volume 15 Number 3 NEWS AND NOTES HHMI TRUSTEES PRESIDENT’S LETTER 5 JAMES A. BAKER, III, ESQ. 34 Senior Partner, Baker & Botts A Creative Influence In from the Fields ALEXANDER G. BEARN, M.D. Executive Officer, American Philosophical Society 35 Lost on the Tip of the Tongue Adjunct Professor, The Rockefeller University UP FRONT Professor Emeritus of Medicine, Cornell University Medical College 36 Biology by Numbers FRANK WILLIAM GAY 6 Follow the Songbird Former President and Chief Executive Officer, SUMMA Corporation JAMES H.
    [Show full text]
  • NO TRONO DA CIÊNCIA I: MULHERES NO NOBEL DA FISIOLOGIA OU MEDICINA (1947-1988) Elas Proferiramduranteassolenidadesdepremiação
    TEMA EM DESTAQUE NO TRONO DA CIÊNCIA I: MULHERES NO NOBEL DA FISIOLOGIA OU MEDICINA (1947-1988) LUZINETE SIMÕES MINELLA RESUMO NO TRONO DA CIÊNCIA I: MULHERES NO NOBEL DA FISIOLOGIA OU MEDICINA (1947-1988) FISIOLOGIA CIÊNCIA I: MULHERES NO NOBEL DA NO TRONO DA O artigo reflete sobre as trajetórias das cinco cientistas que receberam o Nobel na Fisiologia ou Medicina entre 1947 e 1988, abordadas como as pioneiras dessa área no curso desta premiação criada em 1901. Numa perspectiva balizada pelos avanços da crítica feminista à ciência, dos campos de gênero e ciências e da história das ciências, o artigo sintetiza vários aspectos ligados às origens e formação dessas mulheres, ressaltando as interferências de gênero na construção das suas carreiras. A discussão visa a contribuir para o debate sobre a categoria feminização. Foram consultadas várias fontes, entre elas o site do prêmio no qual podem ser encontradas suas autobiografias, bem como os discursos e palestras que elas proferiram durante as solenidades de premiação. MULHERES • PRÊMIO NOBEL • FISIOLOGIA • MEDICINA IN THE REALM OF SCIENCE I: WOMEN NOBEL PRIZE IN PHYSIOLOGY OR MEDICINE (1947-1988) ABSTRACT The article discusses the path of the five women scientists who received the Nobel Prize in Physiology or Medicine, between 1947 and 1988, regarded as pioneers in this area in the course of this award created in 1901. In a perspective marked by advances in feminist criticism of science, in the fields of gender and science and the history of science, this article summarizes various aspects linked to the v.47 n.163 p.70-93 jan./mar.
    [Show full text]
  • Nobel Laureates Endorse Joe Biden
    Nobel Laureates endorse Joe Biden 81 American Nobel Laureates in Physics, Chemistry, and Medicine have signed this letter to express their support for former Vice President Joe Biden in the 2020 election for President of the United States. At no time in our nation’s history has there been a greater need for our leaders to appreciate the value of science in formulating public policy. During his long record of public service, Joe Biden has consistently demonstrated his willingness to listen to experts, his understanding of the value of international collaboration in research, and his respect for the contribution that immigrants make to the intellectual life of our country. As American citizens and as scientists, we wholeheartedly endorse Joe Biden for President. Name Category Prize Year Peter Agre Chemistry 2003 Sidney Altman Chemistry 1989 Frances H. Arnold Chemistry 2018 Paul Berg Chemistry 1980 Thomas R. Cech Chemistry 1989 Martin Chalfie Chemistry 2008 Elias James Corey Chemistry 1990 Joachim Frank Chemistry 2017 Walter Gilbert Chemistry 1980 John B. Goodenough Chemistry 2019 Alan Heeger Chemistry 2000 Dudley R. Herschbach Chemistry 1986 Roald Hoffmann Chemistry 1981 Brian K. Kobilka Chemistry 2012 Roger D. Kornberg Chemistry 2006 Robert J. Lefkowitz Chemistry 2012 Roderick MacKinnon Chemistry 2003 Paul L. Modrich Chemistry 2015 William E. Moerner Chemistry 2014 Mario J. Molina Chemistry 1995 Richard R. Schrock Chemistry 2005 K. Barry Sharpless Chemistry 2001 Sir James Fraser Stoddart Chemistry 2016 M. Stanley Whittingham Chemistry 2019 James P. Allison Medicine 2018 Richard Axel Medicine 2004 David Baltimore Medicine 1975 J. Michael Bishop Medicine 1989 Elizabeth H. Blackburn Medicine 2009 Michael S.
