Metamaterial-Inspired CMOS Tunable Microwave Integrated Circuits for Steerable Antenna Arrays

Total Page:16

File Type:pdf, Size:1020Kb

Metamaterial-Inspired CMOS Tunable Microwave Integrated Circuits for Steerable Antenna Arrays Metamaterial-Inspired CMOS Tunable Microwave Integrated Circuits For Steerable Antenna Arrays by Mohamed A.Y. Abdalla A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Graduate Department of Electrical and Computer Engineering University of Toronto °c Copyright by Mohamed Abdalla 2009 Library and Archives Bibliothèque et Canada Archives Canada Published Heritage Direction du Branch Patrimoine de l’édition 395 Wellington Street 395, rue Wellington Ottawa ON K1A 0N4 Ottawa ON K1A 0N4 Canada Canada Your file Votre référence ISBN: 978-0-494-59036-2 Our file Notre référence ISBN: 978-0-494-59036-2 NOTICE: AVIS: The author has granted a non- L’auteur a accordé une licence non exclusive exclusive license allowing Library and permettant à la Bibliothèque et Archives Archives Canada to reproduce, Canada de reproduire, publier, archiver, publish, archive, preserve, conserve, sauvegarder, conserver, transmettre au public communicate to the public by par télécommunication ou par l’Internet, prêter, telecommunication or on the Internet, distribuer et vendre des thèses partout dans le loan, distribute and sell theses monde, à des fins commerciales ou autres, sur worldwide, for commercial or non- support microforme, papier, électronique et/ou commercial purposes, in microform, autres formats. paper, electronic and/or any other formats. The author retains copyright L’auteur conserve la propriété du droit d’auteur ownership and moral rights in this et des droits moraux qui protège cette thèse. Ni thesis. Neither the thesis nor la thèse ni des extraits substantiels de celle-ci substantial extracts from it may be ne doivent être imprimés ou autrement printed or otherwise reproduced reproduits sans son autorisation. without the author’s permission. In compliance with the Canadian Conformément à la loi canadienne sur la Privacy Act some supporting forms protection de la vie privée, quelques may have been removed from this formulaires secondaires ont été enlevés de thesis. cette thèse. While these forms may be included Bien que ces formulaires aient inclus dans in the document page count, their la pagination, il n’y aura aucun contenu removal does not represent any loss manquant. of content from the thesis. Metamaterial-Inspired CMOS Tunable Microwave Integrated Circuits For Steerable Antenna Arrays Mohamed A.Y. Abdalla Doctor of Philosophy, 2009 Graduate Department of Electrical and Computer Engineering University of Toronto Abstract This thesis presents the design of radio-frequency (RF) tunable active inductors (TAIs) with independent inductance (L) and quality factor (Q) tuning capability, and their application in the design of RF tunable phase shifters and directional couplers for wireless transceivers. The independent L and Q tuning is achieved using a modi¯ed gyrator-C architecture with an additional feedback element. A general framework is developed for this Q- enhancement technique making it applicable to any gyrator-C based TAI. The design of a 1.5V, grounded, 0.13¹m CMOS TAI is presented. The proposed circuit achieves a 0.8nH-11.7nH tuning range at 2GHz, with a peak-Q in excess of 100. Furthermore, printed and integrated versions of tunable positive/negative refractive index (PRI /NRI) phase shifters, are presented in this thesis. The printed phase shifters are comprised of a microstrip transmission-line (TL) loaded with varactors and TAIs, which, when tuned together, extends the phase tuning range and produces a low return loss. In contrast, the integrated phase shifters utilize lumped L-C sections in place of ii the TLs, which allows for a single MMIC implementation. Detailed experimental results are presented in the thesis. As an example, the printed design achieves a phase of -40o to +34o at 2.5GHz. As another application for the TAI, a recon¯gurable CMOS directional coupler is pre- sented in this thesis. The proposed coupler allows electronic control over the coupling coe±cient, and the operating frequency while insuring a low return loss and high iso- lation. Moreover, it allows switching between forward and backward operation. These features, combined together, would allow using the coupler as a duplexer to connect a transmitter and a receiver to a single antenna. Finally, a planar electronically steerable patch array is presented. The 4-element array uses the tunable PRI/NRI phase shifters to center its radiation about the broad- side direction. This