Form, Function and Flow in the Plankton: Jet Propulsion and Filtration by Pelagic Tunicates
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Chordata, Tunicata, Thaliacea, Doliolida) from East Coast of Peninsular Malaysia), with an Updated Worldwide Distribution
Journal of Sustainability Science and Management ISSN: 1823-8556 Volume 13 Number 5, 2018 © Penerbit UMT TAXONOMIC REVISION OF THE FAMILY DOLIOLIDAE BRONN, 1862 (CHORDATA, TUNICATA, THALIACEA, DOLIOLIDA) FROM EAST COAST OF PENINSULAR MALAYSIA), WITH AN UPDATED WORLDWIDE DISTRIBUTION NUR ‘ALIAH BINTI ADAM1 AND NURUL HUDA AHMAD ISHAK*1, 2 1School of Marine and Environmental Sciences, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia 2Institute of Oceanography and Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia *Corresponding author: [email protected] Abstract: The marine pelagic tunicate from the family of Doliolidae Bronn, 1862 in the coastal waters of Terengganu was studied for the first time, hereby presented in this paper. The distribution was analysed from 18 sampling stations alongside the Terengganu waters; including Pulau Bidong, Pulau Yu and Pulau Kapas. Samples were collected from April to July 2016 using 200µm Bongo net; towed vertically from a stationary vessel; and were preserved in a 5% buffered formaldehyde. Five species discovered in this family were identified as new records in Malaysian waters:Doliolum denticulatum Quoy and Gaimard, 1834, Doliolum nationalis Borgert, 1894, Dolioletta gegenbauri Uljanin, 1884, Doliolina mulleri Krohn, 1852 and Dolioloides rarum Grobben, 1882. A comprehensive review of the species description, diagnosis and a key to the phorozooid from the recorded species is herewith provided. We also deliver a detailed map of current and known worldwide occurrence of these five species, and thus consequently update the biodiversity of Malaysian fauna. KEYWORDS: Doliolid, pelagic tunicates, South China Sea, Terengganu, taxonomy, biogeography Introduction have the most complex life cycle compared to any of the pelagic tunicates; consisting of no lesser Pelagic tunicates are large transparent animals than six different and successive morphological that measure up to 25cm (Lavaniegos & Ohman, stages (Godeaux et al., 1998; Paffenhöfer & 2003). -
The Origins of Chordate Larvae Donald I Williamson* Marine Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom
lopmen ve ta e l B Williamson, Cell Dev Biol 2012, 1:1 D io & l l o l g DOI: 10.4172/2168-9296.1000101 e y C Cell & Developmental Biology ISSN: 2168-9296 Research Article Open Access The Origins of Chordate Larvae Donald I Williamson* Marine Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom Abstract The larval transfer hypothesis states that larvae originated as adults in other taxa and their genomes were transferred by hybridization. It contests the view that larvae and corresponding adults evolved from common ancestors. The present paper reviews the life histories of chordates, and it interprets them in terms of the larval transfer hypothesis. It is the first paper to apply the hypothesis to craniates. I claim that the larvae of tunicates were acquired from adult larvaceans, the larvae of lampreys from adult cephalochordates, the larvae of lungfishes from adult craniate tadpoles, and the larvae of ray-finned fishes from other ray-finned fishes in different families. The occurrence of larvae in some fishes and their absence in others is correlated with reproductive behavior. Adult amphibians evolved from adult fishes, but larval amphibians did not evolve from either adult or larval fishes. I submit that [1] early amphibians had no larvae and that several families of urodeles and one subfamily of anurans have retained direct development, [2] the tadpole larvae of anurans and urodeles were acquired separately from different Mesozoic adult tadpoles, and [3] the post-tadpole larvae of salamanders were acquired from adults of other urodeles. Reptiles, birds and mammals probably evolved from amphibians that never acquired larvae. -
Modeling the Processes Affecting Larval Haddock (Melanogrammus Aeglefinus) Survival on Georges Bank
