Coexpression and Relative Abundance Defined by B Cell

Total Page:16

File Type:pdf, Size:1020Kb

Coexpression and Relative Abundance Defined by B Cell Stages of Germinal Center Transit Are Defined by B Cell Transcription Factor Coexpression and Relative Abundance This information is current as Giorgio Cattoretti, Rita Shaknovich, Paula M. Smith, of September 27, 2021. Hans-Martin Jäck, Vundavalli V. Murty and Bachir Alobeid J Immunol 2006; 177:6930-6939; ; doi: 10.4049/jimmunol.177.10.6930 http://www.jimmunol.org/content/177/10/6930 Downloaded from References This article cites 63 articles, 28 of which you can access for free at: http://www.jimmunol.org/content/177/10/6930.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 27, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2006 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Stages of Germinal Center Transit Are Defined by B Cell Transcription Factor Coexpression and Relative Abundance Giorgio Cattoretti,1*† Rita Shaknovich,‡ Paula M. Smith,† Hans-Martin Ja¨ck,§ Vundavalli V. Murty,*† and Bachir Alobeid* The transit of T cell-activated B cells through the germinal center (GC) is controlled by sequential activation and repression of key transcription factors, executing the pre- and post-GC B cell program. B cell lymphoma (BCL) 6 and IFN regulatory factor IRF) 8 are necessary for GC formation and for its molecular activity in Pax5؉PU.1؉ B cells. IRF4, which is highly expressed in) BCL6؊ GC B cells, is necessary for class switch recombination and the plasma cell differentiation at exit from the GC. In this study, we show at the single-cell level broad coexpression of IRF4 with BCL6, Pax5, IRF8, and PU.1 in pre- and post-GC B cells in human and mouse. IRF4 is down-regulated in BCL6؉ human GC founder cells (IgD؉CD38؉), is absent in GC centroblasts, and is re-expressed in positive regulatory domain 1-positive centrocytes, which are negative for all the B cell transcription factors. Downloaded from Activated (CD30؉) and activation-induced cytidine deaminase-positive extrafollicular blasts coexpress Pax5 and IRF4. PU.1- negative plasma cells and CD30؉ blasts uniquely display the conformational epitope of IRF4 recognized by the MUM1 Ab, an epitope that is absent from any other IRF4؉PU.1؉ lymphoid and hemopoietic subsets. Low grade B cell lymphomas, representing the malignant counterpart of pre- and post-GC B cells, accordingly express IRF4. However, a fraction of BCL6؉ diffuse large B cell lymphomas express IRF4 bearing the MUM1 epitope, indicative of a posttranscriptional modification of IRF4 not seen in the http://www.jimmunol.org/ normal counterpart. The Journal of Immunology, 2006, 177: 6930–6939. he development and maturation of B cells from multipo- velopment (16, 17). BCL6, which is highly expressed and neces- tential stem cells is dictated by multiple interacting tran- sary for GC B cell development (18, 19), has an inverse distribu- T scription factors (TF),2 active at different defining steps tion with regards to IRF4 inside the GC (1, 15). The relative throughout the process (1–3). Pax5 is the single TF necessary and expression of these TF correlates roughly with the different mo- sufficient for B cell development past the pro-B cell stage (4), a lecular subtypes of diffuse large B cell lymphomas (DLBCL), in- negative regulator of the B cell to plasma cell transition (5), and is cluding a group of GC-derived neoplasms characterized by V gene expressed throughout all B cell stages, except in plasma cells (6). mutation and lack of terminal differentiation (20). Detailed molec- by guest on September 27, 2021 PU.1, a member of the large ets family of TF (7), enforces the B ular analysis has shown that IRF4 expression defines a group of cell lineage commitment by limiting other differentiation choices DLBCL characterized by the expression of activation-associated (7, 8), and is then expressed along the B cell, but not the plasma genes (21, 22), low BCL6 expression (21), with frequent polysomy cell lineage (9), together with other B cell-specific TF (9, 10). PU.1 or rearrangement of chromosome 3q27 (23–25) and deletion of heterodimerizes with members of the IFN regulatory factor family positive regulatory domain 1 (PRDM1) (26). Coexpression of (IRFs) (10–12) in