also minimizes the main beam squinting across the operating bandwidth. The feed network of the array uses impedance transformers, which allow identical interstage phase shifters. The proposed antenna array is capable of continu- ously steering its main beam from -27o to +22o o® the broadside direction with a gain of 8.4dBi at 2.4GHz. iii Acknowledgments I would like to gratefully acknowledge the enthusiastic supervision of my advisors Pro- fessor Khoman Phang, and Professor George Eleftheriades for their continuous guid- ance, and inspiration. Throughout the course of my Ph.D. I have learned alot from them, and I will always remain indebted to them. I would like to thank Professor Khoman Phang for consistently being there for me, week after week to meet and dis- cuss all the di®erent aspects of this work. As for Professor George Eleftheriades, I would like to deeply thank him for his invaluable advice and feedback, without which this work would not have been accomplished. I would also like to extend my thanks the former and current graduate students in my research group as well as in the electro-magnetics group for their invaluable technical assistance and friendship from which I have learned alot. From the electronics group, I would like to thank Dr. Anas Hamoui, Dr. Ahmed Gharbiya, Dr. Mohammad Ha- jirostam, Joseph Aziz, Pradip Thachile, Masum Hossain, Farsheed Mahmoudi, Stephen Liu, Euhan Chong, Kentaro Yamamoto, Dr. Faisal Musa, Robert Wang, Dr. Afshin Haftbaradaran, Imran Ahmed, Navid Yaghini, Oleksiy Tyshchenko, Kevin Banovic, Tony Kao, David Allred, Akram Nafee, Trevor Caldwell, Samir Parikh, and Nasim Nikkhoo. From the Electro-magnetics group, I would like to thank Marco Antoniades for all the long hours we spent in technical discussions, and also Rubaiyat Islam, Dr. Omar iv Acknowledgements Siddiqui, Ashwin Iyer, Joshua Wong, and Peter Wang. Also, I would like to thank Tse Chan and Gerald Dubois for their continuous technical support. I would also like to extend my thanks the Canadian Microelectronics Corporation (CMC) for providing the fabrication facilities, and for NORTEL Networks, and the Natural Sciences and Engineering Research Council (NSERC) of Canada for ¯nancially supporting this work. Lastly, I would like to thank my beloved wife Aliaa, my parents, and my sister for their continuous support, and encouragement throughout the course of my Ph.D., and last but not least, I would like to thank my daughter Jana, whom without knowing has been a motivation for my accomplishments. The least I can do is to dedicate this work to them. v List of Related Publications The material presented in this thesis has been presented in part in the following journal and conference publications. Journal Publications 1. M. Abdalla, K. Phang, and G. V. Eleftheriades, \A 0:13¹m CMOS phase shifter using tunable positive/negative refractive index transmission line," IEEE Microw. Wireless Components Lett., Vol. 16, no. 12, pp. 705-707, Dec. 2006. 2. M. Abdalla, K. Phang, and G. V. Eleftheriades, \Printed and integrated CMOS positive/negative refractive-index phase shifters using tunable active inductors," IEEE Trans. Microw. Theory and Tech., Vol. 55, no. 8, pp. 1611-1623, August 2007. 3. M. Abdalla, K. Phang, and G. V. Eleftheriades, \A compact highly- recon¯g- urable CMOS MMIC directional coupler," IEEE Trans. Microw. Theory and Tech., Vol. 56, no. 2, pp. 305-3019, Feb. 2008. 4. M. Abdalla, K. Phang, and G. V. Eleftheriades, \A Planar Electronically Steer- able Patch Array Using Tunable PRI/NRI Phase Shifters," IEEE Trans. Microw. Theory and Tech., accepted for publication Dec. 2008. vi Conference Publications 1. M. Abdalla, and K. Phang , \A 0:13¹m CMOS active inductor based on a modi- ¯ed gyrator-C architecture," Micronet Annual Workshop, Ottawa, Canada, May 2005. 2. M. Abdalla, G. V. Eleftheriades, and K. Phang, \A di®erential 0:13¹m CMOS active inductor for high frequency phase shifters," Proc. IEEE Circuits and Sys- tems ISCAS 06, Kos, Greece, pp. 3341-3344, May 2006. 3. M. A. Y. Abdalla, K. Phang, and G. V. Eleftheriades, \a tunable metamaterial phase-shifter structure based on a 0:13¹m CMOS active inductor," Proc. 36th European Microwave Conf., Manchester, Great Britain, pp. 325-328, Sept. 2006. 4. M. A. Y. Abdalla, K. Phang, and G. V. Eleftheriades, \A bi-directional elec- tronically tunable CMOS phase shifter using the high-pass topology," 2007 IEEE MTT-S Int. Microwave Symp. Dig., Honolulu, Hawaii, pp. 2173-2176, June 2007. 