    [Show full text]
  • 2004 Albert Lasker Nomination Form
    albert and mary lasker foundation 110 East 42nd Street Suite 1300 New York, ny 10017 November 3, 2003 tel 212 286-0222 fax 212 286-0924 Greetings: www.laskerfoundation.org james w. fordyce On behalf of the Albert and Mary Lasker Foundation, I invite you to submit a nomination Chairman neen hunt, ed.d. for the 2004 Albert Lasker Medical Research Awards. President mrs. anne b. fordyce The Awards will be offered in three categories: Basic Medical Research, Clinical Medical Vice President Research, and Special Achievement in Medical Science. This is the 59th year of these christopher w. brody Treasurer awards. Since the program was first established in 1944, 68 Lasker Laureates have later w. michael brown Secretary won Nobel Prizes. Additional information on previous Lasker Laureates can be found jordan u. gutterman, m.d. online at our web site http://www.laskerfoundation.org. Representative Albert Lasker Medical Research Awards Program Nominations that have been made in previous years may be updated and resubmitted in purnell w. choppin, m.d. accordance with the instructions on page 2 of this nomination booklet. daniel e. koshland, jr., ph.d. mrs. william mccormick blair, jr. the honorable mark o. hatfied Nominations should be received by the Foundation no later than February 2, 2004. Directors Emeritus A distinguished panel of jurors will select the scientists to be honored. The 2004 Albert Lasker Medical Research Awards will be presented at a luncheon ceremony given by the Foundation in New York City on Friday, October 1, 2004. Sincerely, Joseph L. Goldstein, M.D. Chairman, Awards Jury Albert Lasker Medical Research Awards ALBERT LASKER MEDICAL2004 RESEARCH AWARDS PURPOSE AND DESCRIPTION OF THE AWARDS The major purpose of these Awards is to recognize and honor individuals who have made signifi- cant contributions in basic or clinical research in diseases that are the main cause of death and disability.
    [Show full text]
  • Biographical References for Nobel Laureates
    Dr. John Andraos, http://www.careerchem.com/NAMED/Nobel-Biographies.pdf 1 BIOGRAPHICAL AND OBITUARY REFERENCES FOR NOBEL LAUREATES IN SCIENCE © Dr. John Andraos, 2004 - 2021 Department of Chemistry, York University 4700 Keele Street, Toronto, ONTARIO M3J 1P3, CANADA For suggestions, corrections, additional information, and comments please send e-mails to [email protected] http://www.chem.yorku.ca/NAMED/ CHEMISTRY NOBEL CHEMISTS Agre, Peter C. Alder, Kurt Günzl, M.; Günzl, W. Angew. Chem. 1960, 72, 219 Ihde, A.J. in Gillispie, Charles Coulston (ed.) Dictionary of Scientific Biography, Charles Scribner & Sons: New York 1981, Vol. 1, p. 105 Walters, L.R. in James, Laylin K. (ed.), Nobel Laureates in Chemistry 1901 - 1992, American Chemical Society: Washington, DC, 1993, p. 328 Sauer, J. Chem. Ber. 1970, 103, XI Altman, Sidney Lerman, L.S. in James, Laylin K. (ed.), Nobel Laureates in Chemistry 1901 - 1992, American Chemical Society: Washington, DC, 1993, p. 737 Anfinsen, Christian B. Husic, H.D. in James, Laylin K. (ed.), Nobel Laureates in Chemistry 1901 - 1992, American Chemical Society: Washington, DC, 1993, p. 532 Anfinsen, C.B. The Molecular Basis of Evolution, Wiley: New York, 1959 Arrhenius, Svante J.W. Proc. Roy. Soc. London 1928, 119A, ix-xix Farber, Eduard (ed.), Great Chemists, Interscience Publishers: New York, 1961 Riesenfeld, E.H., Chem. Ber. 1930, 63A, 1 Daintith, J.; Mitchell, S.; Tootill, E.; Gjersten, D., Biographical Encyclopedia of Scientists, Institute of Physics Publishing: Bristol, UK, 1994 Fleck, G. in James, Laylin K. (ed.), Nobel Laureates in Chemistry 1901 - 1992, American Chemical Society: Washington, DC, 1993, p. 15 Lorenz, R., Angew.
