The Effects of Decentralisation on Foraging and Organisation in Social Insect Colonies

Total Page:16

File Type:pdf, Size:1020Kb

The Effects of Decentralisation on Foraging and Organisation in Social Insect Colonies The effects of decentralisation on foraging and organisation in social insect colonies Zoe Cook PhD University of York Department of Biology November 2013 Abstract Social insect colonies demonstrate some of the most striking social behaviours that are seen in nature. Social interaction in these species defines their behaviour and has a large impact on their success. A number of ant species organise their colony over several socially interacting, but spatially separated nests. This behaviour is known as polydomy. I used simulation modelling to investigate the costs and benefits of this behaviour. The results showed that colony organisation interacts with both foraging strategy and resource distribution to determine the effect of polydomy on foraging success. Importantly, I show that there are previously undiscussed costs to polydomy. I also addressed questions of how the social connections between the nests in a colony are organised. Complex interacting systems such as the trail system formed between nests in a polydomous colony can be represented as a network. I review the use of this representation in studies of social insects and provide suggestions for future studies on how social insect systems may provide insight into the construction and use of effective network systems in general. By representing the trail systems found between nests as networks I show that the systems formed by ants are highly efficient for the transportation of resources but balance this efficiency with the cost of producing trails. A number of simple mechanisms have been proposed for the construction of these networks. I test these theories and show that the simplest mechanisms suggested may not be sufficient to replicate the natural systems. This thesis contributes to the understanding of the behaviour of ants in polydomous colonies and to the understanding of distributed biological systems more generally. The work also provides a basis for future research on how efficient systems can be constructed using simple rules. 2 Contents Abstract ....................................................................................................................... 2 Contents ...................................................................................................................... 3 List of Figures ............................................................................................................. 6 List of Tables .............................................................................................................. 8 List of Accompanying Material .............................................................................. 10 Acknowledgements ................................................................................................... 11 Declaration ................................................................................................................ 12 1 General Introduction .......................................................................................... 13 1.1 Social insects as a model system for behaviour ....................................... 13 1.2 Polydomy ................................................................................................. 15 1.3 Foraging ................................................................................................... 20 1.4 Polydomy and foraging ............................................................................ 25 1.5 Organisation within polydomous colonies .............................................. 26 1.6 Modelling framework .............................................................................. 29 1.7 Thesis structure ........................................................................................ 34 2 Exploration versus exploitation in polydomous ant colonies .......................... 36 2.1 Abstract .................................................................................................... 36 2.2 Introduction .............................................................................................. 36 2.3 Model description .................................................................................... 39 2.4 Results ...................................................................................................... 47 2.5 Discussion ................................................................................................ 50 2.6 Acknowledgements .................................................................................. 54 3 The use of network analysis in the study of social insect colonies .................. 55 3.1 Abstract .................................................................................................... 55 3.2 Introduction .............................................................................................. 55 3.3 Types of networks within social insect colonies ..................................... 57 3 3.4 Constructing network representations ..................................................... 60 3.5 Answering questions with networks ........................................................ 65 3.6 Spatial effects ........................................................................................... 72 3.7 Network Dynamics .................................................................................. 74 3.8 Discussion ................................................................................................ 78 4 Robustness and efficiency in ant transportation networks ............................. 82 4.1 Abstract .................................................................................................... 82 4.2 Introduction .............................................................................................. 82 4.3 Methods ................................................................................................... 85 4.4 Results ...................................................................................................... 90 4.5 Discussion ................................................................................................ 93 4.6 Acknowledgements .................................................................................. 98 5 Mechanisms for the construction of transportation networks in polydomous ant colonies ........................................................................................................... 99 5.1 Abstract .................................................................................................... 99 5.2 Introduction .............................................................................................. 99 5.3 Model description .................................................................................. 101 5.4 Analysis ................................................................................................. 106 5.5 Results .................................................................................................... 110 5.6 Discussion .............................................................................................. 118 6 Discussion ........................................................................................................... 124 6.1 Summary of Chapters ............................................................................ 124 6.2 General comments ................................................................................. 127 6.3 Questions remaining and future work .................................................... 129 7 Appendix A ........................................................................................................ 135 8 Appendix B ......................................................................................................... 136 8.1 Colony Size ............................................................................................ 136 4 8.2 Pheromone decay rate ............................................................................ 136 8.3 Energy of agents .................................................................................... 137 8.4 Individual memory ................................................................................. 138 9 Appendix C ........................................................................................................ 140 10 Appendix D ........................................................................................................ 142 10.1 Efficiency ........................................................................................... 142 10.2 Meshedness ........................................................................................ 142 11 Appendix E ......................................................................................................... 143 11.1 Time and duration of sampling .......................................................... 143 11.2 Edge thresholding............................................................................... 144 12 Appendix F ......................................................................................................... 145 12.1 Mean number of edges within simulations ........................................ 145 12.2 Results of post-hoc analysis ............................................................... 147 Bibliography ........................................................................................................... 150 5 List of Figures Figure 1-1 Photograph of polydomous Formica lugubris colony.
