Administration Federal Aviation 2008 US

Total Page:16

File Type:pdf, Size:1020Kb

Administration Federal Aviation 2008 US Federal Aviation Administration 2008 U.S. Commercial Space Transportation Developments and Concepts: Vehicles, Technologies, and Spaceports January 2008 HQ-08368.INDD 2008 U.S. Commercial Space Transportation Developments and Concepts About FAA/AST About the Office of Commercial Space Transportation The Federal Aviation Administration’s Office of Commercial Space Transportation (FAA/AST) licenses and regulates U.S. commercial space launch and reentry activity, as well as the operation of non-federal launch and reentry sites, as authorized by Executive Order 12465 and Title 49 United States Code, Subtitle IX, Chapter 701 (formerly the Commercial Space Launch Act). FAA/AST’s mission is to ensure public health and safety and the safety of property while protecting the national security and foreign policy interests of the United States during commercial launch and reentry operations. In addition, FAA/AST is directed to encourage, facilitate, and promote commercial space launches and reentries. Additional information concerning commercial space transportation can be found on FAA/AST’s web site at http://www.faa.gov/about/office_org/headquarters_offices/ast/. Federal Aviation Administration Office of Commercial Space Transportation i About FAA/AST 2008 U.S. Commercial Space Transportation Developments and Concepts NOTICE Use of trade names or names of manufacturers in this document does not constitute an official endorsement of such products or manufacturers, either expressed or implied, by the Federal Aviation Administration. ii Federal Aviation Administration Office of Commercial Space Transportation 2008 U.S. Commercial Space Transportation Developments and Concepts Contents Table of Contents Introduction . .1 Space Competitions . .1 Expendable Launch Vehicle Industry . .2 Reusable Launch Vehicle Industry . .2 Reentry Vehicles and In-Space Technologies . .2 Enabling Technologies . .3 Spaceports . .3 Regulatory Developments . .3 Significant 2007 Events . .4 Space Competitions . .6 Google Lunar X PRIZE . .6 X PRIZE Cup . .6 America’s Space Prize . .7 Centennial Challenges . .7 Expendable Launch Vehicles . .9 Current Expendable Launch Vehicle Systems . .9 Atlas V – United Launch Alliance . .9 Delta II – United Launch Alliance . .9 Delta IV – United Launch Alliance . .10 Minotaur I – Orbital Sciences Corporation . .11 Pegasus XL – Orbital Sciences Corporation . .11 Taurus – Orbital Sciences Corporation . .11 Zenit-3SL – Sea Launch Company, LLC . .11 ELV Development Efforts . .12 ALV – Alliant Techsystems . .12 Aquarius – Space Systems/Loral . .12 Eagle S-series – E’Prime Aerospace Corporation . .13 FALCON SLV – Lockheed Martin Michoud Operations . .14 Nanosat Launch Vehicle – Garvey Spacecraft Corporation . .14 Sprite SLV – Microcosm, Inc. .15 Minotaur IV and V.– Orbital Sciences Corporation . .15 QuickReach – AirLaunch LLC . .16 Taurus 2 – Orbital Sciences Corporation . .16 Z-1 – Zig Aerospace, LLC . .16 Zenit-3SLB – Sea Launch Company, LLC, and Space International Services . .17 NASA Exploration Launch Vehicles . .17 Ares I . .17 Ares V . .18 Sounding Rockets . .18 Black Brant – Bristol Aerospace Limited . .18 Oriole – DTI Associates . .18 Terrier-Orion – DTI Associates . .19 Hybrid Sounding Rocket Program – Lockheed Martin-Michoud . .19 Hybrid Test Rocket – Lockheed Martin-Michoud and Nammo AS . .19 SpaceLoft XL – UP Aerospace . .20 Reusable Launch Vehicles . .21 Commercial RLV Development Efforts . .21 Tiger & Cardinal – Acuity Technologies . .21 MOD – Armadillo Aerospace . .21 Federal Aviation Administration Office of Commercial Space Transportation iii Contents 2008 U.S. Commercial Space Transportation Developments and Concepts BSC Spaceship – Benson Space Company . .22 New Shepard – Blue Origin . .22 Sea Star – Interorbital Systems . .23 Neptune – Interorbital Systems . .23 XA 1.0 – Masten Space Systems . .24 Crusader LL – Micro-Space . .24 Crusader HTS – Micro-Space . .24 Volkon – Paragon Labs . .25 Silver Dart – PlanetSpace . .25 Rocketplane XP – Rocketplane Global . ..
