BMJ.2016.036140 Entitled "The Genomics England 100,000 Genomes Project" Response to Editor and Reviewer Comments

Total Page:16

File Type:pdf, Size:1020Kb

BMJ.2016.036140 Entitled BMJ.2016.036140 entitled "The Genomics England 100,000 Genomes Project" Response to Editor and Reviewer Comments Editors' comments 1) While editors felt that your paper covered an interesting and relevant topic, we did not feel it was a good fit for the Analysis section of the journal in its current form. Typically Analysis articles are 1800-2000 word scholarly debate articles that present a clear argument. The paper as it currently stands is too detailed and too descriptive compared with the papers that we typically publish as Analysis, with no argument being put forward. -Thank you. We have shortened the manuscript from almost 4000 words to 2471. Furthermore, as also suggested by Reviewer 1, we have removed a lot of the descriptive/background material and added more data and emphasis relating to current challenges in NHS genomics and how the 100,000 Genomes Project is addressing these. 2) Editors also found the paper unclear as to when one of the key objectives of the 100,000 Genomes Project -- "to bring benefit to NHS patients" -- is supposed to be met and whether any of this goal has been met thus far. We would usually expect Analysis articles that cover specific projects and initiatives to include some information about outcomes, barriers, challenges etc. -Thank you. We have added examples of how a result can change management of a family and additional metrics around reports returned and diagnostic rate. We have also added a full section to the end entitled “Challenges, hurdles and future directions” as well as box e “100,000 Genomes Project: examples of early steps in catalysing complex change”, in which additional complex hurdles are addressed. 3) We wondered if a shorter article (around 1800 words) that focuses on this aspect, and does more to make the case for what the project is doing, as well as addressing possible unforeseen consequences, could be of interest if you are willing to revise? -Thank you for the invitation, which we have indeed taken up. We have shortened down to 2471 words, removing much of the background, putting in much more data and adding additional material around progress, outputs and challenges. I hope this meets with your expectations. As you mentioned in the original invitation for the piece, there was potential for a little flexibility [“The word count for Analysis articles is under 2000 words, but we can be flexible about this. Our main constraint is for the weekly print journal, where we only really have space for around 1700 words. We can go longer online, but it gets difficult to cut text for print when articles are very long, so I would suggest aiming for 3000 words. Or we can aim for online only publication”] If word count is absolutely critical, I can attempt to shave off another couple of hundred words. Reviewer(s)' Comments to Author Reviewer: 1 Comments: The paper is a thorough and comprehensive overview of the 100,000 Genomes Programme – a research and healthcare transformation programme currently underway in England. It outlines history of genomics going back to the inception of the Human Genome Project, aims of the 100,000 Genomes Programme and key people involved, why Whole Genome Sequencing (as opposed to exome sequencing) has been chosen to deliver the aims of the project, and the role of Genomic Medicine Centres and the GeCIPS. As someone with an interest in the Programme, I find the article highly informative and comprehensive. It was also interesting to read about sequencing of pathogens, about which I am much less familiar. However, I think the paper has been written for those who are already familiar with Genomic Medicine; in the UK most of these people will already be involved in the Programme, so it is not these readers that must be engaged. If the paper is really aimed at the general readership of the BMJ, including readers overseas, it would definitely benefit from a slightly different emphasis. I think that the paper could be considerably shortened and should focus on the benefits and medical potential for the different groups of patients from the very beginning of the article; the transformative aspects of healthcare should be spelled out with real examples and emphasis on how the NHS and its workforce must change in order to absorb this huge positive change. The majority of BMJ readers will have little knowledge of genomic medicine and are probably less interested in history and local political drivers and personnel involved. Thank you. We have rewritten the paper, shortening it, adding data and taken these suggestions on board. We have changed the ‘Background’ to focus upon aspects of NHS genomics service delivery that require transformation and the final section is now called “Challenges, hurdles and future directions” and focuses on how this programme is beginning to catalyse this change. Specifically, a box has been added entitled “box b: Application of genomics for healthcare improvement” and another box entitled “box e: 100,000 Genomes Project: examples of