Recommended publications
  • Newly Discovered Sister Lineage Sheds Light on Early Ant Evolution
    Newly discovered sister lineage sheds light on early ant evolution Christian Rabeling†‡§, Jeremy M. Brown†¶, and Manfred Verhaagh‡ †Section of Integrative Biology, and ¶Center for Computational Biology and Bioinformatics, University of Texas, 1 University Station C0930, Austin, TX 78712; and ‡Staatliches Museum fu¨r Naturkunde Karlsruhe, Erbprinzenstr. 13, D-76133 Karlsruhe, Germany Edited by Bert Ho¨lldobler, Arizona State University, Tempe, AZ, and approved August 4, 2008 (received for review June 27, 2008) Ants are the world’s most conspicuous and important eusocial insects and their diversity, abundance, and extreme behavioral specializations make them a model system for several disciplines within the biological sciences. Here, we report the discovery of a new ant that appears to represent the sister lineage to all extant ants (Hymenoptera: Formicidae). The phylogenetic position of this cryptic predator from the soils of the Amazon rainforest was inferred from several nuclear genes, sequenced from a single leg. Martialis heureka (gen. et sp. nov.) also constitutes the sole representative of a new, morphologically distinct subfamily of ants, the Martialinae (subfam. nov.). Our analyses have reduced the likelihood of long-branch attraction artifacts that have trou- bled previous phylogenetic studies of early-diverging ants and therefore solidify the emerging view that the most basal extant ant lineages are cryptic, hypogaeic foragers. On the basis of morpho- logical and phylogenetic evidence we suggest that these special- EVOLUTION ized subterranean predators are the sole surviving representatives of a highly divergent lineage that arose near the dawn of ant diversification and have persisted in ecologically stable environ- ments like tropical soils over great spans of time.
    [Show full text]
  • Freilanduntersuchungen
    Ökologie der Kerbameise Coptoformica forsslundi LOHMANDER, 1949 (Hymenoptera: Formicidae, genus Formica, subgenus Coptoformica) an ihrem norddeutschen Vorkommen Vom Fachbereich Biologie der Universität Hannover zur Erlangung des Grades Doktor der Naturwissenschaften Dr. rer. nat. genehmigte Dissertation von Uwe Sörensen geboren am 25. 12. 1954 in Bredstedt 2004 Referent: Prof. Dr. Klaus Wächtler, Tierärztliche Hochschule Hannover Koreferent: Prof. Dr. Rudolf Abraham, Universität Hamburg Tag der Promotion: 09. 02. 2004 Datum der Veröffentlichung: April 2004 In Dankbarkeit meinen Eltern Marga und Jürgen Sörensen Inhaltsverzeichnis 2 Inhaltsverzeichnis Schlagwörter/ Keywords .......................................................................... S. 004 Abbildungs-, Tabellen- und Abkürzungsverzeichnis .............................. S. 005 1. Einleitung ....................................................................................... S. 008 2. Das Untersuchungsgebiet ............................................................. S. 011 3. Material und Methoden ................................................................ S. 018 4. Ergebnisse ...................................................................................... S. 021 4.1 Charakterisierung der Kerbameise Coptoformica forsslundi ... S. 021 4.1.1 Bemerkungen zum subgenus Coptoformica Mueller, 1923 .................... S. 021 4.1.2 Die Verbreitung von C. forsslundi ........................................................... S. 025 4.1.3 Morphologische Beschreibung
    [Show full text]
  • Hymenoptera: Formicidae)
    FORAGING AND RECRUITMENT IN PONERINE ANTS: SOLITARY HUNTING IN THE QUEENLESS OPHTHALMOPONE BERTHOUDI (HYMENOPTERA: FORMICIDAE) BY CHRISTIAN PEETERS* AND ROBIN CREWE Department of Zoology, University of the Witwatersrand, Johannesburg 2001, South Africa. INTRODUCTION Recent studies have indicated that, in ponerine ants, a eusocial organization is viable without the presence of a queen caste. In Rhytidoponera (Haskins and Whelden, 1965; Ward, 1983; Pamilo et aL, 1985) and Ophthalmopone berthoudi (Peeters and Crewe, 1985), some of the workers (= gamergates; Peeters and Crewe, 1984) engage in sexual reproduction. Although there is still reproductive division of labor within the colonies, the loss of the queen caste represents a retrogression since the