Set Theory and a Bit of Logic
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Redalyc.Sets and Pluralities
Red de Revistas Científicas de América Latina, el Caribe, España y Portugal Sistema de Información Científica Gustavo Fernández Díez Sets and Pluralities Revista Colombiana de Filosofía de la Ciencia, vol. IX, núm. 19, 2009, pp. 5-22, Universidad El Bosque Colombia Available in: http://www.redalyc.org/articulo.oa?id=41418349001 Revista Colombiana de Filosofía de la Ciencia, ISSN (Printed Version): 0124-4620 [email protected] Universidad El Bosque Colombia How to cite Complete issue More information about this article Journal's homepage www.redalyc.org Non-Profit Academic Project, developed under the Open Acces Initiative Sets and Pluralities1 Gustavo Fernández Díez2 Resumen En este artículo estudio el trasfondo filosófico del sistema de lógica conocido como “lógica plural”, o “lógica de cuantificadores plurales”, de aparición relativamente reciente (y en alza notable en los últimos años). En particular, comparo la noción de “conjunto” emanada de la teoría axiomática de conjuntos, con la noción de “plura- lidad” que se encuentra detrás de este nuevo sistema. Mi conclusión es que los dos son completamente diferentes en su alcance y sus límites, y que la diferencia proviene de las diferentes motivaciones que han dado lugar a cada uno. Mientras que la teoría de conjuntos es una teoría genuinamente matemática, que tiene el interés matemático como ingrediente principal, la lógica plural ha aparecido como respuesta a considera- ciones lingüísticas, relacionadas con la estructura lógica de los enunciados plurales del inglés y el resto de los lenguajes naturales. Palabras clave: conjunto, teoría de conjuntos, pluralidad, cuantificación plural, lógica plural. Abstract In this paper I study the philosophical background of the relatively recent (and in the last few years increasingly flourishing) system of logic called “plural logic”, or “logic of plural quantifiers”. -
A Taste of Set Theory for Philosophers
Journal of the Indian Council of Philosophical Research, Vol. XXVII, No. 2. A Special Issue on "Logic and Philosophy Today", 143-163, 2010. Reprinted in "Logic and Philosophy Today" (edited by A. Gupta ans J.v.Benthem), College Publications vol 29, 141-162, 2011. A taste of set theory for philosophers Jouko Va¨an¨ anen¨ ∗ Department of Mathematics and Statistics University of Helsinki and Institute for Logic, Language and Computation University of Amsterdam November 17, 2010 Contents 1 Introduction 1 2 Elementary set theory 2 3 Cardinal and ordinal numbers 3 3.1 Equipollence . 4 3.2 Countable sets . 6 3.3 Ordinals . 7 3.4 Cardinals . 8 4 Axiomatic set theory 9 5 Axiom of Choice 12 6 Independence results 13 7 Some recent work 14 7.1 Descriptive Set Theory . 14 7.2 Non well-founded set theory . 14 7.3 Constructive set theory . 15 8 Historical Remarks and Further Reading 15 ∗Research partially supported by grant 40734 of the Academy of Finland and by the EUROCORES LogICCC LINT programme. I Journal of the Indian Council of Philosophical Research, Vol. XXVII, No. 2. A Special Issue on "Logic and Philosophy Today", 143-163, 2010. Reprinted in "Logic and Philosophy Today" (edited by A. Gupta ans J.v.Benthem), College Publications vol 29, 141-162, 2011. 1 Introduction Originally set theory was a theory of infinity, an attempt to understand infinity in ex- act terms. Later it became a universal language for mathematics and an attempt to give a foundation for all of mathematics, and thereby to all sciences that are based on mathematics. -
Arxiv:1804.02439V1
DATHEMATICS: A META-ISOMORPHIC VERSION OF ‘STANDARD’ MATHEMATICS BASED ON PROPER CLASSES DANNY ARLEN DE JESUS´ GOMEZ-RAM´ ´IREZ ABSTRACT. We show that the (typical) quantitative considerations about proper (as too big) and small classes are just tangential facts regarding the consistency of Zermelo-Fraenkel Set Theory with Choice. Effectively, we will construct a first-order logic theory D-ZFC (Dual theory of ZFC) strictly based on (a particular sub-collection of) proper classes with a corresponding spe- cial membership relation, such that ZFC and D-ZFC are meta-isomorphic frameworks (together with a more general dualization theorem). More specifically, for any standard formal definition, axiom and theorem that can be described and deduced in ZFC, there exists a corresponding ‘dual’ ver- sion in D-ZFC and vice versa. Finally, we prove the meta-fact that (classic) mathematics (i.e. theories grounded on ZFC) and dathematics (i.e. dual theories grounded on D-ZFC) are meta-isomorphic. This shows that proper classes are as suitable (primitive notions) as sets for building a foundational framework for mathematics. Mathematical Subject Classification (2010): 03B10, 03E99 Keywords: proper classes, NBG Set Theory, equiconsistency, meta-isomorphism. INTRODUCTION At the beginning of the twentieth century there was a particular interest among mathematicians and logicians in finding a general, coherent and con- sistent formal framework for mathematics. One of the main reasons for this was the discovery of paradoxes in Cantor’s Naive Set Theory and related sys- tems, e.g., Russell’s, Cantor’s, Burati-Forti’s, Richard’s, Berry’s and Grelling’s paradoxes [12], [4], [14], [3], [6] and [11]. -
