Electronic Filter Design Handbook

Total Page:16

File Type:pdf, Size:1020Kb

Electronic Filter Design Handbook ELECTRONIC FILTER DESIGN HANDBOOK Arthur B. Williams Fred J.Taylor Fourth Edition McGRAW-HILL New York Chicago San Francisco Lisbon London Madrid Mexico City Milan New Delhi San Juan Seoul Singapore Sydney Toronto CONTENTS Preface xiii Chapter 1. Introduction to Modern Network Theory 1 1.1. Modern Network Theory / / The Pole-Zero Concept / 1 Synthesis of Filters from Polynomials / 2 Active vs. Passive Filters / 7 Bibliography / 8 Chapter 2. Sefecting the Response Characteristic 9 2.1. Frequency-Response Normalization / 9 Frequency and Impedance Scaling / 9 Low-Pass Normalization / 12 High-Pass Normalization / 14 Bandpass Normalization / 16 Band-Reject Normalization / 24 2.2. Transient Response / 29 The Effect of Nonuniform Time Delay / 29 Step Response of Networks / 32 Impulse Response / 34 Estimating Transient Characteristies / 34 2.3. Butterworth Maximally Fiat Amplitude / 42 2.4. Chebyshev Response / 47 2.5. Bessel Maximally Fiat Delay / 52 2.6. Linear Phase with Equiripple Error / 64 2.7. Transitional Filters / 64 2.8. Syncbronously Tuned Filters / 70 2.9. Elliptic-Function Filters / 79 Using the Filter Solutions (Book Version) Software for Design of Elliptic Function Low- Pass Filters / 86 Using the ELI 1.0 Program for the Design of Odd-Order Elliptic-Function Low-Pass Filters upto the 3Ist Order / 87 2.10. Maximally Fiat Delay with Chebyshev Stopband / 88 Bibliography / 88 Chapter 3. Low-Pass Filter Design 89 3.1. LCLow-Pass Filters / 89 All-Pole Filters / 89 v VI CONTENTS Elliptic-Function Filters / 90 Duality and Reciprocity / 93 Designing for Unequal Terminadons / 93 Effects of Dissipation / 97 Using Predistorted Designs / 99 3.2. Active Low-Pass Filters / 103 All-Pole Filters / 103 VCVS Uniform Capacitor Structure / /13 The Low-Sensitivity Second-Order Section / 114 Elliptic-Function VCVS Filters / 116 State-Variable Low-Pass Filters / 120 Generalized Impcdance Converters / 128 Bibliography / 135 Chapter 4. High-Pass Filter Design 137 4.1. LC High-Pass Filters / 137 The Lüw-Pass to High-Pass Transformation / 137 The T-to-Pi Capacitance Conversion / 142 4.2. Active High-Pass Filters / 143 The Low-Pass to High-Pass Transformation / 143 All-Pole High-Pass Filters / 144 Elliptic-Function High-Pass Filters / 145 State-Variable High-Pass Filters / 151 High-Pass Filters Using the GIC / 159 Active Elliptic-Function High-Pass Filters Using theGIC / 161 Bibliography / 164 Chapter 5. Bandpass Filters 165 5.1. LC Bandpass Filters / 165 Wideband Filters / 165 Narrowband Filters / 167 Narrowband Coupied Resonators / 183 Predistorted Bandpass Filters / 189 Elliptic-Function Bandpass Filers / 192 5.2. Active Bandpass Filters / 199 Wideband Filters / 199 The Bandpass Transformation of Low-Pass Poles and Zeros / 202 Sensitivity in Active Bandpass Circuits / 207 All-Pole Bandpass Configuraüons / 207 Elliptic-Function Bandpass Filters / 224 State-Variabie (Biquad) Circuit / 230 Bibliography / 237 Chapter 6. Band-Reject Filters 239 6.1. LC Band-Reject Filters / 239 The Band-Reject Circuit Transformation / 239 All-Pole Band-Reject Filters / 240 Elliptic-Function Band-Reject Filters / 245 Null Networks / 252 6.2. Active Band-Reject Filters / 257 Wideband Active Band-Reject Filters / 257 CONTENTS VII Band-Reject Transformation of Low-Pass Poles / 261 Narrowband Active Band-Reject Filters / 265 Active Null Networks / 271 Bibliography / 277 Chapter 7. Networks for the Time Domain 7.1. All-Pass Transfer Functions / 279 First-Order All-Pass Transfer Functions / 279 Second-Order All-Pass Transfer- Functions / 281 7.2. Delay Equalizer Sections / 283 LC All-Pass Structurcs / 283 Active All-Pass Structures / 287 7.3. Design of Delay Lines / 292 The Low-Pass to All-Pass Transformation / 292 LC Delay Lines / 293 Active Delay Lines / 297 7.4. Delay Equalizationof Filters / 299 Firsl-Order Equalizers / 300 Second-Order Equalizers / 303 7.5. Wideband 90° Phase-Shift Networks / 307 7.6. Adjustable Delay and Amplitude Equalizers / 313 LC Delay Equalizers / 314 LC Delay and Amplitude Equalizers / 3/6 Active Delay and Amplitude Equalizers / 319 Bibliography / 323 Chapter 8. Refinements in LC Filter Design and the Use of Resistive Networks 8.1. Introduction / 325 8.2. Tapped Inductors / 325 8.3. Circuit Transformations / 327 Norton'sCapacitance Transformer / 328 Narrowband Approximations / 330 8.4. Designing with Parasitic Capacitance / 333 8.5. Amplitude Equalization for Inadequate Q ! 336 8.6. Coil-Saving Elliptic-Function Bandpass Filters / 340 8.7. Filter Tuning Methods / 343 8.8. Measurement Methods / 345 Insertion Loss and Frequency Response / 345 iaput Impedance of Filter Networks / 346 Time-Domain Characteristics / 347 Measuring the Q of inductors / 351 8.9. Designing for Unequal Impedances / 351 Impedance Matching / 351 Exponentially Tapered Impedance Sealing / 351 Minimum Loss Resistive Päd for Impedance Matching / 352 8.10. Symmetrica] Attenuators / 355 Bridged T Attenuator / 356 8.11. Puwer Splitters / 357 Resistive Power Splitters / 357 A Magic-T Splitter / 357 Bibliography / 360 CONTENTS Chapter 9. Design and Selection of Inductors for LC Filters 361^ 9.1. Basic Principlesof Magnefic-Circuil Design / 361 Units of Measurement / 361 Saturation and DC Polarization / 362 Inductor Losses / 363 Effect of an Air Gap / 363 The Design of Coil Windings / 364 9.2. MPP Toroidal Coils / 367 Charactcristics of Gores / 367 Winding Methods for Q Optimizaüon / 371 Designing MPP Toroids from Q Curvcs / 372 9.3. Ferrite Pot Gores / 376 The Pol Gore Structure / 376 Hlectrical Properties of Ferrite Pot Cores / 377 Winding of Bobbins / 380 RMCorcs / 382 9.4. High-Frequency Coil Design / 383 Powdered-lron Toroids / 383 Winding Methods / 384 Air-Core Inductors / 387 Surface Mount RF Inductors / 387 Bibliography / 392 Chapter 10. Component Selection for LC and Active Filters 393 10.1. Capacitor Selection / 393 Properlies ofDielcctri es / 393 Capacitor Conslruction / 394 Selecling Capacitors for Filier Applications / 398 10.2. Resistors / 403 Fixed Resistors / 403 Variable Resistors / 408 Resistor Johnson (Thermal) Noise / 409 10.3. Operational Amplifiers / 410 A Review of Basic Üperationai-Amplifier Theory / 410 An Analysis ofNon-ldeal Amplifiers / 413 Practical Amplifier Considerations / 415 Operational Amplifier Selection / 417 A Survey of Populär Amplifier Types / 419 10.4. General Manufacturing Considerations / 422 Bibliography / 423 Chapter 11. Normalized Filter Design Tables *25 Chapter 12. Introduction to Digital Filters 497 12.1. Introduction to Signal Processing / 497 12.2. Introduction to Digital Signal Processing (DSP) / 497 12.3. The Relation to Analog Filters / 498 Digital Advantages / 498 Analog