PDF Linkchapter
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Distritos Declarados Zona Catastrada.Xlsx
Distritos de Zona Catastrada "zona 1" 1-San José 2-Alajuela3-Cartago 4-Heredia 5-Guanacaste 6-Puntarenas 7-Limón 104-PURISCAL 202-SAN RAMON 301-Cartago 304-Jiménez 401-Heredia 405-San Rafael 501-Liberia 508-Tilarán 601-Puntarenas 705- Matina 10409-CHIRES 20212-ZAPOTAL 30101-ORIENTAL 30401-JUAN VIÑAS 40101-HEREDIA 40501-SAN RAFAEL 50104-NACASCOLO 50801-TILARAN 60101-PUNTARENAS 70501-MATINA 10407-DESAMPARADITOS 203-Grecia 30102-OCCIDENTAL 30402-TUCURRIQUE 40102-MERCEDES 40502-SAN JOSECITO 502-Nicoya 50802-QUEBRADA GRANDE 60102-PITAHAYA 703-Siquirres 106-Aserri 20301-GRECIA 30103-CARMEN 30403-PEJIBAYE 40104-ULLOA 40503-SANTIAGO 50202-MANSIÓN 50803-TRONADORA 60103-CHOMES 70302-PACUARITO 10606-MONTERREY 20302-SAN ISIDRO 30104-SAN NICOLÁS 306-Alvarado 402-Barva 40504-ÁNGELES 50203-SAN ANTONIO 50804-SANTA ROSA 60106-MANZANILLO 70307-REVENTAZON 118-Curridabat 20303-SAN JOSE 30105-AGUACALIENTE O SAN FRANCISCO 30601-PACAYAS 40201-BARVA 40505-CONCEPCIÓN 50204-QUEBRADA HONDA 50805-LIBANO 60107-GUACIMAL 704-Talamanca 11803-SANCHEZ 20304-SAN ROQUE 30106-GUADALUPE O ARENILLA 30602-CERVANTES 40202-SAN PEDRO 406-San Isidro 50205-SÁMARA 50806-TIERRAS MORENAS 60108-BARRANCA 70401-BRATSI 11801-CURRIDABAT 20305-TACARES 30107-CORRALILLO 30603-CAPELLADES 40203-SAN PABLO 40601-SAN ISIDRO 50207-BELÉN DE NOSARITA 50807-ARENAL 60109-MONTE VERDE 70404-TELIRE 107-Mora 20307-PUENTE DE PIEDRA 30108-TIERRA BLANCA 305-TURRIALBA 40204-SAN ROQUE 40602-SAN JOSÉ 503-Santa Cruz 509-Nandayure 60112-CHACARITA 10704-PIEDRAS NEGRAS 20308-BOLIVAR 30109-DULCE NOMBRE 30512-CHIRRIPO -
Cambridge University Press 978-1-108-44568-9 — Active Faults of the World Robert Yeats Index More Information
Cambridge University Press 978-1-108-44568-9 — Active Faults of the World Robert Yeats Index More Information Index Abancay Deflection, 201, 204–206, 223 Allmendinger, R. W., 206 Abant, Turkey, earthquake of 1957 Ms 7.0, 286 allochthonous terranes, 26 Abdrakhmatov, K. Y., 381, 383 Alpine fault, New Zealand, 482, 486, 489–490, 493 Abercrombie, R. E., 461, 464 Alps, 245, 249 Abers, G. A., 475–477 Alquist-Priolo Act, California, 75 Abidin, H. Z., 464 Altay Range, 384–387 Abiz, Iran, fault, 318 Alteriis, G., 251 Acambay graben, Mexico, 182 Altiplano Plateau, 190, 191, 200, 204, 205, 222 Acambay, Mexico, earthquake of 1912 Ms 6.7, 181 Altunel, E., 305, 322 Accra, Ghana, earthquake of 1939 M 6.4, 235 Altyn Tagh fault, 336, 355, 358, 360, 362, 364–366, accreted terrane, 3 378 Acocella, V., 234 Alvarado, P., 210, 214 active fault front, 408 Álvarez-Marrón, J. M., 219 Adamek, S., 170 Amaziahu, Dead Sea, fault, 297 Adams, J., 52, 66, 71–73, 87, 494 Ambraseys, N. N., 226, 229–231, 234, 259, 264, 275, Adria, 249, 250 277, 286, 288–290, 292, 296, 300, 301, 311, 321, Afar Triangle and triple junction, 226, 227, 231–233, 328, 334, 339, 341, 352, 353 237 Ammon, C. J., 464 Afghan (Helmand) block, 318 Amuri, New Zealand, earthquake of 1888 Mw 7–7.3, 486 Agadir, Morocco, earthquake of 1960 Ms 5.9, 243 Amurian Plate, 389, 399 Age of Enlightenment, 239 Anatolia Plate, 263, 268, 292, 293 Agua Blanca fault, Baja California, 107 Ancash, Peru, earthquake of 1946 M 6.3 to 6.9, 201 Aguilera, J., vii, 79, 138, 189 Ancón fault, Venezuela, 166 Airy, G. -
Quaternary Activity of the Bucaramanga Fault in the Depart- Ments of Santander and Cesar