early steps in catalysing complex change” Some terms could also be better explained: What is the GENE consortium actually going to do? Examples for the reader would be very helpful. -Thank you. This section has been removed as the GENE consortium has now disbanded. The Box on Big Data is very impressive in terms of numbers but actual examples of what Big Data might be able to achieve for patients would capture the imagination of the readers. -Thank you. I have removed the box and incorporated some of these numbers into the text, which I hope gives the context you allude to: “Piloting of patient recruitment, sample collection, sequencing and data analysis was initiated in 2014 for both the rare disease (4957 participants) and cancer programmes (1650 participants). The first patients from the NHS Genomic Medicine Centres were recruited in February 2015, with an average weekly recruitment of ~650 participants and cumulative recruitment of 46,698 participants by October 2017 (fig e). Sequencing at the 100,000 Genomes Project Sequencing centre in Hinxton commenced in March 2016; by October 2017, a cumulative total of 36,083 WGS had been generated. Constitutional samples are been sequenced to produce a minimum of 85 GB of data per sample (>300 million high quality, non-duplicated sequencing reads per samples ensuring at least 15 sequencing read coverage for over 90% of the 3.2 billion bases in each patient genome, figs f and g).” The list of GeCIPs needs more explanation for the BMJ reader. -I have sought to better explain this through the text and the legend: “Following a call for expressions of interest, >1700 senior academics from the UK representing >300 institutions, >600 NHS clinicians and >200 international collaborators responded and self-organised into 41 domains spanning rare disease, tumour types and cross-cutting themes such as ethics, health economics and advanced analytical approaches (fig c)” Legend:“Fig c: The Genomics England Clinical Interpretation Partnership: Researchers have grouped themselves into 41 “domains” and will work within these groups to analyse the genomic and clinical data to make additional diagnoses in patients and advance overall genomic understanding” The sentence ‘early investigation with a whole genome thus can obviate the protracted and expensive diagnostic odyssey which historically characterised investigation of these disorders,’ will not be understood by most readers and needs explanation. The benefits of making early diagnoses in rare diseases should be illustrated with examples. -I have sought to address this in “Box b: Application of genomics for healthcare improvement” • Diagnosis of rare and/or inherited diseases: Whole genome or exome sequencing for a child with rare disease within the first weeks or months of life enables provision of a precise molecular genetic diagnosis. This offers opportunity for early administration of the interventions and therapies most likely to be effective, improved estimation of prognosis, pre-emption of complications and, if timely, facilitates reproductive decision-making for subsequent pregnancies. Historically diagnosis in rare disease took, on average, seven years. A ‘diagnostic odyssey’ was typical, involving investigation of multiple organ systems by different medical specialists and, even once referred to a geneticist, prolonged, serial testing of individual genes. Similarly the part on cancer is very well-written and aims are clearly articulated but again would benefit from specific examples of how genomic analysis can change patient management. The statement, ‘Whole genome sequencing of the tumour can predict therapeutic efficacy and prognosis, thus enabling administration of more effective treatments and avoidance of administration of drugs that may be ineffective’ needs to be illustrated with examples. -I had re-written these sections to (I hope) be clearer about opportunities: Text box b: “Precision oncology and targeted cancer treatments: growth and replication of cancer cells can be driven by mutated oncogenes (‘oncogene addiction’). Small molecules or monoclonal antibodies switching off the over-active protein can yield dramatic response (targeted drugs). However, the response is often time-limited as the tumour typically evolves a ‘resistance mutation’” Main text: “The results returned include (i) well-characterised mutations marking eligibility for NICE-approved targeted drugs such as BRAF-inhibitors in melanoma and EGFR inhibitors in lung cancer (ii) gene mutations, fusions and copy number changes which may enable access to clinical trials of experimental molecules (iii) analyses of signatures and mutational burden which are emerging as clinical biomarkers by which to predict drug response.” Really interesting issues such as insurance are not explained at all! What are the implications for participants? These are questions which patients may bring to their GPs and specialists. -Detailed and judicious exploration of issues around insurance are likely beyond the scope of a short article. However, I have sought to at least recognise that these are complex and highly relevant issues in box f: 1) Complexity around consent.