Advantages / 499 12.4. Signal Representation / 500 CONTENTS IX 12.5. Digital Data Representation / 500 12.6. Sampling Theorem / 505 12.7. Signal Reconstruction / 506 12.8. Practica] Interpolators / 506 12.9. Sampling Modalities / 507 12.10. AHasing / 507 12.11. Data Conversion / 509 12.12. Finite Wordlength Effects / 510 12.13. Mathematical Signaland System Representation / 512 12.14. Spectral Representation / 514 Bibliography / 515 Chapter 13. Finite Impuise-Response Fiiters 517 1.3.1. Digital Pikers / 517 13.2. FIR Digital Filters / 517 13.3. Stability / 519 13.4. Linear-Phase Behavior / 520 13.5. Non-Linear-Phase Behavior / 522 13.6. Minimum Phase Behavior / 523 13.7. Fir Design Methods / 524 13.8. Window Design Melhod / 524 13.9. Non-Reetangular Window Design Method / 526 13.10. Least Squares FIR Design / 530 13.11. Equiripple FIR Design / 532 13.12. Equiripple Hubert FIR Design / 53S 13.13. Equiripple Differentiator FIR Design / 538 13.14. Special Case FIR Digital Filters / 539 13.15. Multiplier-Free FIR Filters / 541 13.! 6. L-Band FIR Filters / 542 13.17. Mirror and Complement FIR Filters / 544 13.18. Frequency Sampling FIR Filters / 547 13.19. Savitzky-Golay FIR Filters / 550 13.20. Raised FIR Filters / 551 13.21. Matlab FIR Support / 553 13.22. FirArchitectures / 553 13.23. Direct Form FIR / 553 13.24. Transpose Form FIR / 557 13.25. Symmetrie Form FIR / 558 13.26. Lattice Form FIR / 558 13.27. DistributedArithmetic / 561 13.28. Canonic Signed Digit (CSD) / 564 13.29. Finite Wordlength Effect / 566 13.30. CoefficientRounding / 567 13.31. Arithmetic Error / 568 13.32. Scaling / 569 13.33. Multiple Mac Architecture / 569 Bibliography / 571 Chapter 14. infinite Impuise-Response Filters 573 14.1. lntroduction / 573 14.2. Classic Analog Filters / 576 14.3. Matlab Analog Filter Production / 579 14.4. Impulse Invariant HR / 580 X CONTENTS 14.5. Bilinear z-TransformllR / 583 14.6. Matlab Classic HR Support / 588 14.7. Other HR Models / 590 14.8. Comparison of FTR and HR Filters / 592 14.9. State Variable Filter Model / 593 14.10. Architecture / 595 14.11. Direel II Architecture / 596 14.12. Matlab Direct II Architecture / 598 14.13. Cascade Architecture / 600 14.14. The Matlab Cascade Architecture / 602 14.15. Parallel Architecture / 604 14.16. Lattice/Ladder Architecture / 605 14.17. Matlab Ladder/Lattice Support / 608 14.18. Normal Architecture / 609 14.19. Stability / 611 14.20. Finite Wordlength Effects / 612 14.21. Overflow Arithmetic / 613 14.22. Register Overflow / 614 14.23. Arithmetic Enrors / 617 14.24. Coefficient Rounding Errors / 622 14.25. Scaling / 623 14.26. Zero Input Limit Cycling / 624 Bibliography / 626 Chapter 15. Multirate Digital Filters 627 15.1. IntroductiontoMulti-Rate Signal Processing / 627 15.2. Decimation / 628 15.3. Interpolation / 633 15.4. Sample Rate Conversion / 636 15.5. Polyphase Representation / 637 15.6. Filter Banks
Recommended publications
  • Filtering and Suppressing Transients
