Electronic Filter Design Handbook

Electronic Filter Design Handbook

ELECTRONIC FILTER DESIGN HANDBOOK Arthur B. Williams Fred J.Taylor Fourth Edition McGRAW-HILL New York Chicago San Francisco Lisbon London Madrid Mexico City Milan New Delhi San Juan Seoul Singapore Sydney Toronto CONTENTS Preface xiii Chapter 1. Introduction to Modern Network Theory 1 1.1. Modern Network Theory / / The Pole-Zero Concept / 1 Synthesis of Filters from Polynomials / 2 Active vs. Passive Filters / 7 Bibliography / 8 Chapter 2. Sefecting the Response Characteristic 9 2.1. Frequency-Response Normalization / 9 Frequency and Impedance Scaling / 9 Low-Pass Normalization / 12 High-Pass Normalization / 14 Bandpass Normalization / 16 Band-Reject Normalization / 24 2.2. Transient Response / 29 The Effect of Nonuniform Time Delay / 29 Step Response of Networks / 32 Impulse Response / 34 Estimating Transient Characteristies / 34 2.3. Butterworth Maximally Fiat Amplitude / 42 2.4. Chebyshev Response / 47 2.5. Bessel Maximally Fiat Delay / 52 2.6. Linear Phase with Equiripple Error / 64 2.7. Transitional Filters / 64 2.8. Syncbronously Tuned Filters / 70 2.9. Elliptic-Function Filters / 79 Using the Filter Solutions (Book Version) Software for Design of Elliptic Function Low- Pass Filters / 86 Using the ELI 1.0 Program for the Design of Odd-Order Elliptic-Function Low-Pass Filters upto the 3Ist Order / 87 2.10. Maximally Fiat Delay with Chebyshev Stopband / 88 Bibliography / 88 Chapter 3. Low-Pass Filter Design 89 3.1. LCLow-Pass Filters / 89 All-Pole Filters / 89 v VI CONTENTS Elliptic-Function Filters / 90 Duality and Reciprocity / 93 Designing for Unequal Terminadons / 93 Effects of Dissipation / 97 Using Predistorted Designs / 99 3.2. Active Low-Pass Filters / 103 All-Pole Filters / 103 VCVS Uniform Capacitor Structure / /13 The Low-Sensitivity Second-Order Section / 114 Elliptic-Function VCVS Filters / 116 State-Variable Low-Pass Filters / 120 Generalized Impcdance Converters / 128 Bibliography / 135 Chapter 4. High-Pass Filter Design 137 4.1. LC High-Pass Filters / 137 The Lüw-Pass to High-Pass Transformation / 137 The T-to-Pi Capacitance Conversion / 142 4.2. Active High-Pass Filters / 143 The Low-Pass to High-Pass Transformation / 143 All-Pole High-Pass Filters / 144 Elliptic-Function High-Pass Filters / 145 State-Variable High-Pass Filters / 151 High-Pass Filters Using the GIC / 159 Active Elliptic-Function High-Pass Filters Using theGIC / 161 Bibliography / 164 Chapter 5. Bandpass Filters 165 5.1. LC Bandpass Filters / 165 Wideband Filters / 165 Narrowband Filters / 167 Narrowband Coupied Resonators / 183 Predistorted Bandpass Filters / 189 Elliptic-Function Bandpass Filers / 192 5.2. Active Bandpass Filters / 199 Wideband Filters / 199 The Bandpass Transformation of Low-Pass Poles and Zeros / 202 Sensitivity in Active Bandpass Circuits / 207 All-Pole Bandpass Configuraüons / 207 Elliptic-Function Bandpass Filters / 224 State-Variabie (Biquad) Circuit / 230 Bibliography / 237 Chapter 6. Band-Reject Filters 239 6.1. LC Band-Reject Filters / 239 The Band-Reject Circuit Transformation / 239 All-Pole Band-Reject Filters / 240 Elliptic-Function Band-Reject Filters / 245 Null Networks / 252 6.2. Active Band-Reject Filters / 257 