cell- and differentiation stage-specific combina- BCL6 and IRF4 can be seen in these DLBCLs (15), as opposed to tions. IRF8 promotes genes crucial for germinal center (GC) de- velopment and function (B cell lymphoma (BCL) 6 and activation- the normal GC, where the two are rigorously mutually exclusive induced cytidine deaminase (AID)) (13) and, with IRF4, is needed (15). Pre- (mantle cell) and post-GC (marginal zone) type lym- for pre-B to B cell transition (14). IRF4 has been shown to be phomas are usually negative for BCL6 (27, 28) and MUM1 (29, expressed at high levels in centrocytes, believed to be at the pre- 30), similar to the normal counterpart B cells (mantle and marginal plasma cell stage (15). Lack of IRF4 prevents full mature B cell zone B cells, respectively) (15), which are negative for both by transit and plasma cell differentiation but not memory B cell de- routine immunohistochemistry (IHC). Comparison of mRNA transcription with posttranslational expression of the final protein product of these TF shows dis- *Department of Pathology, Columbia University Medical Center, New York, NY 10032; †Institute for Cancer Genetics, Columbia University, New York, NY 10032; crepant results. In normal B cells, BCL6 shows posttranscrip- ‡Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10467; tional down-regulation outside the GC (31), thus accounting for and §Division of Molecular Immunology, Department of Internal Medicine, Nikolaus- Fiebiger-Center, University of Erlangen-Nu¨rnberg, Erlangen, Germany the general lack of BCL6 detection in a range of mature B cells, Received for publication June 22, 2006. Accepted for publication August 24, 2006. including pre- and post-GC B cells, which are known to possess mRNA (18, 32–34). Similarly, IRF4, which is necessary for The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance mature naive B cell and dendritic cell development (14, 35), is with 18 U.S.C. Section 1734 solely to indicate this fact. usually negative in these cells by IHC staining using the MUM1 1 Address correspondence and reprint requests to Dr. Giorgio Cattoretti at the current mAb (15). address: Department of Pathology, Azienda Ospedaliera San Gerardo, Via Pergolesi 33, 20052 Monza (MI), Italy. E-mail address: [email protected] In this study, we show the expression of several TF in mouse 2 Abbreviations used in this paper: TF, transcription factor; IRF, IFN regulatory fac- and human lymphoid cells, with a special emphasis on BCL6 tor; GC, germinal center; AID, activation-induced cytidine deaminase; BCL, B cell and IRF4. We show broad coexpression of all TF before, but not lymphoma; DLBCL, diffuse large BCL; IHC, immunohistochemistry; DAPI, 4Ј,6Ј- diamidino-2-phenylindole; TMA, tissue microarray; FCM, flow cytometry; CLL, within, the GC reaction. In addition, we demonstrate that IRF4 chronic lymphocytic leukemia; PRDM1, positive regulatory domain 1. is expressed at the protein level in a much broader range of Copyright © 2006 by The American Association of Immunologists, Inc. 0022-1767/06/$02.00 The Journal of Immunology 6931 Table I. Abs used Ab Clone or Serum Immunogena Reactive onb Species Source Dilution PU.1 (Spi1) sc-352 C-term mouse h, m Rabbit SCBT 1 ␮g/ml PU.1 (Spi1) sc-5949 N-term mouse m Goat SCBT 0.1 ␮g/ml PU.1 (Spi1) G148-74 Full length h, m Mouse BD 1 ␮g/ml IRF4 sc-6059 C-term mouse h, m Goat SCBT 0.2 ␮g/ml IRF4 No. 4964 Asp175 h Rabbit CST 1/100 IRF4 sc-28696 AA 128–267h h, m Rabbit SCBT 1 ␮g/ml IRF4 MUM1 AA 144–451h h Mouse B. Falini 1/50 IRF8 (ICSBP) sc-6058 C-term mouse h, m Goat SCBT 1 ␮g/ml BCL6 PIF6 N-term human h, m Mouse Novocastra 1/100 BCL6 PGB6 276 N-term human h, m Mouse B. Falini 1/10 BCL6 PGB6p 594 N-term human h Mouse B. Falini 1/10 BCL6 sc-858 N-term human h, m Rabbit SCBT 0.1 ␮g BCL6 No. 4242 C-term human h, m Rabbit CST 1/100 Pax-5 24 AA 151–306h h, m Mouse BD 1 ␮g/ml Pax-5 sc-1974 C-term human h, m Goat SCBT 1 ␮g/ml Pax-5 RB-9406 C-term human h, m Rabbit LabVision 1 ␮g/ml Oct-2 sc-233 C-term human h, m Rabbit SCBT 0.2 ␮g/ml CD20 RB-9013 C-term human h Rabbit LabVision 1/200 CD20 L26 Cytoplasm. CD20 h Mouse DakoCytomation 1/200 Downloaded from MCM7 47DC141 hCDC47 h, m Mouse LabVision 0.5 ␮g/ml Ki-67 SP6 C-term human h, m Rabbit LabVision 1/100 Ki-67 MIB 1 rKi-67 h Mouse J.