Recommended publications
  • 100000 Genomes and Genomics England
    100,000 Genomes & Genomics England Tim Hubbard Genomics England King’s College London, King’s Health Partners Wellcome Trust Sanger Institute Global Leaders in Genomic Medicine Washington 8-9th January 2014 UK Health System 101 • Four separate health services – NHS England – NHS Wales – NHS Scotland – Health & Social Care in Northern Ireland (HSC) • NHS (England) – ~1.4 million employees – ~£110 billion annual budget • Structure in England changed 1st April 2013 https://www.gov.uk/government/organisations/department-of-health Linking Health data to Research Clinical Data Healthcare Professional World Genotype Electronic Health Record Whole Genome Sequencing Phenotype Electronic Genomic Biology Health Data World Records Reference Genotype and genome sequence Phenotype ~3 gigabytes relationship capture EBI: repositories (petabytes of genome sequence data) Human sequence data Sanger: sequencing repositories (1000 genomes, uk10K) Steps in UK towards E-Health Research, Genomic Medicine • Health data to Research – 2006 Creation of OSCHR • Increase coordination between funders: MRC and NIHR – 2007 OSCHR E-health board • Enable research access to UK EHR data • Build capacity for research on EHR data • Genomics to Health – 2009 House of Lords report on Genomic Medicine – 2010 Creation of Human Genomic Strategy Group (HGSG) 2011: UK Life Sciences Strategy No10: http://www.number10.gov.uk/news/uk-life-sciences-get-government-cash-boost/ BIS/DH: http://www.dh.gov.uk/health/2011/12/nhs-adopting-innovation/ Linking Health data to Research Clinical Data
    [Show full text]
  • Functional Effects Detailed Research Plan
    GeCIP Detailed Research Plan Form Background The Genomics England Clinical Interpretation Partnership (GeCIP) brings together researchers, clinicians and trainees from both academia and the NHS to analyse, refine and make new discoveries from the data from the 100,000 Genomes Project. The aims of the partnerships are: 1. To optimise: • clinical data and sample collection • clinical reporting • data validation and interpretation. 2. To improve understanding of the implications of genomic findings and improve the accuracy and reliability of information fed back to patients. To add to knowledge of the genetic basis of disease. 3. To provide a sustainable thriving training environment. The initial wave of GeCIP domains was announced in June 2015 following a first round of applications in January 2015. On the 18th June 2015 we invited the inaugurated GeCIP domains to develop more detailed research plans working closely with Genomics England. These will be used to ensure that the plans are complimentary and add real value across the GeCIP portfolio and address the aims and objectives of the 100,000 Genomes Project. They will be shared with the MRC, Wellcome Trust, NIHR and Cancer Research UK as existing members of the GeCIP Board to give advance warning and manage funding requests to maximise the funds available to each domain. However, formal applications will then be required to be submitted to individual funders. They will allow Genomics England to plan shared core analyses and the required research and computing infrastructure to support the proposed research. They will also form the basis of assessment by the Project’s Access Review Committee, to permit access to data.
    [Show full text]
  • Genomics England and Sciencewise Evaluation of a Public Dialogue On
    Genomics England and Sciencewise Evaluation of a public dialogue on Genomic Medicine: Time for a new social contract? Evaluation report June 2019 Quality Management URSUS Consulting Ltd has quality systems which have been assessed and approved to BS EN IS9001:2008 (certificate number GB2002687). Creation / Revision History Issue / revision: 3 Date: 19/6/2019 Prepared by: Anna MacGillivray Authorised by: Anna MacGillivray Project number: U.158 File reference: Genomics England/genomic medicine draft evaluation report 19.6.2019 URSUS CONSULTING LTD 57 Balfour Road London N5 2HD Tel. 07989 554 504 www.ursusconsulting.co.uk _________________________________________________________________________________________ URSUS CONSULTING GENOMICS ENGLAND AND SCIENCEWISE 2 Glossary of Acronyms ABI Association of British Insurers AI Artificial Intelligence APBI Association of British Pharmaceutical Industry BEIS (Department of) Business, Energy and Industrial Strategy BME Black and Minority Ethnic CMO Chief Medical Officer CSO (NHS) Chief Scientific Officer DA Devolved Administration DHSC Department of Health and Social Care FTE Full Time Equivalent GDPR General Data Protection Regulation GE Genomics England GG Generation Genome report GMS Genomic medicine service GMC General Medical Council NHS National Health Service OG Oversight Group REA Rapid Evidence Assessment SEG Socio economic group SGP Scottish Genomes Partnership SoS Secretary of State SSAC Scottish Science Advisory Committee SLT Senior Leadership Team UKRI UK Research and Innovation WGS Whole Genome Sequencing _________________________________________________________________________________________ URSUS CONSULTING GENOMICS ENGLAND AND SCIENCEWISE 3 EXECUTIVE SUMMARY Introduction This report of the independent evaluation of a public dialogue on Genomic Medicine: Time for a new social contract? has been prepared by URSUS Consulting Ltd on behalf of Genomics England (GE) and Sciencewise1.