Modeling the processes affecting larval haddock (Melanogrammus aeglefinus) survival on Georges Bank IM4ASSACHUSETTS INSTITUTE Colleen Mary Petrik OF TECHNOLOGY B.S., Marine Science and Biology University of Miami, 2005 LIBRARIES Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Biological Oceanography at the ARCHIVES MASSACHUSETTS INSTITUTE OF TECHNOLOGY and the WOODS HOLE OCEANOGRAPHIC INSTITUTION February 2011 0 2011 Colleen Mary Petrik. All rights reserved. The author hereby grants to MIT and WHOI permission to reproduce and to distribute publicly paper and electronic copies of this thesis document in whole or in part in any medium now known or hereafter created. Signature of Author Joint Program in Oceanography/Applied Ocean Science and Engineering Massachusetts Institute of Technology and Woods Hole Oceanographic Institution 17 December 2010 Certified by Cabell S. Davis upervisor Accepted by Simon Thorrold Chair, Joint Committee for Biological Oceanography Massachusetts Institute of Technology and Woods Hole Oceanographic Institution 2 Modeling the processes affecting larval haddock (Melanogrammus aeglefinus) survival on Georges Bank by Colleen Mary Petrik Submitted to the Department of Biology on 17 December 2010, in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Biological Oceanography Abstract The ultimate goal of early life studies of fish over the past century has been to better understand recruitment variability. Recruitment is the single most important natural event controlling year-class strength and biomass in fish populations. As evident in Georges Bank haddock, Melanogrammusaeglefinus, there is a strong relationship between recruitment success and processes occurring during the planktonic larval stage. Spatially explicit coupled biological-physical individual-based models are ideal for studying the processes of feeding, growth, and predation during the larval stage. -
Increased Rainfall Remarkably Freshens Estuarine and Coastal Waters on the Pacific Coast of Panama: Magnitude and Likely Effects on Upwelling and Nutrient Supply
Global and Planetary Change 92-93 (2012) 130–137 Contents lists available at SciVerse ScienceDirect Global and Planetary Change journal homepage: www.elsevier.com/locate/gloplacha Increased rainfall remarkably freshens estuarine and coastal waters on the Pacific coast of Panama: Magnitude and likely effects on upwelling and nutrient supply Ivan Valiela a,⁎, Luis Camilli b, Thomas Stone c, Anne Giblin a, John Crusius d, Sophia Fox e, Coralie Barth-Jensen a, Rita Oliveira Monteiro a, Jane Tucker a, Paulina Martinetto f, Carolynn Harris a a Marine Biological Laboratory, Woods Hole, MA 02543, United States b Woods Hole Oceanographic Institution, Woods Hole, MA 02543, United States c Woods Hole Research Center, Falmouth, MA 02540, United States d US Geological Survey, School of Oceanography, University of Washington, Seattle, WA 98195, United States e Cape Cod National Seashore, National Park Service, Wellfleet, MA 02667, United States f Instituto de Investigaciones Marinas y Costeras, Consejo Nacional de Investigaciones Cientifícas y Técnicas, Universidad Nacional de Mar del Plata, CC573, Mar del Plata, Argentina article info abstract Article history: Increased intensity of rainfall events during late 2010 led to a remarkable freshening of estuarine, near- and Received 23 September 2011 off-shore waters in coastal Pacific Panama. The increased rain intensity during the wet season of 2010 Accepted 10 May 2012 lowered salinity of estuarine and coastal waters to levels unprecedented in previous years. Fresher conditions Available online 18 May 2012 were most marked within estuaries, but even at 6 km from shore, salinities were 8–13‰ lower during the 2010 wet season, compared to a lowering of up to 2‰ during previous wet seasons. -
On Some Pelagic Doliolid Tunicates (Thaliacea, Doliolida) Collected by a Submersible Off the Eastern North American Coast
BULLETIN OF MARINE SCIENCE, 72(3): 589–612, 2003 ON SOME PELAGIC DOLIOLID TUNICATES (THALIACEA, DOLIOLIDA) COLLECTED BY A SUBMERSIBLE OFF THE EASTERN NORTHAMERICAN COAST J. E. A. Godeaux and G. R. Harbison ABSTRACT Specimens of Doliolids collected from a submersible at several stations off the eastern coast of North America were examined. Four species were identified, of which three were described by Godeaux (1996). Of these, one belongs to the new genus, Paradoliopsis (Godeaux, 1996). It is proposed that the order Doliolida be divided into two suborders: the Doliolidina (animals with eight muscle bands), and the Doliopsidina (animals with five muscle bands). Each suborder is represented in our collection by two families. For the Doliolidina these families are the Doliolidae (Doliolinetta intermedia) and the Doliopsoididae (Doliopsoides atlanticum), and for the Doliopsidina the families are the Doliopsidae (Doliopsis bahamensis) and the Paradoliopsidae (Paradoliopsis harbisoni). The family Doliolidae is the best known group of the tunicate order Doliolida. The vertical distribution of members of this family has been well documented with the use of multiple opening and closing nets. The various stages of the complex life cycle of the different species of Doliolidae are located in the epipelagic and mesopelagic layers. They are mainly found at depths between 50–100 m, where they graze on small autotrophic algae (Weikert and Godeaux, unpubl.). Doliolids are so fragile that they are easily dam- aged, making their identification difficult. Identification and determination of the various stages in the life cycle is made even more difficult by the fact that several different spe- cies are often mixed together in a single net collection. -