Recommended publications
  • PAX5 Expression in Acute Leukemias: Higher B-Lineage Specificity Than Cd79a and Selective Association with T(8;21)-Acute Myelogenous Leukemia
    [CANCER RESEARCH 64, 7399–7404, October 15, 2004] PAX5 Expression in Acute Leukemias: Higher B-Lineage Specificity Than CD79a and Selective Association with t(8;21)-Acute Myelogenous Leukemia Enrico Tiacci,1 Stefano Pileri,2 Annette Orleth,1 Roberta Pacini,1 Alessia Tabarrini,1 Federica Frenguelli,1 Arcangelo Liso,3 Daniela Diverio,4 Francesco Lo-Coco,5 and Brunangelo Falini1 1Institutes of Hematology and Internal Medicine, University of Perugia, Perugia, Italy; 2Unit of Hematopathology, University of Bologne, Bologne, Italy; 3Section of Hematology, University of Foggia, Foggia, Italy; 4Department of Cellular Biotechnologies and Hematology, University La Sapienza of Rome, Rome, Italy; and 5Department of Biopathology, University Tor Vergata of Rome, Rome, Italy ABSTRACT (13, 16). PAX5 expression also occurs in the adult testis and in the mesencephalon and spinal cord during embryogenesis (17), suggesting an The transcription factor PAX5 plays a key role in the commitment of important role in the development of these tissues. hematopoietic precursors to the B-cell lineage, but its expression in acute Rearrangement of the PAX5 gene through reciprocal chromosomal leukemias has not been thoroughly investigated. Hereby, we analyzed routine biopsies from 360 acute leukemias of lymphoid (ALLs) and mye- translocations has been described in different types of B-cell malig- loid (AMLs) origin with a specific anti-PAX5 monoclonal antibody. Blasts nancies (18–23), and, more recently, PAX5 has also been shown to be from 150 B-cell ALLs showed strong PAX5 nuclear expression, paralleling targeted by aberrant hypermutation in Ͼ50% of diffuse large B-cell that of CD79a in the cytoplasm. Conversely, PAX5 was not detected in 50 lymphomas (24).
    [Show full text]
  • RNA-Binding Protein Hnrnpll Regulates Mrna Splicing and Stability During B-Cell to Plasma-Cell Differentiation
    RNA-binding protein hnRNPLL regulates mRNA splicing and stability during B-cell to plasma-cell differentiation Xing Changa,b, Bin Lic, and Anjana Raoa,b,d,e,1 Divisions of aSignaling and Gene Expression and cVaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037; bSanford Consortium for Regenerative Medicine, La Jolla, CA 92037; and dDepartment of Pharmacology and eMoores Cancer Center, University of California at San Diego, La Jolla, CA 92093 Contributed by Anjana Rao, December 2, 2014 (sent for review July 20, 2014) Posttranscriptional regulation is a major mechanism to rewire the RBP-binding sites, thus validating the specificity of RBP binding transcriptomes during differentiation. Heterogeneous nuclear to coprecipitating RNAs and mapping RBP-binding sites on the RNA-binding protein LL (hnRNPLL) is specifically induced in terminally validated RNAs at close to single-nucleotide resolution (8). differentiated lymphocytes, including effector T cells and plasma Heterogeneous nuclear RNA-binding proteins (hnRNPs) is cells. To study the molecular functions of hnRNPLL at a genome- the term applied to a collection of unrelated nuclear RBPs. wide level, we identified hnRNPLL RNA targets and binding sites in hnRNPLL was identified through a targeted lentiviral shRNA plasma cells through integrated Photoactivatable-Ribonucleoside- screen for regulators of CD45RA to CD45RO switching during Enhanced Cross-Linking and Immunoprecipitation (PAR-CLIP) and memory T-cell development (9) and independently through RNA sequencing. hnRNPLL preferentially recognizes CA dinucleo- two separate screens performed by different groups for exclusion tide-containing sequences in introns and 3′ untranslated regions of CD45 exon 4 in a minigene context (10) and for altered CD44 (UTRs), promotes exon inclusion or exclusion in a context-dependent and CD45R expression on T cells in N-ethyl-N-nitrosourea manner, and stabilizes mRNA when associated with 3′ UTRs.