    [Show full text]
  • Dr Sophia Skyers Director, CIBS IQ Research
    CIBS IQ Research Inclusion by Dialogue and Design 100,000 Genomes Project Black African and Black Caribbean Communities A Qualitative Exploration of Views on Participation Report Author: Dr Sophia Skyers Director, CIBS IQ Research June 2018 Acknowledgements Dr Sophia Skyers, the author, would like to thank all of the focus group participants, event attendees and radio panel members for the invaluable contribution that they have made to informing this report and to shaping its recommendations. The participation of the community and the critical exchange of views is vitally important, and projects such as these cannot be undertaken without that active engagement. The author would also like to thank Can-Survive UK, BME Cancer Communities, Genomics England, and all of the healthcare professionals, geneticists, genetics researchers, and stakeholders from a range of organisations for sharing their knowledge, experience and insights so openly, and to Dr Rohan Morris for sharing his experience on ethnicity and access in relation to clinical research. 2 Table of Contents Executive Summary 4 100,000 Genomes Project 4 1. Introduction and background 9 2. About the 100,000 Genomes Project 9 3. Purpose and approach to conducting the study 13 4. Discussion oF Findings 15 a) Interviews with stakeholders 15 b) Focus groups, awareness-raising events and media campaigns 24 5. Conclusion, synthesis and recommendations 38 Appendix A – Focus Groups 41 Appendix B – Awareness Raising Events and Radio Campaigns 42 Appendix B – Stakeholder Interviews 43 Appendix B – ReFerences 44 3 Executive Summary 100,000 Genomes Project The 100,000 Genomes Project is aiming to sequence 100,000 whole genomes from approximately 70,000 consented NHS patients in the UK with all types of cancer, and rare diseases, as well as patients’ family members, as these diseases are strongly linked to changes in the genome.
    [Show full text]
  • Sarcoma Detailed Research Plan
    GeCIP Detailed Research Plan Form Background The Genomics England Clinical Interpretation Partnership (GeCIP) brings together researchers, clinicians and trainees from both academia and the NHS to analyse, refine and make new discoveries from the data from the 100,000 Genomes Project. The aims of the partnerships are: 1. To optimise: • clinical data and sample collection • clinical reporting • data validation and interpretation. 2. To improve understanding of the implications of genomic findings and improve the accuracy and reliability of information fed back to patients. To add to knowledge of the genetic basis of disease. 3. To provide a sustainable thriving training environment. The initial wave of GeCIP domains was announced in June 2015 following a first round of applications with expressions of interest in January 2015. These will be used to ensure that the plans are complimentary and add real value across the GeCIP portfolio and address the aims and objectives of the 100,000 Genomes Project. They will be shared with the MRC, Wellcome Trust, NIHR and Cancer Research UK as existing members of the GeCIP Board to give advance warning and manage funding requests to maximise the funds available to each domain. However, formal applications will then be required to be submitted to individual funders. They will allow Genomics England to plan shared core analyses and the required research and computing infrastructure to support the proposed research. They will also form the basis of assessment by the Project’s Access Review Committee, to permit access to data. Domain leads are asked to complete all relevant sections of the GeCIP Detailed Research Plan Form, ensuring that you provide names of domain members involved in each aspect so we or funders can see who to approach if there are specific questions or feedback and that you provide details if your plan relies on a third party or commercial entity.