    Another EMC resource from EMC Standards EMC techniques in electronic design Part 3 - Filtering and Suppressing Transients Helping you solve your EMC problems 9 Bracken View, Brocton, Stafford ST17 0TF T:+44 (0) 1785 660247 E:[email protected] Design Techniques for EMC Part 3 — Filtering and Suppressing Transients Originally published in the EMC Compliance Journal in 2006-9, and available from http://www.compliance-club.com/KeithArmstrong.aspx Eur Ing Keith Armstrong CEng MIEE MIEEE Partner, Cherry Clough Consultants, www.cherryclough.com, Member EMCIA Phone/Fax: +44 (0)1785 660247, Email: [email protected] This is the third in a series of six articles on basic good-practice electromagnetic compatibility (EMC) techniques in electronic design, to be published during 2006. It is intended for designers of electronic modules, products and equipment, but to avoid having to write modules/products/equipment throughout – everything that is sold as the result of a design process will be called a ‘product’ here. This series is an update of the series first published in the UK EMC Journal in 1999 [1], and includes basic good EMC practices relevant for electronic, printed-circuit-board (PCB) and mechanical designers in all applications areas (household, commercial, entertainment, industrial, medical and healthcare, automotive, railway, marine, aerospace, military, etc.). Safety risks caused by electromagnetic interference (EMI) are not covered here; see [2] for more on this issue. These articles deal with the practical issues of what EMC techniques should generally be used and how they should generally be applied. Why they are needed or why they work is not covered (or, at least, not covered in any theoretical depth) – but they are well understood academically and well proven over decades of practice.
    [Show full text]
  • Electronics Filter Design Handbook Pdf
    Electronics Filter Design Handbook Pdf Emigratory Mohammed reflow no tooter misalleging unmanfully after Lem waits singingly, quite cochleardivestible. Vijay Runny accompanied Kevan accessorized her London maniacally, Islamised hewhile plunder Wayland his pterosaur graves some very bowler cruelly. sexually. Garni and The constraints if varying detail, capacitor filter design point increases the frequency must be negative Infinite are arranged used in forward source. At frequencies significantly above the passband. Reporting and query capabilities. Electronic filter design handbook Vanderbilt University. It to design handbook electronics ebook, circuit designs allow precise value changes proportion to easily accomplished unit step response would at telebyte, john wiley this. Title electronic filter design handbook Author cireneulucio Length 766 pages. If you consume good through this Website with Others. This design filters designed as shown in electronic filter designs comprising a pdf ebooks online or otherwise a maximum image method modulation but this section with noise from previous chapters designing. Both components in whisper are lowpass prototype. The design and implementation of the filter by frequency and impedance. This can multiplying everything highest power The equation cycle delay, feedback, when an opposite reciprocal of the lowpass model. Solution Manual Computer Security Principles and Practice 4th Edition by William. From the Back Cover seal Up running Major Developments in Electronic Filter Design including the Latest Advances in Both Analog and Digital Filters Long-. Several different musical instruments produce notes may find useful. Techniques digital filters and analog integrated circuits while covering the emerging fields of digital and analog VLSI circuits computer-aided design and. Figure but that are a quarter the stopband The width in care center shorten the section line length.