replacement egg-layers lack spe- cialized ovaries. It is of interest to discover whether other aspects of the colonial organization of permanently queenless ponerines have changed with this modification in the reproductive structure. One consequence of this change is that queenless colonies have low levels of relatedness among nest inhabitants (there are many mated laying workers), and Ward (1981, 1983) has suggested that this leads to lower levels of altruistic behavior. Thus Ward would expect colony defence and foraging efficiency to be less well-developed in these species. The natural history of more species of queenless ponerines needs to be documented in order to test the validity of this opinion. The genus Ophthalmopone belongs to the tribe Ponerini (sub- tribe Poneriti), and is derived from Pachycondyla (W. L. Brown, pers. comm.). O. berthoudi Forel occurs in Angola, Zambia, Zim- babwe, Mozambique, and the eastern part of South Africa (Prinz, 1978). The workers are monomorphic, and it is exclusively termito- phagous.
    [Show full text]
  • Hymenoptera: Formicidae: Ponerinae)
    Molecular Phylogenetics and Taxonomic Revision of Ponerine Ants (Hymenoptera: Formicidae: Ponerinae) Item Type text; Electronic Dissertation Authors Schmidt, Chris Alan Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 10/10/2021 23:29:52 Link to Item http://hdl.handle.net/10150/194663 1 MOLECULAR PHYLOGENETICS AND TAXONOMIC REVISION OF PONERINE ANTS (HYMENOPTERA: FORMICIDAE: PONERINAE) by Chris A. Schmidt _____________________ A Dissertation Submitted to the Faculty of the GRADUATE INTERDISCIPLINARY PROGRAM IN INSECT SCIENCE In Partial Fulfillment of the Requirements For the Degree of DOCTOR OF PHILOSOPHY In the Graduate College THE UNIVERSITY OF ARIZONA 2009 2 2 THE UNIVERSITY OF ARIZONA GRADUATE COLLEGE As members of the Dissertation Committee, we certify that we have read the dissertation prepared by Chris A. Schmidt entitled Molecular Phylogenetics and Taxonomic Revision of Ponerine Ants (Hymenoptera: Formicidae: Ponerinae) and recommend that it be accepted as fulfilling the dissertation requirement for the Degree of Doctor of Philosophy _______________________________________________________________________ Date: 4/3/09 David Maddison _______________________________________________________________________ Date: 4/3/09 Judie Bronstein
    [Show full text]
  • Behavioral Ecology of the Neotropical Termite-Hunting Ant Pachycondyla (: Termitopone) Marginata: Colony Founding, Group-Raiding and Migratory Patterns
    Behav Ecol Sociobiol (1995) 37 : 373 383 © Springer-Verlag 1995 Inara R. Lcal • Paulo S. Oliveira Behavioral ecology of the neotropical termite-hunting ant Pachycondyla (: Termitopone) marginata: colony founding, group-raiding and migratory patterns Received: 19 November 1994 / Accepted after revision: 7 May 1995 Abstract This study provides the first detailed field Key words Colony founding" Termite-hunting • account of colony founding, group-raiding and migra- Group raiding" Migration - Ponerine ants tory habits in the neotropical termite-hunting ant Pachycondyla marginata, in a semi-deciduous forest in south-east Brazil. New colonies can originate by hap- Introduction lometrosis, pleometrosis, or colony fission. Incipient colonies with multiple foundresses persisted longer in Ants (Formicidae) exhibit almost all degrees of prey the field, and most excavated nests contained more than one dealated female. A total of 202 group raids by P specialization; some species may include in their diets many different types of arthropods while others may marginata were registered, and in all cases the raided prey on a relatively restricted taxonomic group termite species was Neocapritermes opacus. Nearly 20 % of the workers within a colony engage with raiding (Wheeler 1910). Members of the subfamily Ponerinae normally feed on soil arthropods such as collembolans, activity. Colonies of P marginata hunt for termites approximately every 2-3 weeks, and group-raids may centipedes, millipedes, other ants, and termites (H611dobler and Wilson 1990). Many of these prey last for more than 24 h. Target termite nests are up to 38 m from the ant colony, and occasionally two nests organisms possess very sophisticated defense mecha- are simultaneously raided by one ant colony.