Volume 4 Quaternary Chapter 13 Neogene https://doi.org/10.32685/pub.esp.38.2019.13 Quaternary Activity of the Bucaramanga Fault Published online 27 November 2020 in the Departments of Santander and Cesar Paleogene Hans DIEDERIX1* , Olga Patricia BOHÓRQUEZ2 , Héctor MORA–PÁEZ3 , 4 5 6 Juan Ramón PELÁEZ , Leonardo CARDONA , Yuli CORCHUELO , 1 [email protected] 7 8 Jaír RAMÍREZ , and Fredy DÍAZ–MILA Consultant geologist Servicio Geológico Colombiano Dirección de Geoamenazas Abstract The 350 km long Bucaramanga Fault is the southern and most prominent Grupo de Trabajo Investigaciones Geodésicas Cretaceous Espaciales (GeoRED) segment of the 550 km long Santa Marta–Bucaramanga Fault that is a NNW striking left Dirección de Geociencias Básicas Grupo de Trabajo Tectónica lateral strike–slip fault system. It is the most visible tectonic feature north of latitude Paul Krugerstraat 9, 1521 EH Wormerveer, 6.5° N in the northern Andes of Colombia and constitutes the western boundary of the The Netherlands 2 [email protected] Maracaibo Tectonic Block or microplate, the southeastern boundary of the block being Servicio Geológico Colombiano Jurassic Dirección de Geoamenazas the right lateral strike–slip Boconó Fault in Venezuela. The Bucaramanga Fault has Grupo de Trabajo Investigaciones Geodésicas Espaciales (GeoRED) been subjected in recent years to neotectonic, paleoseismologic, and paleomagnetic Diagonal 53 n.° 34–53 studies that have quantitatively confirmed the Quaternary activity of the fault, with Bogotá, Colombia 3 [email protected] eight seismic events during the Holocene that have yielded a slip rate in the order of Servicio Geológico Colombiano Triassic Dirección de Geoamenazas 2.5 mm/y, whereas a paleomagnetic study in sediments of the Bucaramanga alluvial Grupo de Trabajo Investigaciones Geodésicas fan have yielded a similar slip rate of 3 mm/y. -
Universidad Nacional Título De La Tesis
UNIVERSIDAD NACIONAL SISTEMA DE ESTUDIOS DE POSGRADO FACULTAD DE CIENCIAS EXACTAS Y NATURALES ESCUELA DE CIENCIAS BIOLOGICAS PROGRAMA MAESTRIA EN CIENCIAS MARINAS Y COSTERAS TÍTULO DE LA TESIS: "IDENTIFICACION, EVALUACIÓN Y MANEJO DE HÁBITATS CRÍTICOS UTILIZADOS POR EL TIBURÓN MARTILLO (Sphyrna lewini)” Y OTROS ELASMOBRANQUIOS EN GOLFO DULCE, COSTA RICA POR: ANDRÉS MAURICIO LOPEZ GARRO Puntarenas, Costa Rica, 2012 Tesis sometida a consideración del Tribunal Examinador del Programa Maestría en Ciencias Marinas y Costeras para optar al grado de Magister Scientiae en Ciencias Marinas y Costeras con énfasis en manejo de recursos. Hábitats Críticos para el Tiburón Martillo. López, 2011 RESUMEN El tiburón martillo (Sphyrna lewini) es una especie cosmopolita que habita en aguas cálidas tropicales y subtropicales. En zonas costeras los juveniles y adultos son capturados por artes de pesca artesanales y camaroneras; mientras que en aguas pelágicas, los adultos son vulnerables a las líneas largas o palangres. En la actualidad S. lewini está siendo protegido en islas oceánicas del Pacifico Este Tropical (PET), como Isla del Coco y las Galápagos, áreas donde los adultos transcurren en las estaciones de limpieza. Sin embargo, aún no han sido identificadas, ni protegidas, áreas utilizadas por los juveniles de esta especie en la zona costera del PET. Debido a lo anterior, este proyecto identificó y evaluó hábitats críticos costeros utilizados por tiburones y rayas, en especial por S. lewini en Golfo Dulce, a fin de recomendar estrategias de manejo para su conservación. En la primera etapa (marzo-mayo 2010) se recolectó Conocimiento Ecológico Tradicional (CET) por medio de 52 encuestas y dos talleres en diferentes comunidades. -