    [Show full text]
  • EE 210 Lab Exercise #10: RC Filters
    EE 210 Lab Exercise #10: RC Filters EE210 crate, 0.01uF capacitor, ITEMS REQUIRED Breadboard Submit questions and plots at the ASSIGNMENT beginning of the next lab period Introduction An electronic filter is basically a circuit that only lets a specified range of frequencies “pass” to the output, while blocking all of the other undesired frequencies. Typically the signal to be blocked is considered “noise”, or an unwanted signal interfering with the desired signal. This undesired signal doesn’t have to be “noise” per say, it can also be any another signals that are combined with the desired signal, as in the case of communication systems. A filter can be considered a two-port network as shown below: Iin Iout + + Vin Filter Vout - - output The transfer function of the network is defined as H = , where the inputs and outputs may input be either voltage or current. The range of frequencies that a filter will pass is the “pass-band”, and the range of frequencies that the filter will reject is the “stop-band”. The cut-off frequency is defined as the frequency at which the transition between the pass-band and stop-band occurs. The four basic types of ideal filters are shown below in Figure 1. As will be seen in the exercise, a practical filter will not have the sharp transitions between the pass-band and stop-band. Figure 1: Transfer functions of 4 ideal filters 1 Passive RC Filters Passive RC filters are the most basic type of electric filter, consisting of a single resistor and capacitor in series as shown in Figure 2.
    [Show full text]
  • Electronic Filters Design Tutorial - 3
    Electronic filters design tutorial - 3 High pass, low pass and notch passive filters In the first and second part of this tutorial we visited the band pass filters, with lumped and distributed elements. In this third part we will discuss about low-pass, high-pass and notch filters. The approach will be without mathematics, the goal will be to introduce readers to a physical knowledge of filters. People interested in a mathematical analysis will find in the appendix some books on the topic. Fig.2 ∗ The constant K low-pass filter: it was invented in 1922 by George Campbell and the Running the simulation we can see the response meaning of constant K is the expression: of the filter in fig.3 2 ZL* ZC = K = R ZL and ZC are the impedances of inductors and capacitors in the filter, while R is the terminating impedance. A look at fig.1 will be clarifying. Fig.3 It is clear that the sharpness of the response increase as the order of the filter increase. The ripple near the edge of the cutoff moves from Fig 1 monotonic in 3 rd order to ringing of about 1.7 dB for the 9 th order. This due to the mismatch of the The two filter configurations, at T and π are various sections that are connected to a 50 Ω displayed, all the reactance are 50 Ω and the impedance at the edges of the filter and filter cells are all equal. In practice the two series connected to reactive impedances between cells.
    [Show full text]
  • Metamaterial-Inspired CMOS Tunable Microwave Integrated Circuits for Steerable Antenna Arrays
    Metamaterial-Inspired CMOS Tunable Microwave Integrated Circuits For Steerable Antenna Arrays by Mohamed A.Y. Abdalla A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Graduate Department of Electrical and Computer Engineering University of Toronto °c Copyright by Mohamed Abdalla 2009 Library and Archives Bibliothèque et Canada Archives Canada Published Heritage Direction du Branch Patrimoine de l’édition 395 Wellington Street 395, rue Wellington Ottawa ON K1A 0N4 Ottawa ON K1A 0N4 Canada Canada Your file Votre référence ISBN: 978-0-494-59036-2 Our file Notre référence ISBN: 978-0-494-59036-2 NOTICE: AVIS: The author has granted a non- L’auteur a accordé une licence non exclusive exclusive license allowing Library and permettant à la Bibliothèque et Archives Archives Canada to reproduce, Canada de reproduire, publier, archiver, publish, archive, preserve, conserve, sauvegarder, conserver, transmettre au public communicate to the public by par télécommunication ou par l’Internet, prêter, telecommunication or on the Internet, distribuer et vendre des thèses partout dans le loan, distribute and sell theses monde, à des fins commerciales ou autres, sur worldwide, for commercial or non- support microforme, papier, électronique et/ou commercial purposes, in microform, autres formats. paper, electronic and/or any other formats. The author retains copyright L’auteur conserve la propriété du droit d’auteur ownership and moral rights in this et des droits moraux qui protège cette thèse. Ni thesis. Neither the thesis nor la thèse ni des extraits substantiels de celle-ci substantial extracts from it may be ne doivent être imprimés ou autrement printed or otherwise reproduced reproduits sans son autorisation.