Recommended publications
  • Reusable Suborbital Market Characterization
    Reusable Suborbital Market Characterization Prepared by The Tauri Group for Space Florida March 2011 Introduction Purpose: Define and characterize the markets reusable suborbital vehicles will address Goals Define market categories Identify market drivers Characterize current activities Provide basis for future market forecasting (Note that this study is not a forecast) Benefits Shared understanding improves quality and productivity of industry discourse A consistent taxonomy enables communications across the community, with Congress, press, and investors Accessible information helps industry participants assess opportunities, plan and coordinate activities, seek funding, and budget Proprietary www.taurigroup.com 2 Agenda Methodology Suborbital spaceflight attributes and vehicles Value proposition Characterization and analysis of markets Commercial human spaceflight Basic and applied research Aerospace technology test and demonstration Remote sensing Education Media & PR Point-to-point transportation Conclusions Proprietary www.taurigroup.com 3 Methodology Literature review and data Analysis and findings collection Vehicles Articles, reports, and publications Payload types Available launch and research Markets datasets Opportunities Applicable payloads Challenges Initial customers Users Interviews Economic buyers Researchers Launch service providers Funding agencies Potential commercial customers Users Proprietary www.taurigroup.com 4 Reusable Suborbital Vehicles Industry catalyzed by Ansari X
    [Show full text]
  • Aerospace-America-April-2019.Pdf
    17–21 JUNE 2019 DALLAS, TX SHAPING THE FUTURE OF FLIGHT The 2019 AIAA AVIATION Forum will explore how rapidly changing technology, new entrants, and emerging trends are shaping a future of flight that promises to be strikingly different from the modern global transportation built by our pioneers. Help shape the future of flight at the AIAA AVIATION Forum! PLENARY & FORUM 360 SESSIONS Hear from industry leaders and innovators including Christopher Emerson, President and Head, North America Region, Airbus Helicopters, and Greg Hyslop, Chief Technology Officer, The Boeing Company. Keynote speakers and panelists will discuss vertical lift, autonomy, hypersonics, and more. TECHNICAL PROGRAM More than 1,100 papers will be presented, giving you access to the latest research and development on technical areas including applied aerodynamics, fluid dynamics, and air traffic operations. NETWORKING OPPORTUNITIES The forum offers daily networking opportunities to connect with over 2,500 attendees from across the globe representing hundreds of government, academic, and private institutions. Opportunities to connect include: › ADS Banquet (NEW) › AVIATION 101 (NEW) › Backyard BBQ (NEW) › Exposition Hall › Ignite the “Meet”ing (NEW) › Meet the Employers Recruiting Event › Opening Reception › Student Welcome Reception › The HUB Register now aviation.aiaa.org/register FEATURES | APRIL 2019 MORE AT aerospaceamerica.aiaa.org The U.S. Army’s Kestrel Eye prototype cubesat after being released from the International Space Station. NASA 18 30 40 22 3D-printing solid Seeing the far Managing Getting out front on rocket fuel side of the moon drone traffi c Researchers China’s Chang’e-4 Package delivery alone space technology say additive “opens up a new could put thousands manufacturing is scientifi c frontier.” of drones into the sky, U.S.