5. M. A. Y. Abdalla, K. Phang, and G. V. Eleftheriades, \A steerable series-fed phased array architecture using tunable PRI/NRI phase shifters," Invited paper, Int. Workshop on Antenna Tech. iWAT 08, Chiba, Japan, March 2008. vii Contents List of Figures xii List of Tables xviii List of Acronyms xx List of Symbols xxii 1 Introduction 1 1.1 Overview . 1 1.2 Phased Antenna Array Front-Ends . 1 1.3 Thesis Scope and Outline . 5 2 Background 8 2.1 Metamaterials . 8 2.1.1 History . 8 2.1.2 Metamaterial Applications . 10 2.2 Tunable Inductors . 11 2.2.1 MEMS Tunable Inductors . 11 2.2.2 Varactor-Based Tunable Inductors . 12 2.2.3 Transmission-Line Tunable Inductors . 13 2.2.4 Gyrator-C Tunable Inductors . 13 2.3 Phase Shifters . 22 2.3.1 Switched-Line Phase Shifters . 23 viii Contents 2.3.2 Reflection-Type Phase Shifters . 24 2.3.3 Transmission-Type Phase Shifters . 25 2.3.4 Lumped-Element L-C Phase Shifters .
Recommended publications
  • Filtering and Suppressing Transients
    Another EMC resource from EMC Standards EMC techniques in electronic design Part 3 - Filtering and Suppressing Transients Helping you solve your EMC problems 9 Bracken View, Brocton, Stafford ST17 0TF T:+44 (0) 1785 660247 E:[email protected] Design Techniques for EMC Part 3 — Filtering and Suppressing Transients Originally published in the EMC Compliance Journal in 2006-9, and available from http://www.compliance-club.com/KeithArmstrong.aspx Eur Ing Keith Armstrong CEng MIEE MIEEE Partner, Cherry Clough Consultants, www.cherryclough.com, Member EMCIA Phone/Fax: +44 (0)1785 660247, Email: [email protected] This is the third in a series of six articles on basic good-practice electromagnetic compatibility (EMC) techniques in electronic design, to be published during 2006. It is intended for designers of electronic modules, products and equipment, but to avoid having to write modules/products/equipment throughout – everything that is sold as the result of a design process will be called a ‘product’ here. This series is an update of the series first published in the UK EMC Journal in 1999 [1], and includes basic good EMC practices relevant for electronic, printed-circuit-board (PCB) and mechanical designers in all applications areas (household, commercial, entertainment, industrial, medical and healthcare, automotive, railway, marine, aerospace, military, etc.). Safety risks caused by electromagnetic interference (EMI) are not covered here; see [2] for more on this issue. These articles deal with the practical issues of what EMC techniques should generally be used and how they should generally be applied. Why they are needed or why they work is not covered (or, at least, not covered in any theoretical depth) – but they are well understood academically and well proven over decades of practice.
    [Show full text]
  • Electronics Filter Design Handbook Pdf
    Electronics Filter Design Handbook Pdf Emigratory Mohammed reflow no tooter misalleging unmanfully after Lem waits singingly, quite cochleardivestible. Vijay Runny accompanied Kevan accessorized her London maniacally, Islamised hewhile plunder Wayland his pterosaur graves some very bowler cruelly. sexually. Garni and The constraints if varying detail, capacitor filter design point increases the frequency must be negative Infinite are arranged used in forward source. At frequencies significantly above the passband. Reporting and query capabilities. Electronic filter design handbook Vanderbilt University. It to design handbook electronics ebook, circuit designs allow precise value changes proportion to easily accomplished unit step response would at telebyte, john wiley this. Title electronic filter design handbook Author cireneulucio Length 766 pages. If you consume good through this Website with Others. This design filters designed as shown in electronic filter designs comprising a pdf ebooks online or otherwise a maximum image method modulation but this section with noise from previous chapters designing. Both components in whisper are lowpass prototype. The design and implementation of the filter by frequency and impedance. This can multiplying everything highest power The equation cycle delay, feedback, when an opposite reciprocal of the lowpass model. Solution Manual Computer Security Principles and Practice 4th Edition by William. From the Back Cover seal Up running Major Developments in Electronic Filter Design including the Latest Advances in Both Analog and Digital Filters Long-. Several different musical instruments produce notes may find useful. Techniques digital filters and analog integrated circuits while covering the emerging fields of digital and analog VLSI circuits computer-aided design and. Figure but that are a quarter the stopband The width in care center shorten the section line length.