Watershed Deforestation and Down- Estuary Transformations Alter Sources, Transport, and Export of Suspended Particles in Panamanian Mangrove Estuaries
Ecosystems (2014) 17: 96–111 DOI: 10.1007/s10021-013-9709-5 Ó 2013 Springer Science+Business Media New York Watershed Deforestation and Down- Estuary Transformations Alter Sources, Transport, and Export of Suspended Particles in Panamanian Mangrove Estuaries I. Valiela,1* M. Bartholomew,1 A. Giblin,1 J. Tucker,1 C. Harris,1 P. Martinetto,2 M. Otter,1 L. Camilli,3 and T. Stone4 1Marine Biological Laboratory, The Ecosystems Center, Woods Hole, Massachusetts 02543, USA; 2Instituto de Investigaciones Marinas y Costeras, Consejo Nacional de Investigaciones Cientı´ficas y Te´cnicas, Universidad Nacional de Mar del Plata, CC573 Mar del Plata, Argentina; 3Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, USA; 4Woods Hole Research Center, Falmouth, Massachusetts 02540, USA ABSTRACT We identified eight Panamanian watersheds in particulate matter were mostly erased by within- which conversion from wet tropical forest to pas- estuary transformations. Isotopic signatures of C, N, tures differed and assessed the effects of degree of and S in particulate matter demonstrated strong deforestation, and down-estuary transformations, land-sea couplings, and indicated that the direction on the suspended particulate matter discharged from of the coupling was asymmetrical, with terrestrial the watersheds, entering, traversing through man- and estuarine sources delivering particulate materi- grove estuaries, and emerging into coastal waters. als to coastal waters and sediments. Mangrove Deforested watersheds discharged larger concen- estuaries therefore both act as powerful modulators trations of suspended particulate matter, with lower of human activities on land, while also exporting % C and N, higher mineral content, and heavier particulate materials to sea. isotopic signatures into fresh reaches of estuaries. -
Reef Fish Community Structure in the Tropical Eastern Pacific (Panama
Helgol Mar Res DOI 10.1007/s10152-006-0045-4 ORIGINAL ARTICLE Reef fish community structure in the Tropical Eastern Pacific (Panama´): living on a relatively stable rocky reef environment Arturo Dominici-Arosemena Æ Matthias Wolff Received: 12 September 2005 / Revised: 2 May 2006 / Accepted: 3 May 2006 Ó Springer-Verlag and AWI 2006 Abstract We compared the community structure of and structural complexity. Species diversity increases reef fish over different physical complexities in 12 with habitat complexity and benthic diversity. It seems study zones of Bahı´a Honda, Gulf of Chiriquı´ (BH- that water current strength, tides and waves which se- GCH), Tropical Eastern Pacific (TEP), Panama, aim- lect for swimming, play an important role in the com- ing at an analysis of the importance of the physical munity organization. The study region has been structure provided by corals, rocks and benthic sessile proposed as a refuge-centre in the TEP, where reef organisms. This was the first region that emerged in the fishes that evolved on coral reefs have shifted their Isthmus of Panama; it exhibits the oldest benthic fauna distribution onto rocky reef habitats. and has constant conditions in terms of temperature and salinity. Two hundred and eighty-eight visual fish Keywords Fish diversity Æ Distribution Æ Trophic censuses were conducted on 48 benthic transects from groups Æ Rocky reef Æ Tropical Eastern Pacific February to July 2003. One hundred and twenty-six fish species of 44 families were found. Plankton feeding pomacentrids and labrids along with haemulids that Introduction feed on mobile invertebrates were the most abundant, particularly in shallow areas. -
Marine Environmental Research 103 (2015) 95E102