    [Show full text]
  • Milestones and Personalities in Science and Technology
    History of Science Stories and anecdotes about famous – and not-so-famous – milestones and personalities in science and technology BUILDING BETTER SCIENCE AGILENT AND YOU For teaching purpose only December 19, 2016 © Agilent Technologies, Inc. 2016 1 Agilent Technologies is committed to the educational community and is willing to provide access to company-owned material contained herein. This slide set is created by Agilent Technologies. The usage of the slides is limited to teaching purpose only. These materials and the information contained herein are accepted “as is” and Agilent makes no representations or warranties of any kind with respect to the materials and disclaims any responsibility for them as may be used or reproduced by you. Agilent will not be liable for any damages resulting from or in connection with your use, copying or disclosure of the materials contained herein. You agree to indemnify and hold Agilent harmless for any claims incurred by Agilent as a result of your use or reproduction of these materials. In case pictures, sketches or drawings should be used for any other purpose please contact Agilent Technologies a priori. For teaching purpose only December 19, 2016 © Agilent Technologies, Inc. 2016 2 Table of Contents The Father of Modern Chemistry The Man Who Discovered Vitamin C Tags: Antoine-Laurent de Lavoisier, chemical nomenclature Tags: Albert Szent-Györgyi, L-ascorbic acid He Discovered an Entire Area of the Periodic Table The Discovery of Insulin Tags: Sir William Ramsay, noble gas Tags: Frederick Banting,
    [Show full text]
  • Allergy – What’S in a Name?
    HISTORY OF ENT Allergy – what’s in a name? BY KATHERINE CONROY llergy is defined as an “abnormal immune reaction to an ordinarily harmless substance” [1], however Athe meaning of the word has taken many forms since its introduction in 1906 by Austrian Paediatrician and Immunologist, Clemens von Pirquet [2]. Combining his observations on the paediatric wards, where infectious diseases, vaccinations and diphtheria serum sickness were commonplace, and his knowledge of immune reactions in the laboratory, von Pirquet devised the term ‘allergy’, roughly translating as ‘different reaction’ in Greek. It grouped together illnesses such as asthma, hay fever and eczema, and placed them on the same spectrum as acquired immunity from vaccinations and reactions to therapeutic toxins. His conclusions were extrapolated by Charles Mantoux to develop his tuberculin test two years later. Unfortunately, this theory linking Clemens von Pirquet with a patient. Image courtesy of Wellcome Collection - https://wellcomecollection.org/works/yd78ffbn immunity and hypersensitivity, and von Piquet’s subsequent inference that antibodies could be both protective and also include morbidity – as governments References 1. AAAAI. The American Academy of Allergy, Asthma harmful, was dismissed by many of his peers, realised the economic cost of chronic illness. Allergy became a clinical specialty in its & Immunology. www.aaaai.org/conditions-and- who instead supported French Physiologist, treatments/conditions-dictionary/allergy Last Charles Richet. Richet’s work on reinjection own right, with dedicated clinics, journals accessed October 2020. of dogs with sea anemone toxins showed and professional organisations in the 2. Jackson M. Allergy, The History of a Modern Malady. that a small, second dose could induce a interwar years.