    [Show full text]
  • Genomics England Is a Department of Health Company • Seconded to Genomics England from Queen Mary/Barts Who Pay My Salary • Multiple Industry Partnerships E.G
    The 100,000 Genomes Project Transforming Healthcare Berlin Institute of Health Prof Sir Mark Caulfield FMedSci Chief Scientist William Harvey Research Institute Queen Mary University of London Disclosures • Genomics England is a Department of Health Company • Seconded to Genomics England from Queen Mary/Barts who pay my salary • Multiple industry partnerships e.g. Illumina, iQVIA • No shares in anything except failed banks in 2008 29 January 2021 2 The 100,000 Genomes Project Milestones Announced by David Cameron, former Prime Minister in December 2012 –An Olympic Legacy Genomics England launched by then Secretary of State for Health in speech during NHS 65th Anniversary Celebrations, July 2013 Opening of new Sequencing Centre by Theresa May in 2016 CMO’s Generation Genome and the Life Sciences report in 2017 Commissioning of new NHS Genomic Medicine Service October 2018 Reached goal of sequencing 100,000 genomes in December 2018 “aspiration to undertake 5 million genome analyses over the next 5 years” The 100,000 Genomes Project in numbers 29 January 2021 How did the 100,000 Genomes Project work • 13 NHS Genomic Medicine Centres covering England, over 98 hospitals • Responsible for identifying and recruiting participants and for clinical care following results • Northern Ireland, Scotland and Wales joined Discovery Forum Industry Users 29 January 2021 5 Scalable disease diagnostics Sequence depth germline 36x to 40x Somatic 82x to 100x Patient/ family Validation Outcomes Phenotypes Clinical DNA GeCIP(s) & Pedigree assessment Gene Report
    [Show full text]
  • Endocrine and Metabolism Detailed Research Plan
    Genomics England Clinical Interpretation Partnership (GeCIP) Detailed Research Plan Form Application Summary GeCIP domain name Metabolic and Endocrine Disease Project title Whole genome sequencing to improve diagnosis and management of (max 150 characters) inherited metabolic and endocrine disorders Objectives. Set out the key objectives of your research. (max 200 words) Our major objectives are to use data from high-throughput whole genome sequencing to advance the understanding of the aetiology and heterogeneity of a range of important inherited metabolic and endocrine syndromes where full understanding is currently lacking. We will gain insights into disease mechanism and to novel therapeutic opportunities. Specific aims: 1. We will develop and implement bioinformatics algorithms and pipelines to categorise rare, severe inherited metabolic and endocrine disorders into homogeneous phenotypic groups. This will improve gene identification, assist genotype-phenotype correlations and future stratification prior to intervention studies. 2. We will identify novel causative genes and establish clinically useful risk scores to facilitate identification of novel disease genes, genetic risks and modifying factors to enable NHS diagnostic testing, prediction of disease onset, penetrance and clinical severity. 3. We will use our extensive experience in phenotyping in cellular and animal model systems to study disease mechanism. 4. We will recall and invite affected individuals for further deep metabolic and endocrine phenotyping to better understand how their diseases impact on their in vivo physiology. 5. We will use our extensive nexus of collaborative relations with the biotech and pharm industry to work together to develop novel approaches to therapy of these disorders. 6. We will work together with other GeCIPs and GMCs to train the next generation of scientists, technologists and clinicians in genomic medicine.