Marine Environmental Research 103 (2015) 95e102 Contents lists available at ScienceDirect Marine Environmental Research journal homepage: www.elsevier.com/locate/marenvrev Isotopic studies in Pacific Panama mangrove estuaries reveal lack of effect of watershed deforestation on food webs * Ines G. Viana a, b, Ivan Valiela a, , Paulina Martinetto c, Rita Monteiro Pierce a, Sophia E. Fox d a The Ecosystems Center, Marine Biological Laboratory, Woods Hole, MA 02534, USA b Instituto Espanol~ de Oceanografía, Centro Oceanografico de La Coruna,~ Apdo. 130, 15080 La Coruna,~ Spain c Instituto de Investigaciones Marinas y Costeras, Consejo Nacional de Investigaciones Científicas y Tecnicas, Universidad Nacional de Mar del Plata, CC573 Mar del Plata, Argentina d Cape Cod National Seashore, National Park Service, 99 Marconi Site Road, Wellfleet, MA 02667, USA article info abstract Article history: Stable isotopic N, C, and S in food webs of 8 mangrove estuaries on the Pacific coast of Panama were Received 13 July 2014 measured to 1) determine whether the degree of deforestation of tropical forests on the contributing Received in revised form watersheds was detectable within the estuarine food web, and 2) define external sources of the food webs 17 October 2014 within the mangrove estuaries. Even though terrestrial rain forest cover on the contributing watersheds Accepted 24 October 2014 differed between 23 and 92%, the effect of deforestation was not detectable on stable isotopic values in food Available online 25 October 2014 webs present at the mouth of the receiving estuaries. We used stable isotopic measures to identify pro- ducers or organic sources that supported the estuarine food web. -
History and Revised Classification of the Order Cyclomyaria (Tunicata, Thaliacea, Doliolida)
I I BULLETIN DE L'INSTITUT ROYAL DES SCIENCES NATURELLES DE BELG IQUE, BIOLOG IE, 73: 191-222, 2003 BULLETIN VAN HET KONINKLIJK BELGISCH INSTITUUT VOOR NATUURWETENSCHAPPEN, BIOLOGIE, 73: 191 -222, 2003 History and revised classification of the order Cyclomyaria (Tunicata, Thaliacea, Doliolida) by Jean E.A. GODEAUX Abstract The genus Doliolum, with the species Doliolum mediter raneum, was created in 1823 by A.W. OTTO who described a The history of the successive investi gations done on the Order ban·el-shaped structure inhabited by a female amphipod of Doliolida is summarized and a revised classification of the Order is the genus Phronima. That "species " and those created later presented including all the species belonging or not to the fa mily ( 1830) by DELLE CHIAJE (D. papillosum and D. sulcatum) do Doliolidae. New fami lies are defined. Geographical distribution of not exist, as they onl y represent artefacts made by a crusta the species is given. cean parasiting a colony of Pyrosoma (P atlanticum?). Key-words: Fami lies Doliolidae, Doliopsoidae, Doliopsidae, QUOY & GAIMARD (Astrolable Expedition 1826-1 829) Paradoli opsidae, Doliopsoidesatlanticwn, Doliopsisbahamensis named Doliolum denticulum a kind of barrel ("barrilet nov. sp., Paradoliopsis harbisoni. denticule") first observed in Amboina roads (Indonesia) ( 1835, pl. 89, fig. 25-26) and later on off Vanikoro Island (Melanesia), and described as "Doliolum co1pore minima, Resume hyalino, cylindrico-ovato, subtruncato in Lttroque apice pelforato, antice crenulata, circulis octonis salientibus" L' hi storique des recherches successi ves menees sur I 'Ordre des Doliolida est presente avec une revision de sa classificati on incor (Length : 4.5 mm). -
Catalogue of Tunicata in Australian Waters
CATALOGUE OF TUNICATA IN AUSTRALIAN WATERS P. Kott Queensland Museum Brisbane, Australia 1 The Australian Biological Resources Study is a program of the Department of the Environment and Heritage, Australia. © Commonwealth of Australia 2005 This work is copyright. Apart from any use as permitted under the Copyright Act 1968, no part may be reproduced by any process without written permission from the Australian Biological Resources Study, Environment Australia. Requests and inquiries concerning reproduction and rights should be addressed to the Director, Australian Biological Resources Study, GPO Box 787, Canberra, ACT 2601, Australia. National Library of Australia Cataloguing-in-Publication entry Kott, P. Catalogue of Tunicata in Australian waters. Bibliography. Includes index. ISBN 0 642 56842 1 [ISBN 978-0-642-56842-7]. 1. Tunicata - Australia. I. Australian Biological Resources Study. II. Title. 596.20994 In this work, Nomenclatural Acts are published within the meaning of the International Code of Zoological Nomenclature by the lodgement of a CD Rom in the following major publicly accessible libraries: The Australian Museum Library, Sydney The National Library of Australia, Canberra The Natural History Museum Library, London The Queensland Museum Library, Brisbane The United States National Museum of Natural History, Smithsonian Institution, Washington DC The University of Queensland Library, Brisbane The Zoologische Museum Library, University of Amsterdam [International Commission for Zoological Nomenclature (1999). International Code of Zoological Nomenclature 4th ed: 1–126 (Article 8.6)] This CD is available from: Australian Biological Resources Study PO Box Tel:(02) 6250 9435 Int: +(61 2) 6250 9435 Canberra, ACT 2601 Fax:(02) 6250 9555 Int: +(61 2) 6250 9555 Australia Email:[email protected] ii CONTENTS Preface . -