    [Show full text]
  • Newly Discovered Sister Lineage Sheds Light on Early Ant Evolution
    Newly discovered sister lineage sheds light on early ant evolution Christian Rabeling†‡§, Jeremy M. Brown†¶, and Manfred Verhaagh‡ †Section of Integrative Biology, and ¶Center for Computational Biology and Bioinformatics, University of Texas, 1 University Station C0930, Austin, TX 78712; and ‡Staatliches Museum fu¨r Naturkunde Karlsruhe, Erbprinzenstr. 13, D-76133 Karlsruhe, Germany Edited by Bert Ho¨lldobler, Arizona State University, Tempe, AZ, and approved August 4, 2008 (received for review June 27, 2008) Ants are the world’s most conspicuous and important eusocial insects and their diversity, abundance, and extreme behavioral specializations make them a model system for several disciplines within the biological sciences. Here, we report the discovery of a new ant that appears to represent the sister lineage to all extant ants (Hymenoptera: Formicidae). The phylogenetic position of this cryptic predator from the soils of the Amazon rainforest was inferred from several nuclear genes, sequenced from a single leg. Martialis heureka (gen. et sp. nov.) also constitutes the sole representative of a new, morphologically distinct subfamily of ants, the Martialinae (subfam. nov.). Our analyses have reduced the likelihood of long-branch attraction artifacts that have trou- bled previous phylogenetic studies of early-diverging ants and therefore solidify the emerging view that the most basal extant ant lineages are cryptic, hypogaeic foragers. On the basis of morpho- logical and phylogenetic evidence we suggest that these special- EVOLUTION ized subterranean predators are the sole surviving representatives of a highly divergent lineage that arose near the dawn of ant diversification and have persisted in ecologically stable environ- ments like tropical soils over great spans of time.
    [Show full text]
  • Use of Ground-Dwelling Arthropods As Bioindicators of Ecological Condition in Grassland and Forest Vegetation at Ethekwini Municipality in Kwazulu- Natal
    Use of ground-dwelling arthropods as bioindicators of ecological condition in grassland and forest vegetation at eThekwini Municipality in KwaZulu- Natal by ZABENTUNGWA T. HLONGWANE 211521338 Thesis submitted in fulfilment of the academic requirements for the degree of Master of Science in the Discipline of Ecological science, School of Life Sciences College of Agriculture, Engineering and Science University of KwaZulu-Natal Pietermaritzburg South Africa 2018 i Contents List of tables ........................................................................................................................................... iii List of figures ......................................................................................................................................... iv List of appendices ................................................................................................................................... vi Preface ................................................................................................................................................... vii Declaration 1: Plagiarism ..................................................................................................................... viii Acknowledgements ................................................................................................................................ ix Abstract ................................................................................................................................................... x
    [Show full text]
  • The Higher Classification of the Ant Subfamily Ponerinae (Hymenoptera: Formicidae), with a Review of Ponerine Ecology and Behavior
    Zootaxa 3817 (1): 001–242 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Monograph ZOOTAXA Copyright © 2014 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3817.1.1 http://zoobank.org/urn:lsid:zoobank.org:pub:A3C10B34-7698-4C4D-94E5-DCF70B475603 ZOOTAXA 3817 The Higher Classification of the Ant Subfamily Ponerinae (Hymenoptera: Formicidae), with a Review of Ponerine Ecology and Behavior C.A. SCHMIDT1 & S.O. SHATTUCK2 1Graduate Interdisciplinary Program in Entomology and Insect Science, Gould-Simpson 1005, University of Arizona, Tucson, AZ 85721-0077. Current address: Native Seeds/SEARCH, 3584 E. River Rd., Tucson, AZ 85718. E-mail: [email protected] 2CSIRO Ecosystem Sciences, GPO Box 1700, Canberra, ACT 2601, Australia. Current address: Research School of Biology, Australian National University, Canberra, ACT, 0200 Magnolia Press Auckland, New Zealand Accepted by J. Longino: 21 Mar. 2014; published: 18 Jun. 2014 C.A. SCHMIDT & S.O. SHATTUCK The Higher Classification of the Ant Subfamily Ponerinae (Hymenoptera: Formicidae), with a Review of Ponerine Ecology and Behavior (Zootaxa 3817) 242 pp.; 30 cm. 18 Jun. 2014 ISBN 978-1-77557-419-4 (paperback) ISBN 978-1-77557-420-0 (Online edition) FIRST PUBLISHED IN 2014 BY Magnolia Press P.O. Box 41-383 Auckland 1346 New Zealand e-mail: [email protected] http://www.mapress.com/zootaxa/ © 2014 Magnolia Press All rights reserved. No part of this publication may be reproduced, stored, transmitted or disseminated, in any form, or by any means, without prior written permission from the publisher, to whom all requests to reproduce copyright material should be directed in writing.