    [Show full text]
  • NASA Flight Opportunities Space Technology Mission Directorate
    National Aeronautics and Space Administration Flight Opportunities Space Technology Mission Directorate (STMD) NASA’s Flight Opportunities program strives to advance the operational readiness of innovative space technologies while also stimulating the development and utilization of the U.S. commercial spaceflight industry, particularly for the suborbital and small How to launch vehicle markets. Since its initiation in 2010, the program has provided affordable Access Flight access to relevant space-like environments for over 100 payloads across a variety of Opportunities flight platforms. There are currently two paths for accessing flight test opportunities: Space Technology Research, Development, Demonstration, and Infusion (REDDI) External researchers can compete for flight funding through the REDDI NASA Research Announcement (NRA). Awardees receive a grant allowing them to directly purchase flights from U.S. commercial flight vendors that best meet their needs. The solicitation is biannual. Suborbital Reusable High-Altitude Balloon Parabolic Aircraft Launch Vehicles (sRLV) Systems These platforms enable NASA Internal Call for sRLVs enable a wide variety of These systems facilitate impact investigation of short-term Payloads experiments, such as testing studies on extended exposure exposure to reduced gravity, This path facilitates algorithms for landing or to cold, atmosphere, and with typical missions flying suborbital flight hazard avoidance, or evaluating radiation. In addition, high approximately 40 parabolas demonstrations for the response of systems to altitude balloons enable testing providing several seconds of technologies under microgravity. of sensors and instruments for reduced gravity during the flight. development by NASA and a variety of applications. other government agencies. Typical parabolic vehicles include Typical vehicles include Blue Zero G’s G-FORCE ONE.
    [Show full text]
  • Commercial Space Transportation Developments and Concepts: Vehicles, Technologies and Spaceports
    Commercial Space Transportation 2006 Commercial Space Transportation Developments and Concepts: Vehicles, Technologies and Spaceports January 2006 HQ003606.INDD 2006 U.S. Commercial Space Transportation Developments and Concepts About FAA/AST About the Office of Commercial Space Transportation The Federal Aviation Administration’s Office of Commercial Space Transportation (FAA/AST) licenses and regulates U.S. commercial space launch and reentry activity, as well as the operation of non-federal launch and reentry sites, as authorized by Executive Order 12465 and Title 49 United States Code, Subtitle IX, Chapter 701 (formerly the Commercial Space Launch Act). FAA/AST’s mission is to ensure public health and safety and the safety of property while protecting the national security and foreign policy interests of the United States during commercial launch and reentry operations. In addition, FAA/AST is directed to encour- age, facilitate, and promote commercial space launches and reentries. Additional information concerning commercial space transportation can be found on FAA/AST’s web site at http://ast.faa.gov. Federal Aviation Administration Office of Commercial Space Transportation i About FAA/AST 2006 U.S. Commercial Space Transportation Developments and Concepts NOTICE Use of trade names or names of manufacturers in this document does not constitute an official endorsement of such products or manufacturers, either expressed or implied, by the Federal Aviation Administration. ii Federal Aviation Administration Office of Commercial Space Transportation 2006 U.S. Commercial Space Transportation Developments and Concepts Contents Table of Contents Introduction . .1 Significant 2005 Events . .4 Space Competitions . .6 Expendable Launch Vehicles . .9 Current Expendable Launch Vehicle Systems . .9 Atlas 5 - Lockheed Martin Corporation .
    [Show full text]
  • 2. Going to Mars
    aMARTE A MARS ROADMAP FOR TRAVEL AND EXPLORATION Final Report International Space University Space Studies Program 2016 © International Space University. All Rights Reserved. The 2016 Space Studies Program of the International Space University (ISU) was hosted by the Technion – Israel Institute of Technology in Haifa, Israel. aMARTE has been selected as the name representing the Mars Team Project. This choice was motivated by the dual meaning the term conveys. aMARTE first stands for A Mars Roadmap for Travel and Exploration, the official label the team has adopted for the project. Alternatively, aMARTE can be interpreted from its Spanish roots "amarte," meaning "to love," or can also be viewed as "a Marte," meaning "going to Mars." This play on words represents the mission and spirit of the team, which is to put together a roadmap including various disciplines for a human mission to Mars and demonstrate a profound commitment to Mars exploration. The aMARTE title logo was developed based on sections of the astrological symbols for Earth and Mars. The blue symbol under the team's name represents Earth, and the orange arrow symbol is reminiscent of the characteristic color of Mars. The arrow also serves as an invitation to go beyond the Earth and explore our neighboring planet. Electronic copies of the Final Report and the Executive Summary can be downloaded from the ISU Library website at http://isulibrary.isunet.edu/ International Space University Strasbourg Central Campus Parc d’Innovation 1 rue Jean-Dominique Cassini 67400 Illkirch-Graffenstaden France Tel +33 (0)3 88 65 54 30 Fax +33 (0)3 88 65 54 47 e-mail: [email protected] website: www.isunet.edu I.