    [Show full text]
  • Further Delineation of Chromosomal Consensus Regions in Primary
    Leukemia (2007) 21, 2463–2469 & 2007 Nature Publishing Group All rights reserved 0887-6924/07 $30.00 www.nature.com/leu ORIGINAL ARTICLE Further delineation of chromosomal consensus regions in primary mediastinal B-cell lymphomas: an analysis of 37 tumor samples using high-resolution genomic profiling (array-CGH) S Wessendorf1,6, TFE Barth2,6, A Viardot1, A Mueller3, HA Kestler3, H Kohlhammer1, P Lichter4, M Bentz5,HDo¨hner1,PMo¨ller2 and C Schwaenen1 1Klinik fu¨r Innere Medizin III, Zentrum fu¨r Innere Medizin der Universita¨t Ulm, Ulm, Germany; 2Institut fu¨r Pathologie, Universita¨t Ulm, Ulm, Germany; 3Forschungsdozentur Bioinformatik, Universita¨t Ulm, Ulm, Germany; 4Abt. Molekulare Genetik, Deutsches Krebsforschungszentrum, Heidelberg, Germany and 5Sta¨dtisches Klinikum Karlsruhe, Karlsruhe, Germany Primary mediastinal B-cell lymphoma (PMBL) is an aggressive the expression of BSAP, BOB1, OCT2, PAX5 and PU1 was extranodal B-cell non-Hodgkin’s lymphoma with specific clin- added to the spectrum typical of PMBL features.9 ical, histopathological and genomic features. To characterize Genetically, a pattern of highly recurrent karyotype alterations further the genotype of PMBL, we analyzed 37 tumor samples and PMBL cell lines Med-B1 and Karpas1106P using array- with the hallmark of chromosomal gains of the subtelomeric based comparative genomic hybridization (matrix- or array- region of chromosome 9 supported the concept of a unique CGH) to a 2.8k genomic microarray. Due to a higher genomic disease entity that distinguishes PMBL from other B-cell non- resolution, we identified altered chromosomal regions in much Hodgkin’s lymphomas.10,11 Together with less specific gains on higher frequencies compared with standard CGH: for example, 2p15 and frequent mutations of the SOCS1 gene, a notable þ 9p24 (68%), þ 2p15 (51%), þ 7q22 (32%), þ 9q34 (32%), genomic similarity to classical Hodgkin’s lymphoma was þ 11q23 (18%), þ 12q (30%) and þ 18q21 (24%).