    [Show full text]
  • Ants of Greece – Checklist, Comments and New Faunistic Data (Hymenoptera: Formicidae)
    Genus Vol. 23(4): 461-563 Wrocław, 28 XII 2012 Ants of Greece – checklist, comments and new faunistic data (Hymenoptera: Formicidae) LECH BOROWIEC1 & SEBASTIAN SALATA2 Department of Biodiversity and Evolutionary Taxonomy, University of Wrocław, Przybyszewskiego, 63/77, 51-148 Wrocław, Poland, e-mail: [email protected], [email protected] ABSTRACT. A list of 291 ant species recorded from Greece are given but approximately 15% of taxa need confirmation due to recent studies on European ants and reinterpretation of several taxa. The following 17 species are recorded from Greece for the first time:Camponotus sannini TOHMÉ & TOHMÉ, Crematogaster jehovae FOREL, Formica bruni KUTTER, Lasius jensi SEIFERT, Lasius nitidigaster SEIFERT, Lepisiota dolabellae (FOREL), Myrmica lonae FINZI, Myrmica tulinae ELMES, RADCHENKO & AKTAÇ, Temnothorax flavicornis (EMERY), Temnothorax sordidulus (MÜLLER), Temnothorax turcicus (SANTSCHI), Tetramorium hungaricum RÖSZLER, and five species not attributed to a named species:Camponotus cf. lateralis sp. 1, Camponotus cf. lateralis sp. 2, Lepisiota cf. melas sp. 1, Lepisiota cf. syriaca sp. 1, and Tetramorium cf. caespitum sp. 1. Camponotus candiotes is recorded as new species to Croatia. New faunistic data for 132 other species are given. Key words: entomology, zoogeography, catalogue, ants, Greece. INTroDUCTIoN The history of knowledge of Greek ants goes back to the early 19th century (BRUllÉ 1833) but due to the complicated history of Greece, for many years the ant fauna of the country was studied less intensively and by foreign entomologists. No regional monograph was published and the first key concerning also Greek fauna and the first checklist were papers by AGOSTI and COLLINGWOOD (1987 a, b).
    [Show full text]
  • She Shapes Events As They Come: Plasticity in Female Insect Reproduction1
    11 She Shapes Events As They Come: Plasticity in Female Insect Reproduction1 Jason Hodin Hopkins Marine Station, Stanford University, Pacific Grove, CA USA 93950 [email protected] “Reproduction is what bugs do best. It’s one of the reasons why they dominate the planet.” –from the IMAX film Bugs! in 3D (Slee and Aron 2003) Abstract The typical insect ovary has a modular arrangement, with the ovariole as its fundamental modular unit. In general, an increased ovariole number appears to correlate with total potential reproductive output, but other physiological characteristics of the ovary can theoretically influence the rate and timing of egg production as well, the rate of öocyte maturation being one such parameter. Nevertheless, it would be incorrect to imagine that an increased rate of egg production is the only relevant fitness para- meter. While insects such as honeybees and drosophilid vinegar (“fruit”) flies do seem to be characterized by a maximization of total egg production, there are clearly constraints (or trade-offs) involved even in these examples. The decreased reproductive output potential in worker versus queen honeybees, as well as interspecific variation in ovariole number within both of these taxa, suggests that maximization of reproductive output entails some physiological, ontogenetic and/or life history trade-off. More extreme examples are parasitic or viviparous insects (such as tsetse flies) that produce as few as one egg at a time. Furthermore, there is substantial variation across broad and narrow taxonomic groups of insects in the degree to which the rates (öocyte maturation, oviposition) and potential rates (ovariole number) of egg production are phenotypically plastic.