    [Show full text]
  • Dissociation and the Unconscious Mind: Nineteenth-Century Perspectives on Mediumship
    Journal of Scientifi c Exploration, Vol. 34, No. 3, pp. 537–596, 2020 0892-3310/20 HISTORICAL PERSPECTIVE Dissociation and the Unconscious Mind: Nineteenth-Century Perspectives on Mediumship C!"#$% S. A#&!"!'$ Parapsychology Foundation [email protected] Submitted December 18, 2019; Accepted March 21, 2020; Published September 15, 2020 https://doi.org/10.31275/20201735 Creative Commons License CC-BY-NC Abstract—There is a long history of discussions of mediumship as related to dissociation and the unconscious mind during the nineteenth century. A! er an overview of relevant ideas and observations from the mesmeric, hypnosis, and spiritualistic literatures, I focus on the writings of Jules Baillarger, Alfred Binet, Paul Blocq, Théodore Flournoy, Jules Héricourt, William James, Pierre Janet, Ambroise August Liébeault, Frederic W. H. Myers, Julian Ochorowicz, Charles Richet, Hippolyte Taine, Paul Tascher, and Edouard von Hartmann. While some of their ideas reduced mediumship solely to intra-psychic processes, others considered as well veridical phenomena. The speculations of these individuals, involving personation, and di" erent memory states, were part of a general interest in the unconscious mind, and in automatisms, hysteria, and hypnosis during the period in question. Similar ideas continued into the twentieth century. Keywords: mediumship; dissociation; secondary personalities; Frederic W. H. Myers; Théodore Flournoy; Pierre Janet INTRODUCTION Dissociation, a process involving the disconnection of a sense of identity, physical sensations, and memory from conscious experience, has been related to mediumship due to the latter’s sensory and motor automatism and changes of identity. In recent years there have been some conceptual discussions of dissociation and mediumship (e.g., Maraldi et al., 2019) as well as empirical studies exploring their 538 Carlos S.
    [Show full text]
  • The Research Imperative Arnold Theiler Memorial Lecture 2017
    The Research Imperative Arnold Theiler Memorial Lecture 2017 Robert O. Gilbert, FRCVS Professor, Ross University School of Veterinary Medicine Professor Emeritus, Cornell University Outline • Personal research in postpartum uterine disease of dairy cows • Reflections on research more generally • Production animal research • Research in veterinary practice • Academic practice • Private practice • The research imperative • For Society and the Profession • For Universities • For individuals Up to circa 1990 • Most agreed “endometritis” was bad for reproduction • Several disagreed • Miller HV, et al., Bov.Pract. 1980 • Griffin, Hartigan & Nunn, Theriogenology, 1974 a,b • Diagnosis • N. America: palpation and visible exudate • Incidence < 20 % • Europe: vaginoscopy • Incidence ~ 40 % Maurice E. “Pete” White Editor, Cornell Veterinarian Creator, “Consultant” Bovine Endometritis: The burden of proof. Cornell Vet., 1992 Endometrial cytology Endometrial cytology Endometritis • Cows at 40 – 60 days postpartum • End of voluntary waiting period • 5 dairy herds in Central New York • Endometrial cytology • No further involvement in management • Followed up via dairy records Endometritis Survival Analysis Effect of Endometritis at 7 weeks 1.0 Endometritis-negative Endometritis-positive 0.8 0.6 122 days 158 days P = 0.002 Proportion Open 0.4 30% censored 0.2 P = 0.003 18% censored 0.0 0 50 100 150 200 250 300 350 Time (Days) Some central questions • Which pathogens are primarily responsible for endometritis? • Which metabolic and immune factors mediate susceptibility to and pathogenesis of endometritis? • How does endometritis mediate infertility? Which pathogens cause endometritis? • Most cows have postpartum uterine bacterial infection • Only a subset develops disease • Extensively studied by conventional means • Mixed postpartum population initially judged to be insignificant (Griffin, Hartigan, Nunn, 1974) • Persistence of Trueperella pyogenes beyond 21 days detrimental to fertility • Synergistic action of T.
    [Show full text]
  • Balcomk41251.Pdf (558.9Kb)
    Copyright by Karen Suzanne Balcom 2005 The Dissertation Committee for Karen Suzanne Balcom Certifies that this is the approved version of the following dissertation: Discovery and Information Use Patterns of Nobel Laureates in Physiology or Medicine Committee: E. Glynn Harmon, Supervisor Julie Hallmark Billie Grace Herring James D. Legler Brooke E. Sheldon Discovery and Information Use Patterns of Nobel Laureates in Physiology or Medicine by Karen Suzanne Balcom, B.A., M.L.S. Dissertation Presented to the Faculty of the Graduate School of The University of Texas at Austin in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy The University of Texas at Austin August, 2005 Dedication I dedicate this dissertation to my first teachers: my father, George Sheldon Balcom, who passed away before this task was begun, and to my mother, Marian Dyer Balcom, who passed away before it was completed. I also dedicate it to my dissertation committee members: Drs. Billie Grace Herring, Brooke Sheldon, Julie Hallmark and to my supervisor, Dr. Glynn Harmon. They were all teachers, mentors, and friends who lifted me up when I was down. Acknowledgements I would first like to thank my committee: Julie Hallmark, Billie Grace Herring, Jim Legler, M.D., Brooke E. Sheldon, and Glynn Harmon for their encouragement, patience and support during the nine years that this investigation was a work in progress. I could not have had a better committee. They are my enduring friends and I hope I prove worthy of the faith they have always showed in me. I am grateful to Dr.