Ocean Governance in Costa Rica
UNITED NATIONS CONFERENCE ON TRADE AND DEVELOPMENT OCEAN GOVERNANCE IN COSTA RICA An Overview on the Legal and Institutional Framework in Ocean Affairs © 2019, United Nations Conference on Trade and Development This work is available open access by complying with the Creative Commons licence created for intergovernmental organizations, available at http://creativecommons.org/licenses/by/3.0/igo/. The findings, interpretations and conclusions expressed herein are those of the authors and do not necessarily reflect the views of the United Nations or its officials or Member States. The designation employed and the presentation of material on any map in this work do not imply the expression of any opinion whatsoever on the part of the United Nations concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. This publication has not been formally edited. UNCTAD/DITC/TED/INF/2018/4 AN OVERVIEW ON THE LEGAL AND INSTITUTIONAL FRAMEWORK IN OCEAN AFFAIRS iii Contents Figures, Tables and Boxes ......................................................................................................................iv Acknowledgements ................................................................................................................................iv Acronyms and abbreviations ....................................................................................................................v Introduction ........................................................................................................................................... -
Shape of the Subducted Rivera and Cocos Plates in Southern Mexico
JOURNALOF GEOPHYSICAL RESEARCH, VOL. 100, NO. B7, PAGES 12,357-12,373, JULY 10, 1995 Shapeof the subductedRivera and Cocosplates in southern Mexico: Seismic and tectonicimplications Mario Pardo and Germdo Sufirez Insfitutode Geoffsica,Universidad Nacional Aut6noma de M6xico Abstract.The geometry of thesubducted Rivera and Cocos plates beneath the North American platein southernMexico was determined based on the accurately located hypocenters oflocal and te!eseismicearthquakes. The hypocenters ofthe teleseisms were relocated, and the focal depths of 21 eventswere constrainedusing a bodywave inversion scheme. The suductionin southern Mexicomay be approximated asa subhorizontalslabbounded atthe edges by the steep subduction geometryof theCocos plate beneath the Caribbean plate to the east and of theRivera plate beneath NorthAmerica to thewest. The dip of theinterplate contact geometry is constantto a depthof 30 kin,and lateral changes in thedip of thesubducted plate are only observed once it isdecoupled fromthe overriding plate. On thebasis of theseismicity, the focal mechanisms, and the geometry ofthe downgoing slab, southern Mexico may be segmented into four regions ß(1) theJalisco regionto thewest, where the Rivera plate subducts at a steepangle that resembles the geometry of theCocos plate beneath the Caribbean plate in CentralAmerica; (2) theMichoacan region, where thedip angleof theCocos plate decreases gradually toward the southeast, (3) theGuerrero-Oaxac.a region,bounded approximately by theonshore projection of theOrozco and O'Gorman -
N I C a R a G U a P a N A