    [Show full text]
  • Tunable Terahertz Metamaterial Based on a Dielectric Cube Array with Disturbed Mie Resonance
    Metamaterials '2012: The Sixth International Congress on Advanced Electromagnetic Materials in Microwaves and Optics Tunable terahertz metamaterial based on a dielectric cube array with disturbed Mie resonance D.S. Kozlov1, M.A. Odit1, and I.B. Vendik1, Young-Geun Roh2, Sangmo Cheon2, Chang- Won Lee2 1 Department of Microelectronics & Radio Engineering St. Petersburg Electrotechnical University “LETI” 5, Prof. Popov Str., 197376, St. Petersburg, Russia Fax: +7 812-3460867; email: [email protected] 2 Samsung Advanced Institute of Technology Yong-in 449-912, Korea Fax: + 82–312809349; email: [email protected] Abstract Tunable metamaterial operating in terahertz (THz) frequency range based on dielectric cubic parti- cles with deposited conducting resonant strips was investigated. The frequency of the Mie reso- nances depends on the electric length of the strip. The simulated structure shows tunability over 20 GHz with -30 dB on/off ratio. This method of control can be applied for a design of tunable meta- material based on various dielectric resonant inclusions. 1. Introduction THz radiation can be used for nondestructive medical scanning, security screening, quality control, atmospheric investigation, space research, etc. [1, 2]. Artificially manufactured structures, known as metamaterials, allow obtaining desired electromagnetic properties in any frequency region. Metamate- rials operating in THz frequency range have been proposed in [3]. Controllable devices such as tuna- ble filters, switches (modulators) or phase shifters are required in order to control spectrum, power, and directivity of THz radiation. In this work we suggest and analyze tunable metamaterials based on resonant dielectric inclusions. 2. Metamaterial based on dielectric resonators There is a number of structures with negative values of dielectric permittivity and magnetic permeabil- ity.
    [Show full text]
  • EE 210 Lab Exercise #10: RC Filters
    EE 210 Lab Exercise #10: RC Filters EE210 crate, 0.01uF capacitor, ITEMS REQUIRED Breadboard Submit questions and plots at the ASSIGNMENT beginning of the next lab period Introduction An electronic filter is basically a circuit that only lets a specified range of frequencies “pass” to the output, while blocking all of the other undesired frequencies. Typically the signal to be blocked is considered “noise”, or an unwanted signal interfering with the desired signal. This undesired signal doesn’t have to be “noise” per say, it can also be any another signals that are combined with the desired signal, as in the case of communication systems. A filter can be considered a two-port network as shown below: Iin Iout + + Vin Filter Vout - - output The transfer function of the network is defined as H = , where the inputs and outputs may input be either voltage or current. The range of frequencies that a filter will pass is the “pass-band”, and the range of frequencies that the filter will reject is the “stop-band”. The cut-off frequency is defined as the frequency at which the transition between the pass-band and stop-band occurs. The four basic types of ideal filters are shown below in Figure 1. As will be seen in the exercise, a practical filter will not have the sharp transitions between the pass-band and stop-band. Figure 1: Transfer functions of 4 ideal filters 1 Passive RC Filters Passive RC filters are the most basic type of electric filter, consisting of a single resistor and capacitor in series as shown in Figure 2.