    [Show full text]
  • Study of Active Filters Sandeep Nethi, Konduru Nishanth Raju
    Study of Active Filters Sandeep Nethi Konduru Nishanth Raju Mr. Bharath Kumara Department of Electronics & Department of Electronics & Department of Electronics & Communication Engineering, Communication Engineering, Communication Engineering, Ramaiah University of Applied Ramaiah University of Applied Ramaiah University of Applied Sciences, Bangalore, Sciences, Bangalore, Sciences, Bangalore, Karnataka - 560054, India. Karnataka - 560054, India. Karnataka - 560054, India. ABSTRACT factor) can frequently be set with cheap variable resistors. In recent years research on active filters has increased. In active filter circuits we can adjust one parameter Active Filters are basically a type of an analog without affecting the other. Since their basic electronic filter that uses active components such as an compensation principles were proposed around 1970, Amplifier. Amplifiers involved in a filter design can be much research has been done on active filters and their used to improve the filter’s performance and practical applications. Furthermore, the reliability is the predictability, while avoiding the need for inductors key factor to evaluate the performance of the (which are typically expensive compared to other components, which is calculated by the failure rate of the components). An amplifier prevents the load impedance components over the prescribed time period of use under of the following stage from affecting the characteristics various operating conditions. Moreover, the reliability of of the filter. This paper presents a review of Active these components is varying by the selection of Filters, comparison between Active and Passive Filters, composition of the material as well as fabrication types of Active Filters, present status of active filters. In process. The reliability prediction (RP) is measured near future term “Active Filters” will have much wider during the design and development phase, and the scope than it has now.
    [Show full text]
  • Passive Low Pass Filter Search
    Low Pass Filter - Passive RC Filter Tutorial http://www.electronics-tutorials.ws/filter/filter_2.html Home (http://www.electronics-tutorials.ws) » Filters (http://www.electronics-tutorials.ws/category/�lter) » Passive Low Pass Filter Search Ads by Google ► Low Pass Filter ► Bandpass Filter ► Passive Filter Circuit Passive Low Pass Filter Low Pass Filter Introduction Basically, an electrical �lter is a circuit that can be designed to modify, reshape or reject all unwanted frequencies of an electrical signal and accept or pass only those signals wanted by the circuits designer. In other words they “�lter-out” unwanted signals and an ideal �lter will separate and pass sinusoidal input signals based upon their frequency. In low frequency applications (up to 100kHz), passive �lters are generally constructed using simple RC (Resistor-Capacitor) networks, while higher frequency �lters (above 100kHz) are usually made from RLC (Resistor-Inductor-Capacitor) components. Passive Filters (http://www.amazon.com/gp/aws/cart/add.html?ASIN.1=B00EHIEGL0&Quantity.1=1& AWSAccessKeyId=AKIAIOB4VMPIMBIMN7NA&AssociateTag=basicelecttut-20) are made up of passive components such as resistors, capacitors and inductors and have no amplifying elements (transistors, op-amps, etc) so have no signal gain, therefore their output level is always less than the input. Filters are so named according to the frequency range of signals that they allow to pass through them, while blocking or “attenuating” the rest. The most commonly used �lter designs are the: 1. The Low Pass Filter – the low pass �lter only allows low frequency signals from 0Hz to its cut-o� frequency, ƒc point to pass while blocking those any higher.