Santa Fe La 86°W rgo 85°W i o 84°W 83°W de N R Tu icaragu le San Juan del Sur Peñas Blancas a NICARAGUA El Ostional C Santa Cecilia San Carlos La Cruz A Puerto Soley El Castillo de La Concepcion 11°N San Jose Los Chiles R 11°N Cuajiniquil San Juan del Norte I Cuatro Bocas Caño Negro R B Cabo Santa Elena Upala io lo S The boundaries and names shown G Caño Negro il n an B o Argentina r Juan and the designations used on this map l ie Colorado f o t E o ri n io F I do not imply official endorsement or Castilla R d Guayabos o i Delta del San Juan A e acceptance by the United Nations. Guatuzo R Puerto Culebra Hacienda Porvenir ipo N P Hacienda Porvenir r Liberia hir a Tenorio C p ALAJUELA o Tortuguero Chaparron i a S Hacienda Trancas Santa Teresa R g E a Bagaces De Arenal y A o Canas Tilaran Pital Puerto Vielo Filadelphia Platanal PACIFIC GUANACASTE Portegolpe Quesada HEREDIA OCEAN Puerto Humo Juntas Suerre Santa Cruz Zarcero Limonal Cariblanco Guapiles Guacimo Paraiso Nicoya Colorado Lapita Naranjo San Ramon Grecia Sarchi Siquirres Matina Cuajiniquil Hojancha Miramar 10°N Alajuela Heredia Puerto Limón 10°N Carmona Puntarenas Esparza Corina Orotina San José Turrialba Bomba Garza a y San Pablo Bolivia o Cartago Paquera c San Francisco i Puriscal N Tarcoles Frailes CARTAGO Pandora Tambor e SAN JOSE d Cahuita trella o Es f San Marcos Tres de Junio Rio l R Uatsi R i Cocles o io Te o Mal Pais Jaco Quina lira Si Cabuya G xao LIMON Bratsi la Cabo Blanco PUNTARENAS Buena Vista Herradura Finca Uno Puerto Quepos erib Sn. -
Madrid, Spain 5-14 November 1984
International Union for Conservation of Nature and Natural Resources 16th SESSION OF THE GENERAL ASSEMBLY OF IUCN AND 16th IUCN TECHNICAL MEETING Madrid, Spain 5-14 November 1984 PROCEEDINGS VOLUME I GENERAL ASSEMBLY IUCN Programme Series No. 4/1986 International Union for Conservation of Nature and Natural Resources 16TH SESSION OF THE GENERAL ASSEMBLY OF IUCN AND 16TH IUCN TECHNICAL MEETING Madrid, Spain 5-14 November 1984 PROCEEDINGS VOLUME I GENERAL ASSEMBLY IUCN Programme Series No. 4/1986 International Union for Conservation of Nature and Natural Resources 1986 ISBN 2-88032-093-3 3 FOREWORD The General Assembly, comprising delegates of the members of IUCN, is the policy-forming organ of the Union. It meets in ordinary session every three years to perform the functions conferred on it by the Statutes. Since the inaugural meeting at Fontainebleau, France in 1948, the General Assembly has met in Brussels, Belgium (1950); Caracas, Venezuela (1952); Copenhagen, Denmark (1954); Edinburgh, Scotland (1956); Athens, Greece (1958); Warsaw, Poland (1960); Nairobi, Kenya (1963); Lucerne, Switzerland (1966); New Delhi, India (1969); Banff, Canada (1972); Kinshasa, Zaire (1975); Ashkhabad, USSR (1978); and Christchurch, New Zealand (1981). It met in extraordinary session in Geneva, Switzerland, in April 1977. The 16th Session of the General Assembly, held in conjunction with the 16th Technical Meeting of IUCN, took place in Madrid, Spain, from 5-14 November 1984. The thrust of IUCN's effort set by the 15th Session of the General Assembly was directed towards constructing the means for practical integration of conservation with all aspects of development; requiring new mechanisms such as the Conservation for Development Centre, involvement in other disciplines, more purposeful coordination of IUCN's components and a long term perspective for IUCN's priorities. -
Cocos Island National Park Costa Rica