    [Show full text]
  • The Ethical and Legal Framework for a Genomics England and Sano Genetics Participant Engagement Platform
    The ethical and legal framework for a Genomics England and Sano Genetics participant engagement platform england Authors Colin Mitchell, Tanya Brigden and Alison Hall April 2021 A PHG Foundation report on the ethical and legal framework for a Genomics England and Sano Genetics participant engagement platform developed with funding from Innovate UK’s Digital Health Technology Catalyst competition. Acknowledgements This report is funded through grant funding from Innovate UK Industry Strategy Challenge Fund, Digital Health Technology Catalyst Round 4: Collaborative R&D, grant number 105415. We thank Fiona Maleady-Crowe, Shahla Salehi and Christine Patch (from Genomics England), Patrick Short (Sano Genetics) and other members of the project team for their input. Declaration of interests Alison Hall is a member of the Ethics Advisory Committee of Genomics England. Disclaimer The following report is intended to provide general information and understanding of the law. It should not be considered legal advice, nor used as a substitute for seeking qualified legal advice. URLs in this report were correct as of March 2021 Written and produced by PHG Foundation 2 Worts Causeway, Cambridge, CB1 8RN, UK +44 (0)1223 761900 www.phgfoundation.org © 2021 PHG Foundation Correspondence to: [email protected] The PHG Foundation is a health policy think-tank and linked exempt charity of the University of Cambridge. We work to achieve better health through the responsible and evidence- based application of biomedical science. We are a registered company, no. 5823194. PHG Foundation 2021 The ethical and legal framework for a participant engagement platform Executive summary The development of digital technologies has greatly increased the potential for more active involvement by participants in large-scale, long-term health research.
    [Show full text]
  • Genome Research Limited Strategic Overview Contents
    QUINQUENNIAL REVIEW 2021-2026 Genome Research Limited Strategic Overview Contents Executive Summary 1 Genome Research Limited (GRL): Mission and Vision Mission | Vision | Background to Genomes and BioData 2 Background to Wellcome, GRL and the Wellcome Genome Campus The Wellcome Genome Campus in 2020 3 Partnership with EMBL-European Bioinformatics Institute People and Culture 4 Delivery of the GRL’s Mission 5 Evaluation of Impact | Leadership, Governance and Management 6 Risks and Challenges 7 Funding Request and Assumptions 8 The next 25 years of the Wellcome Genome Campus Strategic Priorities for the next 25 years 9 An Evolving Community of Organisations with Shared Guiding Principles, Values and Kinships 10 The Wellcome Sanger Institute Background | Mission | Strategic Profile of the Sanger Institute 11 The Sanger Institute’s Research Culture Goals, Principles and Structure of Sanger Institute Research 12 Platforms for Data Generation and Data Handling Incubating the Next Generation of Genome Scientists 14 Engagement with the National and International Research Community Achievements | Between 2014 and 2019 15 Deliverables 16 Financial Allocations 17 Entrepreneurship and Innovation Background to Entrepreneurship and Innovation in Genomes and Biodata Background to Innovation on the Wellcome Genome Campus 18 Mission | Expansion of the Wellcome Genome Campus and Innovation 19 Connecting Science Background | Mission and Approach 21 Engagement | Learning and Training | Expansion of the Wellcome Genome Campus and the “Genome Gateway” 22 QUINQUENNIAL REVIEW 2021-2026 GRL STRATEGIC OVERVIEW Executive Summary Extraordinary opportunities and challenges are posed to 21st century biomedical science by the information encoded in genome sequences. Through the impact of its collective activities Genome Research Ltd (GRL) will provide global leadership in shaping and accelerating the revolution in biology, and its ramifying applications, engendered by the ever escalating wave of data from genomes.
    [Show full text]
  • This Exhibition Introduces the Role That the Wellcome Genome Campus
    Welcome to our exhibition about the future plans for the Wellcome Genome Campus. This exhibition introduces the role that the Wellcome Genome Campus has played in developing the science of genomics and biodata and how we want to ensure the Campus stays at the forefront of this area of scientific research. We have been working with a wide ranging technical team to start to develop our ideas about how the Campus could grow and deliver benefits for both our scientific community and the surrounding area over the next 25 years. This is the start of process of consultation with the local Parishes to help shape our proposals. We look forward to talking to you about our ideas in more detail. THE WELLCOME TRUST “Good health makes life better. We want to improve health for everyone by helping great ideas to thrive.” Wellcome exists to improve health for everyone by helping great ideas to thrive. Wellcome is a global charitable foundation, both politically and financially independent. It supports scientists and researchers to take on big problems, fuel imaginations, and spark debate. Wellcome supports over 14,000 people in more than 70 countries. In the next five years, Wellcome aims to help thousands of curious, passionate people all over the world explore ideas in science, population health, medical innovation, the humanities and social sciences and public engagement. Wellcome’s vision is divided into three ‘impact areas’: • Maximising the potential of research to improve human health • Delivering innovations that prevent or treat health problems • Engaging society to shape choices that lead to better health Wellcome has been the de facto owner of the Wellcome Genome Campus estate since the establishment of what was then called the Sanger Centre, in 1992.