    [Show full text]
  • Tunable Metamaterial with Gold and Graphene Split-Ring Resonators and Plasmonically Induced Transparency
    nanomaterials Article Tunable Metamaterial with Gold and Graphene Split-Ring Resonators and Plasmonically Induced Transparency Qichang Ma, Youwei Zhan and Weiyi Hong * Guangzhou Key Laboratory for Special Fiber Photonic Devices and Applications & Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, South China Normal University, Guangzhou 510006, China; [email protected] (Q.M.); [email protected] (Y.Z.) * Correspondence: [email protected]; Tel.: +86-185-203-89309 Received: 28 November 2018; Accepted: 20 December 2018; Published: 21 December 2018 Abstract: In this paper, we propose a metamaterial structure for realizing the electromagnetically induced transparency effect in the MIR region, which consists of a gold split-ring and a graphene split-ring. The simulated results indicate that a single tunable transparency window can be realized in the structure due to the hybridization between the two rings. The transparency window can be tuned individually by the coupling distance and/or the Fermi level of the graphene split-ring via electrostatic gating. These results could find significant applications in nanoscale light control and functional devices operating such as sensors and modulators. Keywords: metamaterials; mid infrared; graphene split-ring; gold split-ring; electromagnetically induced transparency effect 1. Introduction Electromagnetically-induced transparency (EIT) is a concept originally observed in atomic physics and arises due to quantum interference, resulting in a narrowband transparency window for light propagating through an originally opaque medium [1,2]. The EIT effect extended to classical optical systems using plasmonic metamaterials leads to new opportunities for many important applications such as slow light modulator [3–6], high sensitivity sensors [7,8], quantum information processors [9], and plasmonic switches [10–12].
    [Show full text]
  • Reconfigurable Metasurface Antenna Based on the Liquid Metal
    micromachines Article Reconfigurable Metasurface Antenna Based on the Liquid Metal for Flexible Scattering Fields Manipulation Ting Qian Shanghai Technical Institute of Electronics and Information, Shanghai 200240, China; [email protected] Abstract: In this paper, we propose a reconfigurable metasurface antenna for flexible scattering field manipulation using liquid metal. Since the Eutectic gallium indium (EGaIn) liquid metal has a melting temperature around the general room temperature (about 30 ◦C), the structure based on the liquid metal can be easily reconstructed under the temperature control. We have designed an element cavity structure to contain liquid metal for its flexible shape-reconstruction. By melting and rotating the element structure, the shape of liquid metal can be altered, resulting in the distinct reflective phase responses. By arranging different metal structure distribution, we show that the scattering fields generated by the surface have diverse versions including single-beam, dual-beam, and so on. The experimental results have good consistency with the simulation design, which demonstrated our works. The presented reconfigurable scheme may promote more interest in various antenna designs on 5G and intelligent applications. Keywords: liquid-metal metasurface; reconfigurable metasurface; reconfigurable antenna; beam ma- nipulation Citation: Qian, T. Reconfigurable 1. Introduction Metasurface Antenna Based on the The concept of metamaterials has attracted much attention in the past decade. Meta- Liquid Metal for Flexible Scattering materials are three-dimensional artificial structures with special electromagnetic properties. Fields Manipulation. Micromachines Due to the fact that metamaterials can be designed artificially, they can be widely used in a 2021, 12, 243. https://doi.org/ variety of applications, such as negative and zero refraction [1], perfect absorption [2–4], 10.3390/mi12030243 invisibility cloaking [5–8], dielectrics lenses [9,10] and vortex beams [11,12].
    [Show full text]
  • Design, Fabrication and Testing of Tunable RF Meta-Atoms Derrick Langley
    Air Force Institute of Technology AFIT Scholar Theses and Dissertations Student Graduate Works 6-14-2012 Design, Fabrication and Testing of Tunable RF Meta-atoms Derrick Langley Follow this and additional works at: https://scholar.afit.edu/etd Part of the Engineering Science and Materials Commons Recommended Citation Langley, Derrick, "Design, Fabrication and Testing of Tunable RF Meta-atoms" (2012). Theses and Dissertations. 1128. https://scholar.afit.edu/etd/1128 This Dissertation is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more information, please contact [email protected]. k DESIGN, FABRICATION AND TESTING OF TUNABLE RF META-ATOMS DISSERTATION Derrick Langley, Captain, USAF AFIT/DEE/ENG/12-04 DEPARTMENT OF THE AIR FORCE AIR UNIVERSITY AIR FORCE INSTITUTE OF TECHNOLOGY Wright-Patterson Air Force Base, Ohio APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. The views expressed in this dissertation are those of the author and do not reflect the official policy or position of the United States Air Force, Department of Defense, or the U.S. Government. This material is declared a work of the U.S. Government and is not subject to copyright protection in the United States. AFIT/DEE/ENG/12-04 DESIGN, FABRICATION AND TESTING OF TUNABLE RF META-ATOMS DISSERTATION Presented to the Faculty Graduate School of Engineering and Management Air Force Institute of Technology Air University Air Education and Training Command In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Derrick Langley, B.S.E.E., M.S.E.E.