    [Show full text]
  • The Space Race Continues
    The Space Race Continues The Evolution of Space Tourism from Novelty to Opportunity Matthew D. Melville, Vice President Shira Amrany, Consulting and Valuation Analyst HVS GLOBAL HOSPITALITY SERVICES 369 Willis Avenue Mineola, NY 11501 USA Tel: +1 516 248-8828 Fax: +1 516 742-3059 June 2009 NORTH AMERICA - Atlanta | Boston | Boulder | Chicago | Dallas | Denver | Mexico City | Miami | New York | Newport, RI | San Francisco | Toronto | Vancouver | Washington, D.C. | EUROPE - Athens | London | Madrid | Moscow | ASIA - 1 Beijing | Hong Kong | Mumbai | New Delhi | Shanghai | Singapore | SOUTH AMERICA - Buenos Aires | São Paulo | MIDDLE EAST - Dubai HVS Global Hospitality Services The Space Race Continues At a space business forum in June 2008, Dr. George C. Nield, Associate Administrator for Commercial Space Transportation at the Federal Aviation Administration (FAA), addressed the future of commercial space travel: “There is tangible work underway by a number of companies aiming for space, partly because of their dreams, but primarily because they are confident it can be done by the private sector and it can be done at a profit.” Indeed, private companies and entrepreneurs are currently aiming to make this dream a reality. While the current economic downturn will likely slow industry progress, space tourism, currently in its infancy, is poised to become a significant part of the hospitality industry. Unlike the space race of the 1950s and 1960s between the United States and the former Soviet Union, the current rivalry is not defined on a national level, but by a collection of first-mover entrepreneurs that are working to define the industry and position it for long- term profitability.
    [Show full text]
  • Highlights in Space 2010
    International Astronautical Federation Committee on Space Research International Institute of Space Law 94 bis, Avenue de Suffren c/o CNES 94 bis, Avenue de Suffren UNITED NATIONS 75015 Paris, France 2 place Maurice Quentin 75015 Paris, France Tel: +33 1 45 67 42 60 Fax: +33 1 42 73 21 20 Tel. + 33 1 44 76 75 10 E-mail: : [email protected] E-mail: [email protected] Fax. + 33 1 44 76 74 37 URL: www.iislweb.com OFFICE FOR OUTER SPACE AFFAIRS URL: www.iafastro.com E-mail: [email protected] URL : http://cosparhq.cnes.fr Highlights in Space 2010 Prepared in cooperation with the International Astronautical Federation, the Committee on Space Research and the International Institute of Space Law The United Nations Office for Outer Space Affairs is responsible for promoting international cooperation in the peaceful uses of outer space and assisting developing countries in using space science and technology. United Nations Office for Outer Space Affairs P. O. Box 500, 1400 Vienna, Austria Tel: (+43-1) 26060-4950 Fax: (+43-1) 26060-5830 E-mail: [email protected] URL: www.unoosa.org United Nations publication Printed in Austria USD 15 Sales No. E.11.I.3 ISBN 978-92-1-101236-1 ST/SPACE/57 *1180239* V.11-80239—January 2011—775 UNITED NATIONS OFFICE FOR OUTER SPACE AFFAIRS UNITED NATIONS OFFICE AT VIENNA Highlights in Space 2010 Prepared in cooperation with the International Astronautical Federation, the Committee on Space Research and the International Institute of Space Law Progress in space science, technology and applications, international cooperation and space law UNITED NATIONS New York, 2011 UniTEd NationS PUblication Sales no.