    [Show full text]
  • Centenary of the Death of Elie Metchnikoff: a Visionary and an Outstanding Team Leader
    + MODEL Microbes and Infection xx (2016) 1e18 www.elsevier.com/locate/micinf Review Centenary of the death of Elie Metchnikoff: a visionary and an outstanding team leader Jean-Marc Cavaillon a,*, Sandra Legout b a Unit Cytokines & Inflammation, Institut Pasteur, 28 Rue Dr. Roux, 75015 Paris, France b Centre de Ressources en Information Scientifique, Institut Pasteur, 28 Rue Dr. Roux, 75015 Paris, France Received 22 April 2016; accepted 26 May 2016 Available online ▪▪▪ Abstract Elie Metchnikoff passed away on July 15th, 1916. He is considered to be the father of phagocytes, cellular innate immunity, probiotics, and gerontology. In all of these fields, he was a visionary. To achieve such a notability and produce so many masterpieces, Metchnikoff used more than 30 animal species to support his findings, and his pasteurian laboratory published more than 200 papers in the Annales de l’Institut Pasteur. As a wonderful team leader and a great mentor, during his 28 years at Institut Pasteur, he welcomed and supervised more than 100 young trainees. Trained as an embryologist, he contributed to the birth of immunology and to the understanding of physiology and pathology. Indeed, Metchnikoff and his team investigated inflammation in guinea pigs, rats, frogs; studied infectious diseases in monkeys, caimans, geese; investigated aging in parrots, dogs, humans; proposed hypotheses to understand age-associated senility using rabbits and humans; developed germ free tadpoles, flies, chicks; studied the gut flora in bats, horses, birds, humans; and popularized the use of probiotics as a tool to delay the deleterious effects of toxic compounds derived from putrefactive gut bacteria.
    [Show full text]
  • History of Microbiology Milton Wainwright University of Sheffield Joshua Lederbergl the Rockefeller University
    History of Microbiology Milton Wainwright University of Sheffield Joshua Lederbergl The Rockefeller University I. Observations without Application ness of the nature and etiology of disease, with the II. The Spontaneous Generation Controversy result that the majority of the traditional killer dis- III. Tools of the Trade eases have now been conquered. Similar strides IV. Microorganisms as Causal Agents of have been made in the use of microorganisms in Disease industry. and more recently attempts are being made V. Chemotherapy and Antibiosis to apply our knowledge of microbial ecology and VI. Microbial Metabolism and Applied physiology to help solve environmental problems. A Microbiology dramatic development and broadening of the subject VII. Nutrition, Comparative Biochemistry, and of microbiology has taken place since World War II. Other Aspects of Metabolism Microbial genetics, molecular biology, and bio- VIII. Microbial Genetics technology in particular have blossomed. It is to be IX. Viruses and Lysogeny: The Plasmid hoped that these developments are sufficiently op- Concept portune to enable us to conquer the latest specter of X. Virology disease facing us, namely AIDS. Any account of the XI. Mycology and Protozoology, history of a discipline is. by its very nature, a per- Microbiology’s Cinderellas sonal view: hopefully, what follows includes all the XII. Modern Period major highlights in the development of our science. The period approximating 1930-1950 was a ‘vi- cennium” of extraordinary transformation of micro- Glossary biology, just prior to the landmark publication on the structure of DNA by Watson and Crick in 1953. Antibiotics Antimicrobial agents produced b) We have important milestones for the vicennium: living organisms Jordan and Falk (1928) and “System of Bacteriol- Bacterial genetics Study of genetic elements and ogy” (1930) at its start are magisterial reviews of hereditary in bacteria prior knowledge and thought.
    [Show full text]