Wideband Active Band-Reject Filters / 257 CONTENTS VII Band-Reject Transformation of Low-Pass Poles / 261 Narrowband Active Band-Reject Filters / 265 Active Null Networks / 271 Bibliography / 277 Chapter 7. Networks for the Time Domain 7.1. All-Pass Transfer Functions / 279 First-Order All-Pass Transfer Functions / 279 Second-Order All-Pass Transfer- Functions / 281 7.2. Delay Equalizer Sections / 283 LC All-Pass Structurcs / 283 Active All-Pass Structures / 287 7.3. Design of Delay Lines / 292 The Low-Pass to All-Pass Transformation / 292 LC Delay Lines / 293 Active Delay Lines / 297 7.4. Delay Equalizationof Filters / 299 Firsl-Order Equalizers / 300 Second-Order Equalizers / 303 7.5. Wideband 90° Phase-Shift Networks / 307 7.6. Adjustable Delay and Amplitude Equalizers / 313 LC Delay Equalizers / 314 LC Delay and Amplitude Equalizers / 3/6 Active Delay and Amplitude Equalizers / 319 Bibliography / 323 Chapter 8. Refinements in LC Filter Design and the Use of Resistive Networks 8.1. Introduction / 325 8.2. Tapped Inductors / 325 8.3. Circuit Transformations / 327 Norton'sCapacitance Transformer / 328 Narrowband Approximations / 330 8.4. Designing with Parasitic Capacitance / 333 8.5. Amplitude Equalization for Inadequate Q ! 336 8.6. Coil-Saving Elliptic-Function Bandpass Filters / 340 8.7. Filter Tuning Methods / 343 8.8. Measurement Methods / 345 Insertion Loss and Frequency Response / 345 iaput Impedance of Filter Networks / 346 Time-Domain Characteristics / 347 Measuring the Q of inductors / 351 8.9. Designing for Unequal Impedances / 351 Impedance Matching / 351 Exponentially Tapered Impedance Sealing / 351 Minimum Loss Resistive Päd for Impedance Matching / 352 8.10. Symmetrica] Attenuators / 355 Bridged T Attenuator / 356 8.11. Puwer Splitters / 357 Resistive Power Splitters / 357 A Magic-T Splitter / 357 Bibliography / 360 CONTENTS Chapter 9. Design and Selection of Inductors for LC Filters 361^ 9.1. Basic Principlesof Magnefic-Circuil Design / 361 Units of Measurement / 361 Saturation and DC Polarization / 362 Inductor Losses / 363 Effect of an Air Gap / 363 The Design of Coil Windings / 364 9.2. MPP Toroidal Coils / 367 Charactcristics of Gores / 367 Winding Methods for Q Optimizaüon / 371 Designing MPP Toroids from Q Curvcs / 372 9.3. Ferrite Pot Gores / 376 The Pol Gore Structure / 376 Hlectrical Properties of Ferrite Pot Cores / 377 Winding of Bobbins / 380 RMCorcs / 382 9.4. High-Frequency Coil Design / 383 Powdered-lron Toroids / 383 Winding Methods / 384 Air-Core Inductors / 387 Surface Mount RF Inductors / 387 Bibliography / 392 Chapter 10. Component Selection for LC and Active Filters 393 10.1. Capacitor Selection / 393 Properlies ofDielcctri es / 393 Capacitor Conslruction / 394 Selecling Capacitors for Filier Applications / 398 10.2. Resistors / 403 Fixed Resistors / 403 Variable Resistors / 408 Resistor Johnson (Thermal) Noise / 409 10.3. Operational Amplifiers / 410 A Review of Basic Üperationai-Amplifier Theory / 410 An Analysis ofNon-ldeal Amplifiers / 413 Practical Amplifier Considerations / 415 Operational Amplifier Selection / 417 A Survey of Populär Amplifier Types / 419 10.4. General Manufacturing Considerations / 422 Bibliography / 423 Chapter 11. Normalized Filter Design