Equivalents to the Axiom of Choice and Their Uses A
EQUIVALENTS TO THE AXIOM OF CHOICE AND THEIR USES A Thesis Presented to The Faculty of the Department of Mathematics California State University, Los Angeles In Partial Fulfillment of the Requirements for the Degree Master of Science in Mathematics By James Szufu Yang c 2015 James Szufu Yang ALL RIGHTS RESERVED ii The thesis of James Szufu Yang is approved. Mike Krebs, Ph.D. Kristin Webster, Ph.D. Michael Hoffman, Ph.D., Committee Chair Grant Fraser, Ph.D., Department Chair California State University, Los Angeles June 2015 iii ABSTRACT Equivalents to the Axiom of Choice and Their Uses By James Szufu Yang In set theory, the Axiom of Choice (AC) was formulated in 1904 by Ernst Zermelo. It is an addition to the older Zermelo-Fraenkel (ZF) set theory. We call it Zermelo-Fraenkel set theory with the Axiom of Choice and abbreviate it as ZFC. This paper starts with an introduction to the foundations of ZFC set the- ory, which includes the Zermelo-Fraenkel axioms, partially ordered sets (posets), the Cartesian product, the Axiom of Choice, and their related proofs. It then intro- duces several equivalent forms of the Axiom of Choice and proves that they are all equivalent. In the end, equivalents to the Axiom of Choice are used to prove a few fundamental theorems in set theory, linear analysis, and abstract algebra. This paper is concluded by a brief review of the work in it, followed by a few points of interest for further study in mathematics and/or set theory. iv ACKNOWLEDGMENTS Between the two department requirements to complete a master's degree in mathematics − the comprehensive exams and a thesis, I really wanted to experience doing a research and writing a serious academic paper. -
The Strength of Mac Lane Set Theory
The Strength of Mac Lane Set Theory A. R. D. MATHIAS D´epartement de Math´ematiques et Informatique Universit´e de la R´eunion To Saunders Mac Lane on his ninetieth birthday Abstract AUNDERS MAC LANE has drawn attention many times, particularly in his book Mathematics: Form and S Function, to the system ZBQC of set theory of which the axioms are Extensionality, Null Set, Pairing, Union, Infinity, Power Set, Restricted Separation, Foundation, and Choice, to which system, afforced by the principle, TCo, of Transitive Containment, we shall refer as MAC. His system is naturally related to systems derived from topos-theoretic notions concerning the category of sets, and is, as Mac Lane emphasizes, one that is adequate for much of mathematics. In this paper we show that the consistency strength of Mac Lane's system is not increased by adding the axioms of Kripke{Platek set theory and even the Axiom of Constructibility to Mac Lane's axioms; our method requires a close study of Axiom H, which was proposed by Mitchell; we digress to apply these methods to subsystems of Zermelo set theory Z, and obtain an apparently new proof that Z is not finitely axiomatisable; we study Friedman's strengthening KPP + AC of KP + MAC, and the Forster{Kaye subsystem KF of MAC, and use forcing over ill-founded models and forcing to establish independence results concerning MAC and KPP ; we show, again using ill-founded models, that KPP + V = L proves the consistency of KPP ; turning to systems that are type-theoretic in spirit or in fact, we show by arguments of Coret -
Set Theory for Computer Science by Prof Glynn Winskel
Notes on Set Theory for Computer Science by Prof Glynn Winskel c Glynn Winskel 2 i A brief history of sets A set is an unordered collection of objects, and as such a set is determined by the objects it contains. Before the 19th century it was uncommon to think of sets as completed objects in their own right. Mathematicians were familiar with properties such as being a natural number, or being irrational, but it was rare to think of say the collection of rational numbers as itself an object. (There were exceptions. From Euclid mathe- maticians were used to thinking of geometric objects such as lines and planes and spheres which we might today identify with their sets of points.) In the mid 19th century there was a renaissance in Logic. For thousands of years, since the time of Aristotle and before, learned individuals had been familiar with syllogisms as patterns of legitimate reasoning, for example: All men are mortal. Socrates is a man. Therefore Socrates is mortal. But syllogisms involved descriptions of properties. The idea of pioneers such as Boole was to assign a meaning as a set to these descriptions. For example, the two descriptions \is a man" and \is a male homo sapiens" both describe the same set, viz. the set of all men. It was this objectification of meaning, understanding properties as sets, that led to a rebirth of Logic and Mathematics in the 19th century. Cantor took the idea of set to a revolutionary level, unveiling its true power. By inventing a notion of size of set he was able compare different forms of infinity and, almost incidentally, to shortcut several traditional mathematical arguments. -