    [Show full text]
  • Electronic Filters Design Tutorial - 3
    Electronic filters design tutorial - 3 High pass, low pass and notch passive filters In the first and second part of this tutorial we visited the band pass filters, with lumped and distributed elements. In this third part we will discuss about low-pass, high-pass and notch filters. The approach will be without mathematics, the goal will be to introduce readers to a physical knowledge of filters. People interested in a mathematical analysis will find in the appendix some books on the topic. Fig.2 ∗ The constant K low-pass filter: it was invented in 1922 by George Campbell and the Running the simulation we can see the response meaning of constant K is the expression: of the filter in fig.3 2 ZL* ZC = K = R ZL and ZC are the impedances of inductors and capacitors in the filter, while R is the terminating impedance. A look at fig.1 will be clarifying. Fig.3 It is clear that the sharpness of the response increase as the order of the filter increase. The ripple near the edge of the cutoff moves from Fig 1 monotonic in 3 rd order to ringing of about 1.7 dB for the 9 th order. This due to the mismatch of the The two filter configurations, at T and π are various sections that are connected to a 50 Ω displayed, all the reactance are 50 Ω and the impedance at the edges of the filter and filter cells are all equal. In practice the two series connected to reactive impedances between cells.
    [Show full text]
  • Highly Tunable Hybrid Metamaterials Employing Split-Ring Resonators Strongly Coupled to Graphene Surface Plasmons
    Highly tunable hybrid metamaterials employing split-ring resonators strongly coupled to graphene surface plasmons Peter Q. Liu,1†* Isaac J. Luxmoore,2†* Sergey A. Mikhailov,3 Nadja A. Savostianova,3 Federico Valmorra,1 Jerome Faist,1 Geoffrey R. Nash2 1Institute for Quantum Electronics, Department of Physics, ETH Zurich, Zurich CH-8093, Switzerland 2College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter EX4 4QF, United Kingdom 3Institute of Physics, University of Augsburg, Augsburg 86159, Germany †These authors contributed equally to the work. *To whom correspondence should be addressed. E-mail: [email protected]; [email protected] 1 Abstract Metamaterials and plasmonics are powerful tools for unconventional manipulation and harnessing of light. Metamaterials can be engineered to possess intriguing properties lacking in natural materials, such as negative refractive index. Plasmonics offers capabilities to confine light in subwavelength dimensions and to enhance light-matter interactions. Recently, graphene-based plasmonics has revealed emerging technological potential as it features large tunability, higher field-confinement and lower loss compared to metal-based plasmonics. Here, we introduce hybrid structures comprising graphene plasmonic resonators efficiently coupled to conventional split-ring resonators, thus demonstrating a type of highly tunable metamaterial, where the interaction between the two resonances reaches the strong-coupling regime. Such hybrid metamaterials are employed as high-speed THz modulators, exhibiting over 60% transmission modulation and operating speed in excess of 40 MHz. This device concept also provides a platform for exploring cavity-enhanced light-matter interactions and optical processes in graphene plasmonic structures for applications including sensing, photo-detection and nonlinear frequency generation.