    [Show full text]
  • Genomic Profiling of Adult Acute Lymphoblastic Leukemia by Single
    SUPPLEMENTARY APPENDIX Genomic profiling of adult acute lymphoblastic leukemia by single nucleotide polymorphism oligonucleotide microarray and comparison to pediatric acute lymphoblastic leukemia Ryoko Okamoto,1 Seishi Ogawa,2 Daniel Nowak,1 Norihiko Kawamata,1 Tadayuki Akagi,1,3 Motohiro Kato,2 Masashi Sanada,2 Tamara Weiss,4 Claudia Haferlach,4 Martin Dugas,5 Christian Ruckert,5 Torsten Haferlach,4 and H. Phillip Koeffler1,6 1Division of Hematology and Oncology, Cedars-Sinai Medical Center, UCLA School of Medicine, Los Angeles, CA, USA; 2Cancer Genomics Project, Graduate School of Medicine, University of Tokyo, Tokyo, Japan; 3Department of Stem Cell Biology, Graduate School of Medical Science, Kanazawa University 4MLL Munich Leukemia Laboratory, Munich, Germany; 5Department of Medical Informatics and Biomathematics, University of Münster, Münster, Germany; 6Cancer Science Institute of Singapore, National University of Singapore, Singapore Citation: Okamoto R, Ogawa S, Nowak D, Kawamata N, Akagi T, Kato M, Sanada M, Weiss T, Haferlach C, Dugas M, Ruckert C, Haferlach T, and Koeffler HP. Genomic profiling of adult acute lymphoblastic leukemia by single nucleotide polymorphism oligonu- cleotide microarray and comparison to pediatric acute lymphoblastic leukemia. Haematologica 2010;95(9):1481-1488. doi:10.3324/haematol.2009.011114 Online Supplementary Data ed by PCR of genomic DNA and subsequent direct sequencing of SNP in a region of CNN-LOH in an ALL sample versus the corresponding Design and Methods matched normal sample (Online Supplementary
    [Show full text]
  • A PAX5-OCT4-PRDM1 Developmental Switch Specifies Human Primordial Germ Cells
    A PAX5-OCT4-PRDM1 Developmental Switch Specifies Human Primordial Germ Cells Fang Fang1,2, Benjamin Angulo1,2, Ninuo Xia1,2, Meena Sukhwani3, Zhengyuan Wang4, Charles C Carey5, Aurélien Mazurie5, Jun Cui1,2, Royce Wilkinson5, Blake Wiedenheft5, Naoko Irie6, M. Azim Surani6, Kyle E Orwig3, Renee A Reijo Pera1,2 1Department of Cell Biology and Neurosciences, Montana State University, Bozeman, MT 59717, USA 2Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA 3Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, School of Medicine; Magee Women’s Research Institute, Pittsburgh, PA, 15213, USA 4Genomic Medicine Division, Hematology Branch, NHLBI/NIH, MD 20850, USA 5Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA. 6Wellcome Trust Cancer Research UK Gurdon Institute, Tennis Court Road, University of Cambridge, Cambridge CB2 1QN, UK. Correspondence should be addressed to F.F. (e-mail: [email protected]) 1 Abstract Dysregulation of genetic pathways during human germ cell development leads to infertility. Here, we analyzed bona fide human primordial germ cells (hPGCs) to probe the developmental genetics of human germ cell specification and differentiation. We examined distribution of OCT4 occupancy in hPGCs relative to human embryonic stem cells (hESCs). We demonstrate that development, from pluripotent stem cells to germ cells, is driven by switching partners with OCT4 from SOX2 to PAX5 and PRDM1. Gain- and loss-of-function studies revealed that PAX5 encodes a critical regulator of hPGC development. Moreover, analysis of epistasis indicates that PAX5 acts upstream of OCT4 and PRDM1. The PAX5-OCT4-PRDM1 proteins form a core transcriptional network that activates germline and represses somatic programs during human germ cell differentiation.
    [Show full text]
  • Supplemental Materials ZNF281 Enhances Cardiac Reprogramming
    Supplemental Materials ZNF281 enhances cardiac reprogramming by modulating cardiac and inflammatory gene expression Huanyu Zhou, Maria Gabriela Morales, Hisayuki Hashimoto, Matthew E. Dickson, Kunhua Song, Wenduo Ye, Min S. Kim, Hanspeter Niederstrasser, Zhaoning Wang, Beibei Chen, Bruce A. Posner, Rhonda Bassel-Duby and Eric N. Olson Supplemental Table 1; related to Figure 1. Supplemental Table 2; related to Figure 1. Supplemental Table 3; related to the “quantitative mRNA measurement” in Materials and Methods section. Supplemental Table 4; related to the “ChIP-seq, gene ontology and pathway analysis” and “RNA-seq” and gene ontology analysis” in Materials and Methods section. Supplemental Figure S1; related to Figure 1. Supplemental Figure S2; related to Figure 2. Supplemental Figure S3; related to Figure 3. Supplemental Figure S4; related to Figure 4. Supplemental Figure S5; related to Figure 6. Supplemental Table S1. Genes included in human retroviral ORF cDNA library. Gene Gene Gene Gene Gene Gene Gene Gene Symbol Symbol Symbol Symbol Symbol Symbol Symbol Symbol AATF BMP8A CEBPE CTNNB1 ESR2 GDF3 HOXA5 IL17D ADIPOQ BRPF1 CEBPG CUX1 ESRRA GDF6 HOXA6 IL17F ADNP BRPF3 CERS1 CX3CL1 ETS1 GIN1 HOXA7 IL18 AEBP1 BUD31 CERS2 CXCL10 ETS2 GLIS3 HOXB1 IL19 AFF4 C17ORF77 CERS4 CXCL11 ETV3 GMEB1 HOXB13 IL1A AHR C1QTNF4 CFL2 CXCL12 ETV7 GPBP1 HOXB5 IL1B AIMP1 C21ORF66 CHIA CXCL13 FAM3B GPER HOXB6 IL1F3 ALS2CR8 CBFA2T2 CIR1 CXCL14 FAM3D GPI HOXB7 IL1F5 ALX1 CBFA2T3 CITED1 CXCL16 FASLG GREM1 HOXB9 IL1F6 ARGFX CBFB CITED2 CXCL3 FBLN1 GREM2 HOXC4 IL1F7
