The Mouth and Pharynx

Total Page:16

File Type:pdf, Size:1020Kb

The Mouth and Pharynx The Mouth and Pharynx The Mouth Learning Points The mouth provides another entrance to the airway. The upper portion of the oral cavity comprises of the hard palate and soft palate, whilst the lower portion is dominated by the tongue. The tongue is a muscular structure used for digestion and phonation. Negotiating the airway can be challenging when the tongue is enlarged. The tongue may be enlarged in congenital conditions such as Down’s syndrome, or swell during an allergic reaction. The Pharynx The pharynx is the cavity which connects the nose and the mouth to the larynx and the esophagus. It is divided into 3 sections, the nasopharynx, oropharynx and laryngopharynx. The nasopharynx runs from the back of the nasal cavity down the posterior aspect of the soft palate. The oropharynx runs from the uvula (a finger like projection at the posterior aspect of the soft palate) to the epiglottis. The oropharynx contains anteriorly the palatoglossal arch, and postertiorly the palatopharyngeal arch. Between the two arches lie the tonsils. Just above the epiglottis is a fold called the vallecula. This where the blade of the laryngoscope is placed during laryngoscopy. The laryngopharynx runs from the epiglottis to the cricoid cartilage, and contains the vocal cords. Nerve supply of the pharynx Broadly speaking the nose and nasopharynx are supplied by the trigeminal nerve, the oropharynx is supplied by the glossopharyngeal nerve and the laryngopharynx is supplied by the vagus nerve. The Teeth Teeth arise from the top and bottom jaw and provide structural support to facial architecture. Their main role is in mastication and digestion but they also influence facial aesthetics and facilitate speech. During direct laryngoscopy, rigid bronchoscopy, biting during emergence or even vigorous oropharyngeal suctioning there is a high risk of damaging teeth. Dental damage is the leading cause of complaint and medicolegal claims against anaesthetists. Each tooth consists of a crown covered in calcified enamel and dentine, and a root which is anchored into the jawbone. Within the root is the pulp containing vessels and nerves. .
Recommended publications
  • Selecting Different Approaches for Palate and Pharynx Surgery
    SPECIAL ISSUE 4: INVITED ARTICLE Selecting Different Approaches for Palate and Pharynx Surgery: Palatopharyngeal Arch Staging System Rodolfo Lugo-Saldaña1 , Karina Saldívar-Ponce2 , Irina González-Sáez3 , Daniela Hernández-Sirit4 , Patricia Mireles-García5 ABSTRACT The examination of the anatomical structures involved in the upper airway collapse in patients with the obstructive sleep apnea-hypopnea syndrome (OSAHS) is a key for integrated evaluation of patients. Our proposal is for a noninvasive classification system that guides us about the presence of anatomical differences between the palatopharyngeal muscle (PFM). The functions of the PFM are narrowing the isthmus, descending the palate, and raising the larynx during swallowing; these characteristics give the PFM a special role in the collapse of the lateral pharyngeal wall. Complete knowledge of the anatomy and classification of different variants can guide us to choose the appropriate surgical procedures for the lateral wall collapse. Until now there is not a consensus about description of the trajectory or anatomical variants of the PFM into oropharynx, the distance between both muscles, and the muscle tone. Here we also present the relationship between the lateral wall surgeries currently available (lateral pharyngoplasty by Cahali, expansion sphincteroplasty by Pang, relocation pharyngoplasty by Li, Roman blinds pharyngoplasty by Mantovani, and barbed sutures pharyngoplasty by Vicini) with the proposed classification of the palatopharyngeal arch staging system (PASS). Keywords:
    [Show full text]
  • Larynx Anatomy