    [Show full text]
  • Suborbital Platforms and Range Services (SPARS)
    Suborbital Capabilities for Science & Technology Small Missions Workshop @ Johns Hopkins University June 10, 2019 Mike Hitch, Giovanni Rosanova Goddard Space Introduction Flight Center AGENDAWASP OPIS ▪ Purpose ▪ History & Importance of Suborbital Carriers to Science ▪ Suborbital Platforms ▪ Sounding Rockets ▪ Balloons (brief) ▪ Aircraft ▪ SmallSats ▪ WFF Engineering ▪ Q & A P-3 Maintenance 12-Jun-19 Competition Sensitive – Do Not Distribute 2 Goddard Space Purpose of the Meeting Flight Center Define theWASP OPISutility of Suborbital Carriers & “Small” Missions ▪ Sounding rockets, balloons and aircraft (manned and unmanned) provide a unique capability to scientists and engineers to: ▪ Allow PIs to enhance and advance technology readiness levels of instruments and components for very low relative cost ▪ Provide PIs actual science flight opportunities as a “piggy-back” on a planned mission flight at low relative cost ▪ Increase experience for young and mid-career scientists and engineers by allowing them to get their “feet wet” on a suborbital mission prior to tackling the much larger and more complex orbital endeavors ▪ The Suborbital/Smallsat Platforms And Range Services (SPARS) Line Of Business (LOB) can facilitate prospective PIs with taking advantage of potential suborbital flight opportunities P-3 Maintenance 12-Jun-19 Competition Sensitive – Do Not Distribute 3 Goddard Space Value of Suborbital Research – What’s Different? Flight Center WASP OPIS Different Risk/Mission Assurance Strategy • Payloads are recovered and refurbished. • Re-flights are inexpensive (<$1M for a balloon or sounding rocket vs >$10M - 100M for a ELV) • Instrumentation can be simple and have a large science impact! • Frequent flight opportunities (e.g. “piggyback”) • Development of precursor instrument concepts and mature TRLs • While Suborbital missions fully comply with all Agency Safety policies, the program is designed to take Higher Programmatic Risk – Lower cost – Faster migration of new technology – Smaller more focused efforts, enable Tiger Team/incubator experiences.
    [Show full text]
  • Trade Studies Towards an Australian Indigenous Space Launch System
    TRADE STUDIES TOWARDS AN AUSTRALIAN INDIGENOUS SPACE LAUNCH SYSTEM A thesis submitted for the degree of Master of Engineering by Gordon P. Briggs B.Sc. (Hons), M.Sc. (Astron) School of Engineering and Information Technology, University College, University of New South Wales, Australian Defence Force Academy January 2010 Abstract During the project Apollo moon landings of the mid 1970s the United States of America was the pre-eminent space faring nation followed closely by only the USSR. Since that time many other nations have realised the potential of spaceflight not only for immediate financial gain in areas such as communications and earth observation but also in the strategic areas of scientific discovery, industrial development and national prestige. Australia on the other hand has resolutely refused to participate by instituting its own space program. Successive Australian governments have preferred to obtain any required space hardware or services by purchasing off-the-shelf from foreign suppliers. This policy or attitude is a matter of frustration to those sections of the Australian technical community who believe that the nation should be participating in space technology. In particular the provision of an indigenous launch vehicle that would guarantee the nation independent access to the space frontier. It would therefore appear that any launch vehicle development in Australia will be left to non- government organisations to at least define the requirements for such a vehicle and to initiate development of long-lead items for such a project. It is therefore the aim of this thesis to attempt to define some of the requirements for a nascent Australian indigenous launch vehicle system.