    [Show full text]
  • Metamaterial Transmission Lines with Tunable Phase and Characteristic
    injection-locked active antenna for array applications, IEEE Trans Mi- lable characteristic impedance and dispersion (phase) [15–19]. crowave Theory Tech 50 (2002), 481–486. This can be achieved by loading the line by means of electrically 3. D. Bonefacˇcic´ and J. Bartolic´, Compact active integrated antenna with small reactive elements. Thanks to this controllability and the transistor oscillator and line impedance transformer, Electron Lett 36 small size of the unit cell of such lines, these artificial lines have (2000), 1519–1521. been applied to the design of compact devices with enhanced 4. N.M. Nguyen and R.G. Meyer, Start-up and frequency stability in performance and/or providing new functionalities. Obviously, the high-frequency oscillator, IEEE J Solid-State Circuits 27 (1992), 810– 820. superior characteristics of these artificial lines can be further enhanced by including tuning in the loading reactive elements. © 2009 Wiley Periodicals, Inc. This has led to the design of tunable components based on these artificial lines such as scanning leaky-wave antennas [1], tunable filters and resonators [3, 20, 21], and phase shifters [4], among others. Also, the synthesis of electrically controllable artificial METAMATERIAL TRANSMISSION LINES transmission lines has been applied to impedance matching [5]. WITH TUNABLE PHASE AND Based on split ring resonators or complementary split ring CHARACTERISTIC IMPEDANCE BASED resonators, tunable artificial lines have been designed [3, 22]. In ON COMPLEMENTARY SPLIT RING such lines, the resonant elements (split ring resonators or their complementary counterparts) are loaded with varactor diodes and, RESONATORS hence, the electrical characteristics of these resonators can be Adolfo Ve´ lez, Jordi Bonache, and Ferran Martín electronically controlled.
    [Show full text]
  • Study of Active Filters Sandeep Nethi, Konduru Nishanth Raju
    Study of Active Filters Sandeep Nethi Konduru Nishanth Raju Mr. Bharath Kumara Department of Electronics & Department of Electronics & Department of Electronics & Communication Engineering, Communication Engineering, Communication Engineering, Ramaiah University of Applied Ramaiah University of Applied Ramaiah University of Applied Sciences, Bangalore, Sciences, Bangalore, Sciences, Bangalore, Karnataka - 560054, India. Karnataka - 560054, India. Karnataka - 560054, India. ABSTRACT factor) can frequently be set with cheap variable resistors. In recent years research on active filters has increased. In active filter circuits we can adjust one parameter Active Filters are basically a type of an analog without affecting the other. Since their basic electronic filter that uses active components such as an compensation principles were proposed around 1970, Amplifier. Amplifiers involved in a filter design can be much research has been done on active filters and their used to improve the filter’s performance and practical applications. Furthermore, the reliability is the predictability, while avoiding the need for inductors key factor to evaluate the performance of the (which are typically expensive compared to other components, which is calculated by the failure rate of the components). An amplifier prevents the load impedance components over the prescribed time period of use under of the following stage from affecting the characteristics various operating conditions. Moreover, the reliability of of the filter. This paper presents a review of Active these components is varying by the selection of Filters, comparison between Active and Passive Filters, composition of the material as well as fabrication types of Active Filters, present status of active filters. In process. The reliability prediction (RP) is measured near future term “Active Filters” will have much wider during the design and development phase, and the scope than it has now.
    [Show full text]
  • Passive Low Pass Filter Search
    Low Pass Filter - Passive RC Filter Tutorial http://www.electronics-tutorials.ws/filter/filter_2.html Home (http://www.electronics-tutorials.ws) » Filters (http://www.electronics-tutorials.ws/category/�lter) » Passive Low Pass Filter Search Ads by Google ► Low Pass Filter ► Bandpass Filter ► Passive Filter Circuit Passive Low Pass Filter Low Pass Filter Introduction Basically, an electrical �lter is a circuit that can be designed to modify, reshape or reject all unwanted frequencies of an electrical signal and accept or pass only those signals wanted by the circuits designer. In other words they “�lter-out” unwanted signals and an ideal �lter will separate and pass sinusoidal input signals based upon their frequency. In low frequency applications (up to 100kHz), passive �lters are generally constructed using simple RC (Resistor-Capacitor) networks, while higher frequency �lters (above 100kHz) are usually made from RLC (Resistor-Inductor-Capacitor) components. Passive Filters (http://www.amazon.com/gp/aws/cart/add.html?ASIN.1=B00EHIEGL0&Quantity.1=1& AWSAccessKeyId=AKIAIOB4VMPIMBIMN7NA&AssociateTag=basicelecttut-20) are made up of passive components such as resistors, capacitors and inductors and have no amplifying elements (transistors, op-amps, etc) so have no signal gain, therefore their output level is always less than the input. Filters are so named according to the frequency range of signals that they allow to pass through them, while blocking or “attenuating” the rest. The most commonly used �lter designs are the: 1. The Low Pass Filter – the low pass �lter only allows low frequency signals from 0Hz to its cut-o� frequency, ƒc point to pass while blocking those any higher.
    [Show full text]