    LARYNX ANATOMY Elena Rizzo Riera R1 ORL HUSE INTRODUCTION v Odd and median organ v Infrahyoid region v Phonation, swallowing and breathing v Triangular pyramid v Postero- superior base àpharynx and hyoid bone v Bottom point àupper orifice of the trachea INTRODUCTION C4-C6 Tongue – trachea In women it is somewhat higher than in men. Male Female Length 44mm 36mm Transverse diameter 43mm 41mm Anteroposterior diameter 36mm 26mm SKELETAL STRUCTURE Framework: 11 cartilages linked by joints and fibroelastic structures 3 odd-and median cartilages: the thyroid, cricoid and epiglottis cartilages. 4 pair cartilages: corniculate cartilages of Santorini, the cuneiform cartilages of Wrisberg, the posterior sesamoid cartilages and arytenoid cartilages. Intrinsic and extrinsic muscles THYROID CARTILAGE Shield shaped cartilage Right and left vertical laminaà laryngeal prominence (Adam’s apple) M:90º F: 120º Children: intrathyroid cartilage THYROID CARTILAGE Outer surface à oblique line Inner surface Superior border à superior thyroid notch Inferior border à inferior thyroid notch Superior horns à lateral thyrohyoid ligaments Inferior horns à cricothyroid articulation THYROID CARTILAGE The oblique line gives attachement to the following muscles: ¡ Thyrohyoid muscle ¡ Sternothyroid muscle ¡ Inferior constrictor muscle Ligaments attached to the thyroid cartilage ¡ Thyroepiglottic lig ¡ Vestibular lig ¡ Vocal lig CRICOID CARTILAGE Complete signet ring Anterior arch and posterior lamina Ridge and depressions Cricothyroid articulation
    [Show full text]
  • Septoplasty, Rhinoplasty, Septorhinoplasty, Turbinoplasty Or
    Septoplasty, Rhinoplasty, Septorhinoplasty, 4 Turbinoplasty or Turbinectomy CPAP • If you have obstructive sleep apnea and use CPAP, please speak with your surgeon about how to use it after surgery. Follow-up • Your follow-up visit with the surgeon is about 1 to 2 weeks after Septoplasty, Rhinoplasty, Septorhinoplasty, surgery. You will need to call for an appointment. Turbinoplasty or Turbinectomy • During this visit any nasal packing or stents will be removed. Who can I call if I have questions? For a healthy recovery after surgery, please follow these instructions. • If you have any questions, please contact your surgeon’s office. Septoplasty is a repair of the nasal septum. You may have • For urgent questions after hours, please call the Otolaryngologist some packing up your nose or splints which stay in for – Head & Neck (ENT) surgeon on call at 905-521-5030. 7 to 14 days. They will be removed at your follow up visit. When do I need medical help? Rhinoplasty is a repair of the nasal bones. You will have a small splint or plaster on your nose. • If you have a fever 38.5°C (101.3°F) or higher. • If you have pain not relieved by medication. Septorhinoplasty is a repair of the nasal septum and the nasal bone. You will have a small splint or plaster cast on • If you have a hot or inflamed nose, or pus draining from your nose, your nose. or an odour from your nose. • If you have an increase in bleeding from your nose or on Turbinoplasty surgery reduces the size of the turbinates in your dressing.
    [Show full text]
  • How the Larynx (Voice Box) Works
    How the Larynx (Voice Box) Works Charles R. Larson, PhD If you love opera, or if you admire the voices of pop singers such as Celine Dion or Barbra Streisand, you may have wondered how it is these marvelous singers are able to create such beautiful music with this instrument we call the human voice. You may also know of someone who has a bad voice or has had to have their voice box, or larynx, removed because of illness or injury. The larynx is a critical organ of human speech and singing, and it serves important biological functions as well. Let's have a look at the larynx to understand its functions, what it looks like and how it works. It is thought that the same factors that favored the evolution of air‐breathing animals on earth led to the evolution of the larynx. Lungs are comprised of very delicate tissues that must be maintained within strict biological limits, that is, temperature, humidity and freedom from foreign particles. Thus, along with the first air‐breathing animals, there appeared a primitive sort of larynx, whose one and only function was protection of the lung. This function remains the most important of those the larynx has assumed in subsequent evolutionary developments. Now, of course we recognize that the larynx is critical for human speech and singing. But we also should realize that the larynx is important for swallowing, coughing, vomiting and eliminating contents of the abdomen. If you have ever felt your 'Adam's Apple', then you know where the larynx is.