    [Show full text]
  • Department of Health & Social Care
    ,s From the Rt Hon Jeremy Hunt MP Secretary of State for Health and Social Care Department 39 Victoria Street of Health & London Social Care SWl H OEU 020 7210 4850 POC 1134483 The Rt Hon Norman Lamb MP Chair, Science and Technology Committee ,. i ' House of Commons London - 6 JUN 2018 SWIA OAA ]- A, ',--, Many thanks for your considered letter on behalf of the Science and Technology Committee and your helpful comments relating to the National Qenomic Medicine Service. Building on the world leading 100,000 Genomes Project, the UK will enhance its intemational leadership as one of the first countries in the world to establish a fully integrated Genomic Medicine Service (GMS) from October 201 8. Through the GMS, NHS England will provide comprehensive and equitable access to the latest in genomic testing, including Whole Genome Sequencing (WGS), across the whole country. To deliver the vision that the Chief Medical Officer for England set out in her annual report 'Generation Genome', the new GMS will be supported by a network of National Genomic Laboratory Hubs (GLHs) that will deliver an integrated system for genomic testing, working to clear common standards and protocols, supported by, for the first time, a comprehensive national directory of genomic tests for specified cancers and rare diseases that encompasses the entire testing repertoire from WGS to tests for single genes, molecular markers and other functional genomic tests. The national directory of genomic tests will define situations in which whole genome sequencing has sufficient evidence to be used as a first-line test, alongside situations in which an altemative test should be used, either instead of or before, a whole genome sequence is appropriate foruse.
    [Show full text]
  • Genomics England Publication Policy
    Genomics England Publication Policy Document Record ID Key Work stream Office of the Chief Scientist Programme Director Mark Caulfield Status Final Document Owner Dina Halai Version 3.8 Document Author Mark Caulfield, Tom Fowler, Jeanna Version Date 18/09/17 Mahon-Pearson, Nick Maltby, Tim Hubbard, Clare Turnbull, Sir John Bell 1 Document History The controlled copy of this document is maintained in the Genomics England internal document management system. Any copies of this document held outside of that system, in whatever format (for example, paper, email attachment), are considered to have passed out of control and should be checked for currency and validity. This document is uncontrolled when printed. 1.1 Version History Version Date Description 3.1 17/03/16 Updated to include Publication Committee Chair’s comments and annexes 3.2 21/03/16 Updated with Team Science publication reference 3.3 22/03/16 Formatted into GeL template and minor edits 3.4 05/04/16 Initial policy to inform discussions with Chair of Publication Committee 3.5 27/04/16 Amended section 9 3.6 18/05/16 Amended following review by Genomics England Board 3.7 14/07/16 Funders comments taken in 3.8 18/09/17 Amended section 7; acknowledging the use of patient data 1.2 Reviewers This document must be reviewed by the following: Name Title Version Mark Caulfield Chief Scientist 3.6 Tom Fowler Deputy Chief Scientist & Director of Public Health 3.4 Mark Bale Head of Science Partnerships 3.4 Nick Maltby General Counsel and Company Secretary 3.5 Tim Hubbard Head of Genome Analysis 3.4 Clare Turnbull Chief Scientific Officer for Cancer 3.4 Sir John Bell Chair, Genomics England Publications Committee 3.6 1.3 Approvers This document must be approved by the following: Name Responsibility Date Version Mark Caulfield Chief Scientist 3.6 Sir John Bell Chair, Genomics England Publications 3.6 Committee GENOMICS ENGLAND PUBLICATION POLICY 1 Contents 1 Document History .........................................................................................................................
    [Show full text]