Axioms of Set Theory and Equivalents of Axiom of Choice Farighon Abdul Rahim Boise State University, [email protected]
Boise State University ScholarWorks Mathematics Undergraduate Theses Department of Mathematics 5-2014 Axioms of Set Theory and Equivalents of Axiom of Choice Farighon Abdul Rahim Boise State University, [email protected] Follow this and additional works at: http://scholarworks.boisestate.edu/ math_undergraduate_theses Part of the Set Theory Commons Recommended Citation Rahim, Farighon Abdul, "Axioms of Set Theory and Equivalents of Axiom of Choice" (2014). Mathematics Undergraduate Theses. Paper 1. Axioms of Set Theory and Equivalents of Axiom of Choice Farighon Abdul Rahim Advisor: Samuel Coskey Boise State University May 2014 1 Introduction Sets are all around us. A bag of potato chips, for instance, is a set containing certain number of individual chip’s that are its elements. University is another example of a set with students as its elements. By elements, we mean members. But sets should not be confused as to what they really are. A daughter of a blacksmith is an element of a set that contains her mother, father, and her siblings. Then this set is an element of a set that contains all the other families that live in the nearby town. So a set itself can be an element of a bigger set. In mathematics, axiom is defined to be a rule or a statement that is accepted to be true regardless of having to prove it. In a sense, axioms are self evident. In set theory, we deal with sets. Each time we state an axiom, we will do so by considering sets. Example of the set containing the blacksmith family might make it seem as if sets are finite. -
1. Life • Father, Georg Waldemar Cantor, Born in Den- Mark, Successful Merchant, and Stock Broker in St Petersburg
Georg Cantor and Set Theory 1. Life • Father, Georg Waldemar Cantor, born in Den- mark, successful merchant, and stock broker in St Petersburg. Mother, Maria Anna B¨ohm, was Russian. • In 1856, because of father's poor health, family moved to Germany. • Georg graduated from high school in 1860 with an outstanding report, which mentioned in par- ticular his exceptional skills in mathematics, in particular trigonometry. • “H¨ohereGewerbeschule" in Darmstadt from 1860, Polytechnic of Z¨urich in 1862. Cantor's father wanted Cantor to become:- ... a shining star in the engineering firmament. • 1862: Cantor got his father's permission to study mathematics. • Father died. 1863 Cantor moved to the Uni- versity of Berlin where he attended lectures by Weierstrass, Kummer and Kronecker. • Dissertation on number theory in 1867. • Teacher in a girls' school. • Professor at Halle in 1872. • Friendship with Richard Dedekind. 2 • 1874: marriage with Vally Guttmann, a friend of his sister. Honeymoon in Interlaken in Switzer- land where Cantor spent much time in mathe- matical discussions with Dedekind. • Starting in 1877 papers in set theory. \Grund- lagen einer allgemeinen Mannigfaltigkeitslehre". Theory of sets not finding the acceptance hoped for. • May 1884 Cantor had the first recorded attack of depression. He recovered after a few weeks but now seemed less confident. • Turned toward philosophy and tried to show that Francis Bacon wrote the Shakespeare plays. • International Congress of Mathematicians 1897. Hurwitz openly expressed his great admiration of Cantor and proclaimed him as one by whom the theory of functions has been enriched. Jacques Hadamard expressed his opinion that the no- tions of the theory of sets were known and in- dispensable instruments. -
Lecture 3: Constructing the Natural Numbers 1 Building
Math/CS 120: Intro. to Math Professor: Padraic Bartlett Lecture 3: Constructing the Natural Numbers Weeks 3-4 UCSB 2014 When we defined what a proof was in our first set of lectures, we mentioned that we wanted our proofs to only start by assuming \true" statements, which we said were either previously proven-to-be-true statements or a small handful of axioms, mathematical statements which we are assuming to be true. At the time, we \handwaved" away what those axioms were, in favor of using known properties/definitions to prove results! In this talk, however, we're going to delve into the bedrock of exactly \what" properties are needed to build up some of our favorite number systems. 1 Building the Natural Numbers 1.1 First attempts. Intuitively, we think of the natural numbers as the following set: Definition. The natural numbers, denoted as N, is the set of the positive whole numbers. We denote it as follows: N = f0; 1; 2; 3;:::g This is a fine definition for most of the mathematics we will perform in this class! However, suppose that you were feeling particularly paranoid about your fellow mathematicians; i.e. you have a sneaking suspicion that the Goldbach conjecture is false, and it somehow boils down to the natural numbers being ill-defined. Or you think that you can prove P = NP with the corollary that P = NP, and to do that you need to figure out what people mean by these blackboard-bolded letters. Or you just wanted to troll your professors in CCS. -