    [Show full text]
  • 2Ghz Microstrip Low Pass Filter Design with Open-Circuited Stub
    IOSR Journal of Electronics and Communication Engineering (IOSR-JECE) e-ISSN: 2278-2834,p- ISSN: 2278-8735.Volume 13, Issue 2, Ver. II (Mar. - Apr. 2018), PP 01-09 www.iosrjournals.org 2GHz Microstrip Low Pass Filter Design with Open-Circuited Stub Akinwande Jubril and Dominic S Nyitamen Electrical/Electronic Engineering Department, Nigerian Defence Academy, Kaduna. email- Corresponding author: Akinwande Jubril Abstract: A 3 pole 2GHz Butterworth microstrip low pass filter is designed and fabricated based on the Open- circuited stub microstrip realization technique. The filter is designed using the FR4 substrate and the performance of the design is simulated using the ADS EM simulation tool. A comparison of the fabricated Open-circuited stub filter’s performance with the ADS simulation showed a marginal average deviation of less than 5%. At the cut-off frequency of 2GHz, the Open circuited stub filter produced an insertion loss of -3.009dB, while the stop-band characteristics exhibited an attenuation of -19.359dB at the stop-band frequency of 4GHz and a peak attenuation up to -35dB at 4.5GHz. ----------------------------------------------------------------------------------------------------------------------------- ---------- Date of Submission: 22-03-2018 Date of acceptance: 07-04-2018 ----------------------------------------------------------------------------------------------------------------------------- ---------- I. Introduction Microwave filters are required in all RF-communication techniques[1] and they are an integral part of a large variety of wireless communication systems, including cellular phones, satellite communications and radar [2]. They represent a class of electronic filters, designed to operate on signals in the megahertz and gigahertz frequency spectrum i.e. microwaves. Microwave filters have many applications including duplexers, diplexers, combiners, signal selectors etc. Low pass filters are used in communication systems to suppress spurious modes in oscillators and leakages in mixers[3].
    [Show full text]
  • Chapter 6 ELECTRONIC FILTERS, TUNED AMPLIFIERS And
    Chapter 6 ELECTRONIC FILTERS, TUNED AMPLIFIERS and OSCILLATORS 6.1 Filter types, characteristics, parameters1 An electronic filter is a system which transmit signals in a specified frequency band to pass through with very little loss, while signals at some other frequency bands are severely attenuated through the system. An ideal low-pass filter will have a brick-wall type of transmission characteristics K o Gain 0 p Frequency Thus, the gain is constant over the frequency range 0 < w < wp and the gain abruptly reduces to zero at w = wp. The frequency range 0 wp is called the pass-band, the frequency wp is called the pass-band edge frequency. The band w > wp of frequencies is known as the stop- band. When the pass-band is 0 < w < wp and stop-band is w > wp, the filter is termed as a low- pass filter. Other types of filters are defined as follows. Passband Stopband Filter type wp < w < infinite 0 < w < wp High- pass wp1 < w < wp2 0 < w < wp1, wp2 < w < ∞ Band-pass 0 < w < wp1, wp2 < w < ∞ wp1 < w < wp2 Band -stop 0 < w < ∞ - All- pass An ideal characteristic such as the brick-wall type is seldom achievable in practice. Thus the ideal characteristic is approximated by suitable mathematical function. This is known as filter approximation problem. In this approximation, the loss in the pass-band is held 1 R. Raut and M.N.S. Swamy, Modern Analog Filter Analysis and Design, A Practical Approach , WILEY- VCH, ISBN 978-3-527-40766-8, © 2010. Created by: R.
    [Show full text]
  • Design & Size Reduction Analysis of Micro Strip Hairpin Band Pass Filters
    FACULTY OF ENGINEERING AND SUSTAINABLE DEVELOPMENT . Design & Size Reduction Analysis of Micro Strip Hairpin Band Pass Filters Hamid Ali Hassan (19861218-T670) January 2015 Master’s Thesis in Electronics Master’s Program in Electronics/Telecommunications Examiner: Dr. Jose Chilo Supervisor: Mr. Zain Ahmed Khan Hamid Ali Hassan Design And Size Reduction Analysis Of Micro Strip HBP Filters Preface During the completion of this task, I have many people to thank who have guided me through this task and period of my professional growth. Foremost, I would like to thank Professor Wendy Van Moer, for accepting and encouraging my idea for working in Microwave Designing. I am thankful to her for providing me the initial assistance and literature to set off. It was because of her assistance in the initial phase of the project that I was able to keep myself motivated for the rest of the period until project completion. I am also thankful to Prof. Dr. Jose’ Chilo for help in reassessing my project boundaries. I am grateful to Mr. Zain Ahmed Khan, for the daily supervision of the project and his guidance for writing and organizing the technical report document. He showed patience while I performed the task at my own pace. It helped me creatively during the process. Finally, I would like to thank, Efrain Zenteno, for giving me his time in lab for manufacturing and testing process. Without his direction and effort at the end, it would not have been possible to perform the end task the way it was and should have been performed. iii Hamid Ali Hassan Design And Size Reduction Analysis Of Micro Strip HBP Filters Abstract This thesis presents Design, Measurement and analysis for size reduction of the Coupled line micro strip Hairpin band pass filters (MHBPF’s).