    [Show full text]
  • The E–Id Protein Axis Modulates the Activities of the PI3K–AKT–Mtorc1
    Downloaded from genesdev.cshlp.org on October 6, 2021 - Published by Cold Spring Harbor Laboratory Press The E–Id protein axis modulates the activities of the PI3K–AKT–mTORC1– Hif1a and c-myc/p19Arf pathways to suppress innate variant TFH cell development, thymocyte expansion, and lymphomagenesis Masaki Miyazaki,1,8 Kazuko Miyazaki,1,8 Shuwen Chen,1 Vivek Chandra,1 Keisuke Wagatsuma,2 Yasutoshi Agata,2 Hans-Reimer Rodewald,3 Rintaro Saito,4 Aaron N. Chang,5 Nissi Varki,6 Hiroshi Kawamoto,7 and Cornelis Murre1 1Department of Molecular Biology, University of California at San Diego, La Jolla, California 92093, USA; 2Department of Biochemistry and Molecular Biology, Shiga University of Medical School, Shiga 520-2192, Japan; 3Division of Cellular Immunology, German Cancer Research Center, D-69120 Heidelberg, Germany; 4Department of Medicine, University of California at San Diego, La Jolla, California 92093, USA; 5Center for Computational Biology, Institute for Genomic Medicine, University of California at San Diego, La Jolla, California 92093, USA; 6Department of Pathology, University of California at San Diego, La Jolla, California 92093, USA; 7Department of Immunology, Institute for Frontier Medical Sciences, Kyoto University, Kyoto 606-8507, Japan It is now well established that the E and Id protein axis regulates multiple steps in lymphocyte development. However, it remains unknown how E and Id proteins mechanistically enforce and maintain the naı¨ve T-cell fate. Here we show that Id2 and Id3 suppressed the development and expansion of innate variant follicular helper T (TFH) cells. Innate variant TFH cells required major histocompatibility complex (MHC) class I-like signaling and were associated with germinal center B cells.
    [Show full text]
  • Repressing the Repressor: Fra1 Controls Plasma Cell Generation
    www.impactjournals.com/oncotarget/ Oncotarget, Vol. 6, No. 20 Editorial Repressing the repressor: Fra1 controls plasma cell generation Dirk Mielenz , Bettina Grötsch and Jean-Pierre David B cell differentiation from the early commitment become quickly up-regulated upon B cell activation [5]. into the B lymphoid lineage in the bone marrow up In addition, c-Fos had been shown to promote Blimp1 to the differentiation into antibody secreting plasma expression [6]. However, the physiological relevance cells is tightly controlled by a transcriptional program of these observations was not demonstrated in vivo. We dominated by a cascade of repression. Indeed, each recently showed by gain and loss of function experiments step of B cell differentiation to mature B cells appears that Fra1 enhances activation induced cell death (AICD) to depend on transcription factors that, in addition to upon its induction in activated B cells, and as well limits promoting differentiation, repress key determinants of B cell proliferation [7]. Moreover, transgenic over- other hematopoietic lineages or even key regulators of expression of Fra1 blocks plasma cell differentiation the next or previous steps of B cell differentiation. For and immunoglobulin production in vitro and in vivo. instance, Pax5 that is required for early B cell commitment In accordance, mice with B cell-specific deletion of and maintenance of B cell identity acts by repressing the Fra1 show enhanced plasma cell differentiation in vitro differentiation of lymphoid precursor cells into the other and in vivo as well as exacerbated antibody responses. hematopoietic lineages [1]. Globally, key transcriptional Interestingly, transgenic Bcl2 overexpression alleviated regulators of B cell identity such as Pax5, Bcl6 or Bach2, Fra1 elicited AICD and corrected the B cell proliferation all inhibit the generation of antibody secreting plasma defect.