What Is Mathematics: Gödel's Theorem and Around. by Karlis
1 Version released: January 25, 2015 What is Mathematics: Gödel's Theorem and Around Hyper-textbook for students by Karlis Podnieks, Professor University of Latvia Institute of Mathematics and Computer Science An extended translation of the 2nd edition of my book "Around Gödel's theorem" published in 1992 in Russian (online copy). Diploma, 2000 Diploma, 1999 This work is licensed under a Creative Commons License and is copyrighted © 1997-2015 by me, Karlis Podnieks. This hyper-textbook contains many links to: Wikipedia, the free encyclopedia; MacTutor History of Mathematics archive of the University of St Andrews; MathWorld of Wolfram Research. Are you a platonist? Test yourself. Tuesday, August 26, 1930: Chronology of a turning point in the human intellectua l history... Visiting Gödel in Vienna... An explanation of “The Incomprehensible Effectiveness of Mathematics in the Natural Sciences" (as put by Eugene Wigner). 2 Table of Contents References..........................................................................................................4 1. Platonism, intuition and the nature of mathematics.......................................6 1.1. Platonism – the Philosophy of Working Mathematicians.......................6 1.2. Investigation of Stable Self-contained Models – the True Nature of the Mathematical Method..................................................................................15 1.3. Intuition and Axioms............................................................................20 1.4. Formal Theories....................................................................................27 -
Lecture 9: Axiomatic Set Theory
Lecture 9: Axiomatic Set Theory December 16, 2014 Lecture 9: Axiomatic Set Theory Key points of today's lecture: I The iterative concept of set. I The language of set theory (LOST). I The axioms of Zermelo-Fraenkel set theory (ZFC). I Justification of the axioms based on the iterative concept of set. Today Lecture 9: Axiomatic Set Theory I The iterative concept of set. I The language of set theory (LOST). I The axioms of Zermelo-Fraenkel set theory (ZFC). I Justification of the axioms based on the iterative concept of set. Today Key points of today's lecture: Lecture 9: Axiomatic Set Theory I The language of set theory (LOST). I The axioms of Zermelo-Fraenkel set theory (ZFC). I Justification of the axioms based on the iterative concept of set. Today Key points of today's lecture: I The iterative concept of set. Lecture 9: Axiomatic Set Theory I The axioms of Zermelo-Fraenkel set theory (ZFC). I Justification of the axioms based on the iterative concept of set. Today Key points of today's lecture: I The iterative concept of set. I The language of set theory (LOST). Lecture 9: Axiomatic Set Theory I Justification of the axioms based on the iterative concept of set. Today Key points of today's lecture: I The iterative concept of set. I The language of set theory (LOST). I The axioms of Zermelo-Fraenkel set theory (ZFC). Lecture 9: Axiomatic Set Theory Today Key points of today's lecture: I The iterative concept of set. I The language of set theory (LOST). -
Set-Theoretical Background 1.1 Ordinals and Cardinals
Set-Theoretical Background 11 February 2019 Our set-theoretical framework will be the Zermelo{Fraenkel axioms with the axiom of choice (ZFC): • Axiom of Extensionality. If X and Y have the same elements, then X = Y . • Axiom of Pairing. For all a and b there exists a set fa; bg that contains exactly a and b. • Axiom Schema of Separation. If P is a property (with a parameter p), then for all X and p there exists a set Y = fx 2 X : P (x; p)g that contains all those x 2 X that have the property P . • Axiom of Union. For any X there exists a set Y = S X, the union of all elements of X. • Axiom of Power Set. For any X there exists a set Y = P (X), the set of all subsets of X. • Axiom of Infinity. There exists an infinite set. • Axiom Schema of Replacement. If a class F is a function, then for any X there exists a set Y = F (X) = fF (x): x 2 Xg. • Axiom of Regularity. Every nonempty set has a minimal element for the membership relation. • Axiom of Choice. Every family of nonempty sets has a choice function. 1.1 Ordinals and cardinals A set X is well ordered if it is equipped with a total order relation such that every nonempty subset S ⊆ X has a smallest element. The statement that every set admits a well ordering is equivalent to the axiom of choice. A set X is transitive if every element of an element of X is an element of X.