    [Show full text]
  • OTA-C Filter Synthesis Based on Existing LC Solutions Vančo B
    Proceedings of the 8th Small Systems Simulation Symposium 2020, Niš, Serbia, 12th-14th February 2020 OTA-C Filter Synthesis Based on Existing LC Solutions Vančo B. Litovski, Jelena Milojković, and Miljana Milić Abstract: The problem of synthesis of high frequency analog integrated CMOS circuits is visited. Theory is developed and implementation demonstrated for synthesis of analog OTA-C (or GM-C) filters based on existing low-pass LC solutions. Instructive example is given produced by the RM software for filter design. This report may be considered as a case study supported by a rather complex design example. Keywords – Filter design, OTA-C filters, Gm-C filters, CMOS integrated filters, High frequency filters, Cascade circuit synthesis. I. INTRODUCTION a) One of the problems encountered in high frequency analog integrated filter production is the area needed to produce an inductor. It is realized in a form of a flat spiral line the inductance of which is limited not only by the area but by its huge parasitic capacitance. One such inductor realized in CMOS was reported in [1]. The most important electrical parameters of an integrated inductor are the inductance (L), its resistance (R), its parasitic capacitance and its Q-factor (Q) as a secondary parameter. The layout of one inductor of this kind is depicted in Fig. 1a. One may see that the wires are twisted to reduce the parasitic capacitance. This inductor is specific in the b) sense that it has a tap terminal allowing specific uses. Fig. 1b depicts the dependence of the reactance and the resistance of the integrated inductor on the signal frequency which is an additional problem when designing filters with this kind of components.
    [Show full text]
  • Resear Research Article
    zz Available online at http://www.journalcra.com INTERNATIONAL JOURNAL OF CURRENT RESEARCH International Journal of Current Research Vol. 5, Issue, 11, pp. 3404-3407, November, 2013 ISSN: 0975-833X RESEARCH ARTICLE COMPARATIVE STUDY OF LC LADDER FILTER WITH 3-OTA SIMULATED INDUCTORS *1Manjula V. Katageri and 2Mutsaddi, M. M. 1 Government2 First Grade College, Bagalkot, India ARTICLE INFO ABSTRACTBasaveshwar Science College, Bagalkot, India Article History: The innovative technique of realising floating inductor using OTA’s as an active element and grounded capacitor for the realisation of the floating inductor was comparitively studied in developing four stage LC ladder low pass Received 14th September, 2013 Received in revised form filters. A comparitive study of 3 OTA’s and grounded capacitor of different configarations, as modified technique of floating inductor in ladder filter applications was studied in comparision with gyrator concept. The response of 18th September, 2013 each stage exhibits the shootng characteristics of the output voltage in respect of filtering characteristic property Accepted 26th October, 2013 with sharp roll off ratio in the modified technique of floating inductor. A comparative study on four stage LC Published online 19th November, 2013 ladder low pass filter using gyrator concept was exhibiting best performance in filtering action which has high frequency application in instrumentation. Key words: LPF-Low Pass Filter, OTA – Operational Transconductance Amplifier, Si-L-Simulated inductor. Copyright © Manjula V. Katageri and Mutsaddi, M. M. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
    [Show full text]