    [Show full text]
  • Detection of Enhancer-Associated Rearrangements Reveals Mechanisms of Oncogene Dysregulation in B-Cell Lymphoma
    Published OnlineFirst July 30, 2015; DOI: 10.1158/2159-8290.CD-15-0370 ReseaRch aRticle Detection of Enhancer-Associated Rearrangements Reveals Mechanisms of Oncogene Dysregulation in B-cell Lymphoma Russell J.H. Ryan1,2, Yotam Drier1,2, Holly Whitton2, M. Joel Cotton1,2, Jasleen Kaur1,2, Robbyn Issner2, Shawn Gillespie1,2, Charles B. Epstein2, Valentina Nardi1, Aliyah R. Sohani1, Ephraim P. Hochberg3, and Bradley E. Bernstein1,2 abstRact B-cell lymphomas frequently contain genomic rearrangements that lead to onco- gene activation by heterologous distal regulatory elements. We used a novel approach called “pinpointing enhancer-associated rearrangements by chromatin immunoprecipitation,” or PEAR- ChIP, to simultaneously map enhancer activity and proximal rearrangements in lymphoma cell lines and patient biopsies. This method detects rearrangements involving known cancer genes, including CCND1, BCL2, MYC, PDCD1LG2, NOTCH1, CIITA, and SGK1, as well as novel enhancer duplication events of likely oncogenic significance. We identify lymphoma subtype–specific enhancers in the MYC locus that are silenced in lymphomas with MYC-activating rearrangements and are associated with germline polymorphisms that alter lymphoma risk. We show that BCL6-locus enhancers are acetylated by the BCL6-activating transcription factor MEF2B, and can undergo genomic duplication, or target the MYC promoter for activation in the context of a “pseudo-double-hit” t(3;8)(q27;q24) rearrangement linking the BCL6 and MYC loci. Our work provides novel insights regarding enhancer-driven oncogene activa- tion in lymphoma. SIGNIFICANCE: We demonstrate a novel approach for simultaneous detection of genomic rearrange- ments and enhancer activity in tumor biopsies. We identify novel mechanisms of enhancer-driven regu- lation of the oncogenes MYC and BCL6, and show that the BCL6 locus can serve as an enhancer donor in an “enhancer hijacking” translocation.
    [Show full text]
  • PAX5-ELN Oncoprotein Promotes Multistep B-Cell Acute Lymphoblastic Leukemia in Mice
    PAX5-ELN oncoprotein promotes multistep B-cell acute lymphoblastic leukemia in mice Laura Jamroga,1, Guillaume Cheminb,1, Vincent Fregonaa, Lucie Costerc, Marlène Pasquetd, Chloé Oudinetb, Nelly Rouquiéa, Naïs Pradea,c, Stéphanie Lagardea,c, Charlotte Cressona, Sylvie Hébrarda, Ngoc Sa Nguyen Huub, Marina Bousquete, Cathy Quelene, Pierre Broussete, Stéphane J. C. Mancinif, Eric Delabessea,c, Ahmed Amine Khamlichib,2, Bastien Gerbya,2,3, and Cyril Broccardoa,2,3 aCentre de Recherches en Cancérologie de Toulouse (CRCT), Université de Toulouse, Institut National de la Santé et de la Recherche Médicale (INSERM), Université Toulouse III Paul Sabatier (UPS), 31037 Toulouse, France; bInstitut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, Centre National de la Recherche Scientifique (CNRS), UPS, 31077 Toulouse, France; cLaboratoire d’Hématologie, Centre Hospitalier Universitaire (CHU) de Toulouse, 31000 Toulouse, France; dDepartment of Pediatric Hematology, CHU de Toulouse, 31000 Toulouse, France; eCRCT, INSERM, UPS, ERL5294 CNRS, Laboratoire d’Excellence Toulouse Cancer (TOUCAN), 31037 Toulouse, France; and fAix Marseille University, CNRS, INSERM, Institut Paoli-Calmettes (IPC), Centre de Recherche en Cancérologie de Marseille (CRCM), 13009 Marseille, France Edited by Brian J. Druker, Oregon Health & Science University, Portland, OR, and approved August 29, 2018 (received for review December 14, 2017) PAX5 is a well-known haploinsufficient tumor suppressor gene in found in more than one-third of human B-ALL (9–11). These al- human B-cell precursor acute lymphoblastic leukemia (B-ALL) and is terations result in loss of PAX5 expression and impairment of involved in various chromosomal translocations that fuse a part of DNA-binding activity and/or transcriptional activity of PAX5.