COCOS ISLAND NATIONAL PARK COSTA RICA Cocos Island, isolated 530 km southwest of the coast of Costa Rica, is the only island in the tropical eastern Pacific with a rainforest. It also possessed the richest and most extensive coral reef in the east Pacific. Its productive waters are a distribution centre for marine larvae and hold large aggregations of sharks. Its many interactions with the surrounding seas make it an ideal laboratory for studying biological processes. It is also a magnificent diving site and one of the best places in the world to see large pelagic species such as sharks, rays, tuna and dolphins. COUNTRY Costa Rica NAME Cocos Island National Park NATURAL WORLD HERITAGE SITE 1997: Inscribed on the World Heritage List under Natural Criteria ix, x. 2002: Marine Zone extended by 100,000 ha. STATEMENT OF OUTSTANDING UNIVERSAL VALUE [pending] The UNESCO World Heritage Committee issued the following statement at the time of inscription: Justification for Inscription The Committee inscribed Cocos Island National Park under natural criteria (ix) and (x) because of the critical habitats the site provides for marine wildlife including large pelagic species, especially sharks. INTERNATIONAL DESIGNATION 1998: Designated a Wetland of International Importance under the Ramsar Convention (99,623 ha). IUCN MANAGEMENT CATEGORY II National Park BIOGEOGRAPHICAL PROVINCE Cocos Island (8.43.13) GEOGRAPHICAL LOCATION The island is 532 km southwest of Puntarenas on the Pacific coast of Costa Rica, and 630 km northeast of the Galapagos Islands. The site covers the whole island and 25 km out to sea all around. Centred on 5°31'08”N by 87° 04'18”W. -
AMENAZA VOLCÁNICA EN COSTA RICA 363.34 C733r Costa Rica
Comisión Nacional de Prevención de Riesgos y Atención de Emergencias - Volcán Turrialba - Cartago Costa Rica Turrialba Atención de Emergencias - Volcán Comisión Nacional de Prevención Riesgos y Fotografía: EL RIESGO DERIVADO DE LA AMENAZA VOLCÁNICA EN COSTA RICA EL RIESGO DERIVADO DE LA AMENAZA VOLCÁNICA EN COSTA RICA 363.34 C733r Costa Rica. Comisión Nacional de Prevención de Riesgos y Atención de Emergencias El Riesgo derivado de la amenaza volcánica en Costa Rica / La Comisión; Red Sismológica Nacional; Guillermo E. Alvarado Induni; Alberto Vargas Villalobos; Nuria Campos Sánchez e Ignacio Chaves Salas, coautores – 1a. Ed. – San José, C.R. : CNE, 2014. 32 p. : il. ; 8,5 x 11 cm. ISBN 978-9968-716-31-4 1. Volcán. 2. Erupciones volcánicas. 3. Vigilancia volcánica. 4. Mapa de Riesgo. 5. Gestión del Riesgo. 6. Prevención y mitigación. I. Red Sismológica Nacional. II. Alvarado Induni, Guillermo E. III. Vargas Villalobos, Alberto. IV. Campos Sánchez, Nuria. V. Chaves Salas, Ignacio. VI. Título. Créditos Comisión Nacional de Prevención de Riesgos y Atención de Emergencias. Dirección de Gestión del Riesgo. Unidad de Normalización y Asesoría y Unidad de Investigación y Análisis del Riesgo. Área de Amenazas y Auscultación Sismológica y Volcánica. C.S. Exploración Subterránea / Negocio, Ingeniería, Construcción, ICE Compilación y Elaboración Máster Nuria Campos Sánchez, Unidad de Normalización y Asesoría. Licenciado Ignacio Chaves Salas, Unidad de Investigación y Análisis del Riesgo. Doctor Guillermo E. Alvarado Induni, RSN (UCR-ICE). Máster Alberto Vargas Villalobos, RSN (UCR-ICE). Revisión parcial o total Sergio Mora Yehudi Monestel Rodrigo R. Mora Mauricio Mora Waldo Taylor Geoffroy Avard Luis Madrigal Ramón Araya Foto de portada: Geól. -
Shankar Ias Academy Test 8 – Geography - Ii - Answer Key