Doliolum Nationalis Family Doliolidae Borgert, 1893
Phylum Chordata Order Doliolida Doliolum nationalis Family Doliolidae Borgert, 1893 Synonoyms None M4 Size M3 M5 Gonozooid length up to 4 mm M2 M6 M7 Genus notes M1 • Dextral arched intestine M8 Species notes Gonozooid (Blastozooid) • 8 muscle bands in parallel transverse rings • Gill slits arched from M2 dorsally to M5 and turn slightly forward to finish just in front of M5 • Endostyle short, from M2 to M4 • Testis is variable in length, it extends horizontally, behind M4, on the left dextral arched intestine side of the animal • Differentiated from D. denticulatum which has longer testes in front of M3. testes gill slits stretch from M2 to M5 The form of the gill slits and gill location is also diagnostic. Distribution • Distribution in North and Central Atlantic Ocean, Mediterranean Sea, Red Sea, subtropical SW Atlantic Ocean, tropical Indian and W Pacific Oceans Ecology Godeaux (1998); Boltovskoy (2005) endostyle gills dextral arched gills intestine end here Live specimen North Stradbroke Island, Queensland Compiled: C. H. Davies & A. S. Slotwinski 2012 Verified: Phylum Chordata Doliolum nationalis Order Doliolida Borgert, 1893 Family Doliolidae Synonyms None Size Nurse length up to 2 mm No other sizes available Example of Doliolum larvae Genus notes No ampulla These stages of D. denticulatum and D. nationalis cannot be separated Larvae • Body fusiform • With tail • No ampulla Nurses • Barrel shaped, without visceral mass, except for heart Example of Doliolum nurse • M2-M8 fused in continuous sheet • Budding on the dorso-ventral process Dorso ventral process Oozooids • Endostyle from M2 to M5 • 9 muscle bands in parallel transverse rings • Dorso-ventral process at M7 • Intestinal tube stretched sagittally Example of Doliolum oozoid Source Boltovskoy (2005) endostyle Intestinal tube Couwelaar (2003) Godeaux (1998) Godeaux (1998) (Full reference available at http://www.imas.utas.edu.au/zooplankton/references Compiled: C. -
ARCHNES February 2011
Larval Ecology and Synchronous Reproduction of Two Crustacean Species: Semibalanus balanoides in New England, USA and Gecarcinus quadratus in Veraguas, Panama by Joanna Gyory B.A., Cornell University, 2001 M.Sc., Stony Brook University, 2005 Submitted to the MIT Department of Biology and the WHOI Biology Department in partial fulfillment of the requirements for the degree of Doctor of Philosophy MASSACHUSETTS INSTITUTE OF TECHN4OLOGY at the JAN 2 6 2011 MASSACHUSETTS INSTITUTE OF TECHNOLOGY LIBRARIES and the WOODS HOLE OCEANOGRAPHIC INSTITUTION ARCHNES February 2011 © 2010 Joanna Gyory. All rights reserved. The author hereby grants to MIT and WHOI permission to reproduce and to distribute publicly paper and electronic copies of this thesis document in whole or in part in any medium now known or hereafter created. Signature of Author Joint Program in Oceanography/Applied Ocean Science and Engineering Massachusetts Institute of Technology and Woods Hole Oceanographic Institution December 15, 2010 A1 Certified by I Dr. Jesns Pineda Thesis supervisor Accepted by Dr. Simon Thorrold Chair, Joint Committee for Biological Oceanography Woods Hole Oceanographic Institution ---- ------ Larval Ecology and Synchronous Reproduction of Two Crustacean Species: Semibalanus balanoides in New England, USA and Gecarcinus quadratus in Veraguas, Panama by Joanna Gyory Submitted to the MIT Department of Biology and the WHOI Biology Department on December 15, 2010, in partial fulfillment of the requirements for the degree of Doctor of Philosophy ABSTRACT The environmental cues for synchronous reproduction were investigated for two highly abundant, ecologically important crustacean species: the temperate acorn barnacle, Semibalanus balanoides, and the tropical terrestrial crab, Gecarcinus quadratus.Larval ecology of these two species was also studied to determine potential sources of larval mortality and recruitment success.