    [Show full text]
  • A Dissertation Entitled the Androgen Receptor
    A Dissertation entitled The Androgen Receptor as a Transcriptional Co-activator: Implications in the Growth and Progression of Prostate Cancer By Mesfin Gonit Submitted to the Graduate Faculty as partial fulfillment of the requirements for the PhD Degree in Biomedical science Dr. Manohar Ratnam, Committee Chair Dr. Lirim Shemshedini, Committee Member Dr. Robert Trumbly, Committee Member Dr. Edwin Sanchez, Committee Member Dr. Beata Lecka -Czernik, Committee Member Dr. Patricia R. Komuniecki, Dean College of Graduate Studies The University of Toledo August 2011 Copyright 2011, Mesfin Gonit This document is copyrighted material. Under copyright law, no parts of this document may be reproduced without the expressed permission of the author. An Abstract of The Androgen Receptor as a Transcriptional Co-activator: Implications in the Growth and Progression of Prostate Cancer By Mesfin Gonit As partial fulfillment of the requirements for the PhD Degree in Biomedical science The University of Toledo August 2011 Prostate cancer depends on the androgen receptor (AR) for growth and survival even in the absence of androgen. In the classical models of gene activation by AR, ligand activated AR signals through binding to the androgen response elements (AREs) in the target gene promoter/enhancer. In the present study the role of AREs in the androgen- independent transcriptional signaling was investigated using LP50 cells, derived from parental LNCaP cells through extended passage in vitro. LP50 cells reflected the signature gene overexpression profile of advanced clinical prostate tumors. The growth of LP50 cells was profoundly dependent on nuclear localized AR but was independent of androgen. Nevertheless, in these cells AR was unable to bind to AREs in the absence of androgen.
    [Show full text]
  • Id3 Induces an Elk-1- and Caspase-8-Dependent Apoptotic Pathway In
    ID3 INDUCES AN ELK-1- AND CASPASE-8-DEPENDENT APOPTOTIC PATHWAY IN SQUAMOUS CARCINOMA CELLS A Dissertation submitted to the Faculty of the Graduate School of Arts and Sciences of Georgetown University in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Biochemistry and Molecular & Cellular Biology By You-shin Chen, M.S. Washington, DC November 18, 2014 Copyright 2014 by You-shin Chen All Rights Reserved ii ID3 INDUCES AN ELK-1- AND CASPASE-8-DEPENDENT APOPTOTIC PATHWAY IN SQUAMOUS CARCINOMA CELLS You-shin Chen, M.S. Thesis Advisor: Dean S. Rosenthal, Ph.D. ABSTRACT Inhibitors of differentiation/DNA binding (Id) proteins are helix-loop-helix (HLH) transcription factors. The Id protein family (Id1-Id4) mediates tissue homeostasis by regulating cellular processes including differentiation, proliferation, and apoptosis. Previously, we found that Id3 induced apoptosis in immortalized human keratinocytes (Simbulan-Rosenthal et al., 2006), consistent with its role as a tumor suppressor (Richter et al., 2012; Schmitz et al., 2012). To investigate the role of Id3 in malignant SCC cells (A431), a tetracycline-regulated inducible system was used to induce Id3 in cell culture and mouse xenograft models. We found that upon Id3 induction, there was a decrease in cell number under low serum conditions, as well as in soft agar. Microarray, RT-PCR, immunoblot, siRNA, and inhibitor studies revealed that Id3 induced expression of Elk-1, an ETS-domain transcription factor, inducing procaspase-8 expression and activation. Id3 deletion mutants revealed that 80 C-terminal amino acids, including the HLH, are important for Id3-induced apoptosis.
    [Show full text]