    [Show full text]
  • Small Satellite Launchers
    SMALL SATELLITE LAUNCHERS NewSpace Index 2020/04/20 Current status and time from development start to the first successful or planned orbital launch NEWSPACE.IM Northrop Grumman Pegasus 1990 Scorpius Space Launch Demi-Sprite ? Makeyev OKB Shtil 1998 Interorbital Systems NEPTUNE N1 ? SpaceX Falcon 1e 2008 Interstellar Technologies Zero 2021 MT Aerospace MTA, WARR, Daneo ? Rocket Lab Electron 2017 Nammo North Star 2020 CTA VLM 2020 Acrux Montenegro ? Frontier Astronautics ? ? Earth to Sky ? 2021 Zero 2 Infinity Bloostar ? CASIC / ExPace Kuaizhou-1A (Fei Tian 1) 2017 SpaceLS Prometheus-1 ? MISHAAL Aerospace M-OV ? CONAE Tronador II 2020 TLON Space Aventura I ? Rocketcrafters Intrepid-1 2020 ARCA Space Haas 2CA ? Aerojet Rocketdyne SPARK / Super Strypi 2015 Generation Orbit GoLauncher 2 ? PLD Space Miura 5 (Arion 2) 2021 Swiss Space Systems SOAR 2018 Heliaq ALV-2 ? Gilmour Space Eris-S 2021 Roketsan UFS 2023 Independence-X DNLV 2021 Beyond Earth ? ? Bagaveev Corporation Bagaveev ? Open Space Orbital Neutrino I ? LIA Aerospace Procyon 2026 JAXA SS-520-4 2017 Swedish Space Corporation Rainbow 2021 SpinLaunch ? 2022 Pipeline2Space ? ? Perigee Blue Whale 2020 Link Space New Line 1 2021 Lin Industrial Taymyr-1A ? Leaf Space Primo ? Firefly 2020 Exos Aerospace Jaguar ? Cubecab Cab-3A 2022 Celestia Aerospace Space Arrow CM ? bluShift Aerospace Red Dwarf 2022 Black Arrow Black Arrow 2 ? Tranquility Aerospace Devon Two ? Masterra Space MINSAT-2000 2021 LEO Launcher & Logistics ? ? ISRO SSLV (PSLV Light) 2020 Wagner Industries Konshu ? VSAT ? ? VALT
    [Show full text]
  • Orbital Debris: a Chronology
    NASA/TP-1999-208856 January 1999 Orbital Debris: A Chronology David S. F. Portree Houston, Texas Joseph P. Loftus, Jr Lwldon B. Johnson Space Center Houston, Texas David S. F. Portree is a freelance writer working in Houston_ Texas Contents List of Figures ................................................................................................................ iv Preface ........................................................................................................................... v Acknowledgments ......................................................................................................... vii Acronyms and Abbreviations ........................................................................................ ix The Chronology ............................................................................................................. 1 1961 ......................................................................................................................... 4 1962 ......................................................................................................................... 5 963 ......................................................................................................................... 5 964 ......................................................................................................................... 6 965 ......................................................................................................................... 6 966 ........................................................................................................................
    [Show full text]
  • Spacewatchafrica October 2020 Edition
    Satellite communications in disaster management VVVolVolVolVol o6 o6 66l l. .No. NoNo. No78 N N 55 oo5.. 10 October 2018 2020 AFRICA Nigeria AFRICA REPORT MIDDLE EAST SPACE RACE How GPS is driving SPECIALautomation REPORT in transport industry C O N T E N T S Vol. 8 No. 10 UAE participates in WSIS Forum 2020 DLR institute of space systems Editor in-chief Aliyu Bello UAE deploys another home-grown satellite Executive Manager Tonia Gerrald Jubilations as Nigeria ignites Africa's first satellite-based SA to the editor in-Chief Ngozi Okey augmentation service Head, Application Services M. Yakubu Gilat reports Q2 2020 results Editorial/ICT Services John Daniel Connectivity demand soars as leisure vessels become Usman Bello safer places to work and rest, reports IEC Telecom Alozie Nwankwo Arabsat partners Airbus as Saudi Arabia Juliet Nnamdi expands fleet of satellites Client Relations Sunday Tache Russia to launch Angosat-2 telecoms satellite Lookman Bello for Angola in March 2022 Safiya Thani When staying connected matters most, supportingPublic Marketing Offy Pat Health needs around the world Tunde Nathaniel How 21st century GIS technologies are supporting Wasiu Olatunde the global fight against outbreaks and epidemics Media Relations Favour Madu Khadijat Yakubu Irdeto offers enhanced security services Zacheous Felicia to Forthnet Finance Folarin Tunde Rack Centre plans $100m expansion to create West Africa's largest data centre PayTV operator challenges exclusive agreements in pay-tv industry Space Watch Magazine is a publication of Satellite communications in disaster management Communication Science, Inc. All correspondence should be addressed to editor, space Watch Magazine. How GPS is driving automation in transport industry Abuja office: Plot 2009, Awka Street, UTC Building, GF 11, Area 10, Garki, Abuja, Nigeria Tel: 234 80336471114, 07084706167, email: [email protected] LEGAL CONSULTANTS Idowu Oriola & Co.
    [Show full text]