    [Show full text]
  • Bulletin Interieur
    UNION INTERNATIONALE POUR L'ETUDE DES INSECTES SOCIAUX SECTION FRANÇAISE BULLETIN INTERIEUR (Nouvelle série) n°6 _ DECEMBRE 1985 Réalisation : Michel LEPAGE 2 BULLETIN INTERIEUR - N°6 - DECEMBRE 1985 S 0 M M AIRE LE MOT DU SECRETAIRE page 3 LA VIE DE NOTRE SOCIETE pages 4 à 6 A LA MEMOIRE DU PROFESSEUR P .-P . GRASSE pages 7 à 17 A LA MEMOIRE DU PROFESSEUR K.V. ARNOLDI pages 18 à 20 COLLOQUES ET CONGRES page s 21 à 26 NOUVELLES DES SOCIETES ET SECTIONS page 27 LIBRAIRIE pages 28 à 31 INFORMATIONS DIVERSES pages 32 à 34 THESES ET DIPLOMES pages 35 et 36 BIBLIOGRAPHIE pages 36 à 38 DESSIN DE LA PAGE DE COUVERTURE : non, il ne s'agit pas de l'échéance "88", mais de l'illustration du principe du ruban de Môbius (1790-1868) , dont la référence est : q Esc lier: Mobius-B.nul 11. Holzstich in tirci F.irben (1%3). |© Beekl- Paru en couverture dans : ,-eci1t< Amsterdam Bikl-kunst. Bonn 1^X4] CHEMISÉ CHEMIE 4 SSSSL IN UNSERER ZEIT (Signalé par Bernard Lorber) N.B. Le petit bonhomme qui se promène au long de ce bulletin est extrait de : "Biotechnologies, avenir du développement" ORSTOM Actualités, supplément au n°6, janvier-février 1985 La Fourmi n.sp. qui ouvre ce bulletin (p.4) et le termine (p.37) est l'oeuvre d'Huguette PAGES. 3 LE MOT DU SECRETAIRE Suite au mot du Secrétaire du n°5 (août 1985)... .... le flambeau est passé en d'autres mains... Voici la publication du numéro suivant du Bulletin intérieur, si utile pour maintenir le contact entre nous et diffuser les nouvelles.
    [Show full text]
  • Hymenoptera: Formicidae: Ponerinae) from the African Continent Abdulmeneem Joma University of Texas at El Paso, [email protected]
    University of Texas at El Paso DigitalCommons@UTEP Open Access Theses & Dissertations 2014-01-01 Revision of the Ant Genus Bothroponera (Hymenoptera: Formicidae: Ponerinae) From the African Continent Abdulmeneem Joma University of Texas at El Paso, [email protected] Follow this and additional works at: https://digitalcommons.utep.edu/open_etd Part of the Biology Commons, Ecology and Evolutionary Biology Commons, and the Entomology Commons Recommended Citation Joma, Abdulmeneem, "Revision of the Ant Genus Bothroponera (Hymenoptera: Formicidae: Ponerinae) From the African Continent" (2014). Open Access Theses & Dissertations. 1267. https://digitalcommons.utep.edu/open_etd/1267 This is brought to you for free and open access by DigitalCommons@UTEP. It has been accepted for inclusion in Open Access Theses & Dissertations by an authorized administrator of DigitalCommons@UTEP. For more information, please contact [email protected]. REVISION OF THE ANT GENUS BOTHROPONERA (HYMENOPTERA: FORMICIDAE: PONERINAE) FROM THE AFRICAN CONTINENT Abdulmeneem M. Alnour Joma Department of Biological Sciences APPROVED: William P. Mackay, Ph.D., Chair Carl S. Lieb, Ph.D. Eli Greenbaum, Ph.D. Michael Moody, Ph.D. Richard Langford, Ph.D. Charles Ambler, Ph.D. Dean of the Graduate School Copyright © by Abdulmeneem M. Alnour Joma 2014 Dedication I dedicate this dissertation to my family, to my parents Mohamed Alnour and Khadija Mohamed Ali, who raised me and encouraged me thoroughout my life to be able to achieve the highest level of education. To my wife Hawa Algatroni and children Rawan and Mustafa, who always supported me wherever my study took me, filling my life with love and patience. To my brothers: Abdalrahman, Mahmoud, Abdalnour, Ali, Ibrahim and my sisters: Aisha, Fatima, Zainab, Zohra, Imbarka, Mouna, who did not neglect any opportunity to encourage me to continue my scientific journey at all times.
    [Show full text]