Tables *25 Chapter 12. Introduction to Digital Filters 497 12.1. Introduction to Signal Processing / 497 12.2. Introduction to Digital Signal Processing (DSP) / 497 12.3. The Relation to Analog Filters / 498 Digital Advantages / 498 Analog Advantages / 499 12.4. Signal Representation / 500 CONTENTS IX 12.5. Digital Data Representation / 500 12.6. Sampling Theorem / 505 12.7. Signal Reconstruction / 506 12.8. Practica] Interpolators / 506 12.9. Sampling Modalities / 507 12.10. AHasing / 507 12.11. Data Conversion / 509 12.12. Finite Wordlength Effects / 510 12.13. Mathematical Signaland System Representation / 512 12.14. Spectral Representation / 514 Bibliography / 515 Chapter 13. Finite Impuise-Response Fiiters 517 1.3.1. Digital Pikers / 517 13.2. FIR Digital Filters / 517 13.3. Stability / 519 13.4. Linear-Phase Behavior / 520 13.5. Non-Linear-Phase Behavior / 522 13.6. Minimum Phase Behavior / 523 13.7. Fir Design Methods / 524 13.8. Window Design Melhod / 524 13.9. Non-Reetangular Window Design Method / 526 13.10. Least Squares FIR Design / 530 13.11. Equiripple FIR Design / 532 13.12. Equiripple Hubert FIR Design / 53S 13.13. Equiripple Differentiator FIR Design / 538 13.14. Special Case FIR Digital Filters / 539 13.15. Multiplier-Free FIR Filters / 541 13.! 6. L-Band FIR Filters / 542 13.17. Mirror and Complement FIR Filters / 544 13.18. Frequency Sampling FIR Filters / 547 13.19. Savitzky-Golay FIR Filters / 550 13.20. Raised FIR Filters / 551 13.21. Matlab FIR Support / 553 13.22. FirArchitectures / 553 13.23. Direct Form FIR / 553 13.24. Transpose Form FIR / 557 13.25. Symmetrie Form FIR / 558 13.26. Lattice Form FIR / 558 13.27. DistributedArithmetic / 561 13.28. Canonic Signed Digit (CSD) / 564 13.29. Finite Wordlength Effect / 566 13.30. CoefficientRounding / 567 13.31. Arithmetic Error / 568 13.32. Scaling / 569 13.33. Multiple Mac Architecture / 569 Bibliography / 571 Chapter 14. infinite Impuise-Response Filters 573 14.1. lntroduction / 573 14.2. Classic Analog Filters / 576 14.3. Matlab Analog Filter Production / 579 14.4. Impulse Invariant HR / 580 X CONTENTS 14.5. Bilinear z-TransformllR / 583 14.6. Matlab Classic HR Support / 588 14.7. Other HR Models / 590 14.8. Comparison of FTR and HR Filters / 592 14.9. State Variable Filter Model / 593 14.10. Architecture / 595 14.11. Direel II Architecture / 596 14.12. Matlab Direct II Architecture / 598 14.13. Cascade Architecture / 600 14.14. The Matlab Cascade Architecture / 602 14.15. Parallel Architecture / 604 14.16. Lattice/Ladder Architecture / 605 14.17. Matlab Ladder/Lattice Support / 608 14.18. Normal Architecture / 609 14.19. Stability / 611 14.20. Finite Wordlength Effects / 612 14.21. Overflow Arithmetic / 613 14.22. Register Overflow / 614 14.23. Arithmetic Enrors / 617 14.24. Coefficient Rounding Errors / 622 14.25. Scaling / 623 14.26. Zero Input Limit Cycling / 624 Bibliography / 626 Chapter 15. Multirate Digital Filters 627 15.1. IntroductiontoMulti-Rate Signal Processing / 627 15.2. Decimation / 628 15.3. Interpolation / 633 15.4. Sample Rate Conversion / 636 15.5. Polyphase Representation / 637 15.6. Filter Banks

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    9 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us