SHANKAR IAS ACADEMY TEST 8 – GEOGRAPHY - II - ANSWER KEY 1. Ans (c) Explanation: http://www.iasparliament.com/article/prelim-bits-18-07-2017?q=national%20park 2. Ans (d) Explanation: Sl. No. Integrated check post State Border 1. Petrapole West Bengal India-B’desh 2. Moreh Manipur India-Myanmar 3. Raxaul Bihar India-Nepal 4. Attari (Wagah) Punjab India-Pakistan 5. Dawki Meghalaya India-B’desh 6. Akhaura Tripura India-B’desh 7. Jogbani Bihar India-Nepal 8. Hili West Bengal India-B’desh 9. Chandrabangha West Bengal India-B’desh 10. Sutarkhandi Assam India-B’desh 11. Kawarpuchiah Mizoram India-B’desh 12. Sunauli Uttar Pradesh India-Nepal 13. Rupaidiha Uttar Pradesh India-Nepal 3. Ans (b) Explanation: Devprayag: where river Alaknanda meet river Bhagirathi Rudraprayag: where river Alaknanda meet river Mandakini Karnaprayag: where river Alaknanda meet river Pinder Nandprayag: where river Alaknanda meet river Nandakini Vishnuprayag: where river Alaknanda meet river Dhauli Ganga 4. Ans (c) Explanation: The Haryana government launched Asia's First 'Gyps Vulture Reintroduction Programme' at Jatayu Conservation Breeding Centre, Pinjore. SHANKAR IAS ACADEMY The Centre has become prominent vulture breeding and conservation centre in the country-after successfully breeding Himalayan Griffon Vultures-an old world vulture in the family of Accipitridae-in captivity. The government had released two Himalayan Griffon Vultures The Himalayan Griffon is closely related to the critically endangered resident Gyps species of vultures but is not endangered. Two Himalayan Griffons have been in captivity for over a decade and have been in the aviary with resident Gyps vultures. These birds were wing-tagged and were leg-ringed for identification. -
FSU ETD Template
Florida State University Libraries Electronic Theses, Treatises and Dissertations The Graduate School 2018 Gravity and Geochemical Constraints on the Structure and Evolution of the El Valle Volcano, Panamá Keith Richard Munsey Follow this and additional works at the DigiNole: FSU's Digital Repository. For more information, please contact [email protected] FLORIDA STATE UNIVERSITY COLLEGE OF ARTS AND SCIENCES GRAVITY AND GEOCHEMICAL CONSTRAINTS ON THE STRUCTURE AND EVOLUTION OF THE EL VALLE VOLCANO, PANAMÁ By KEITH RICHARD MUNSEY A Thesis submitted to the Department of Earth, Ocean, and Atmospheric Science in partial fulfillment of the requirements for the degree of Master of Science 2018 Keith Munsey defended this thesis on March 8, 2018. The members of the supervisory committee were: James F. Tull Professor Co-Directing Thesis David W. Farris Professor Co-Directing Thesis Vincent J.M. Salters Committee Member Leroy Odom Committee Member The Graduate School has verified and approved the above-named committee members, and certifies that the thesis has been approved in accordance with university requirements. ii To my family, Mom, Dad, Matthew & Kyle To my late grandparents, Harry, Peggy & Antonia whom always supported my academic journey iii ACKNOWLEDGMENTS I would like to thank everyone who made this thesis possible. I would especially like to thank David Farris for making this research and field work possible. I appreciate all the patience and guidance from my all my committee members, David Farris, Vincent Salters and LeRoy Odom. I thank the geochemistry staff at the National High Field Magnetic Laboratory; Vincent Salters and Afi Sachi-Kocher, for their assistance, guidance and facilities which allowed the analysis of this geochemical data.