    [Show full text]
  • Understanding Your Child's Videofluoroscopy
    Understanding your child’s videofluoroscopy swallow study report This leaflet will explain some of the words used by the speech and language therapist (SLT) in the letter sent out after the videofluoroscopy swallow study. The recommendations introduce some of the ways that your child’s problems with swallowing can be managed. If you have any questions or concerns, please speak to your SLT. What happens during swallowing? Swallowing is a series of movements that prepares food and fluid in the mouth, and then delivers it through the pharynx and oesophagus to the stomach. This is a diagram of the inside of the mouth and throat. You might find it useful to refer to when reading the information in this leaflet. 1 Tongue 2 Hard palate (roof of the mouth) 3 Soft palate (soft tissue at the back of the roof of the mouth) 4 Pharynx or throat (tube that connects the mouth and nostrils to the gullet) 5 Valeculae (depression below the root of the tongue) 6 Epiglottis (cartilage flap attached at the top of the larynx) 7 Pyriform sinuses (recesses on either side of the entrance to the larynx) 8 Larynx (the voice box, which is located at the top of the airway) 9 Vocal cords (two membranes which vibrate when speaking and move together when swallowing. This movement is a protective mechanism to stop food or drink entering the airway. The vocal cords are located in the voice box.) 10 Trachea (tube connecting the larynx to the lungs) 11 Upper oesophageal sphincter (muscular ring at the entrance to the oesophagus to reduce the risk of food coming back up) 12 Gullet or oesophagus (tube connecting the pharynx to the stomach) 1 of 3 Swallowing phases Swallowing involves three phases: 1.
    [Show full text]
  • Mouth Esophagus Stomach Rectum and Anus Large Intestine Small
    1 Liver The liver produces bile, which aids in digestion of fats through a dissolving process known as emulsification. In this process, bile secreted into the small intestine 4 combines with large drops of liquid fat to form Healthy tiny molecular-sized spheres. Within these spheres (micelles), pancreatic enzymes can break down fat (triglycerides) into free fatty acids. Pancreas Digestion The pancreas not only regulates blood glucose 2 levels through production of insulin, but it also manufactures enzymes necessary to break complex The digestive system consists of a long tube (alimen- 5 carbohydrates down into simple sugars (sucrases), tary canal) that varies in shape and purpose as it winds proteins into individual amino acids (proteases), and its way through the body from the mouth to the anus fats into free fatty acids (lipase). These enzymes are (see diagram). The size and shape of the digestive tract secreted into the small intestine. varies in each individual (e.g., age, size, gender, and disease state). The upper part of the GI tract includes the mouth, throat (pharynx), esophagus, and stomach. The lower Gallbladder part includes the small intestine, large intestine, The gallbladder stores bile produced in the liver appendix, and rectum. While not part of the alimentary 6 and releases it into the duodenum in varying canal, the liver, pancreas, and gallbladder are all organs concentrations. that are vital to healthy digestion. 3 Small Intestine Mouth Within the small intestine, millions of tiny finger-like When food enters the mouth, chewing breaks it 4 protrusions called villi, which are covered in hair-like down and mixes it with saliva, thus beginning the first 5 protrusions called microvilli, aid in absorption of of many steps in the digestive process.
    [Show full text]
  • Abbreviations - Diagnosis
    Abbreviations - Diagnosis AB abrasion AT attrition CA caries CFL cleft lip CFP cleft palate CLL cervical line lesion - See TR CMO craniomandibular osteopathy DT deciduous (primary) tooth DTC dentigerous cyst E enamel E/D enamel defect E/H enamel hypocalcification or hypoplasia FB foreign body FORL feline odontoclastic resorptive lesion - See TR FX fracture (tooth or jaw) G granuloma G/B buccal granuloma (cheek chewing lesion) G/L sublingual granuloma (tongue chewing lesion) G/E/L eosinophilic granuloma - lip G/E/P eosinophilic granuloma - palate G/E/T eosinophilic granuloma - tongue GH gingival hyperplasia GR gingival recession LAC laceration LAC/B laceration buccal (cheek) LAC/L laceration lip LAC/T laceration tongue MAL malocclusion MAL/1 class 1 malocclusion (neutroclusion - normal jaw relationship, specific teeth are incorrectly positioned) MAL/2 class 2 malocclusion (mandibular distoclusion - mandible shorter than maxilla) MAL/3 class 3 malocclusion (mandibular mesioclusion - maxilla shorter than mandible) BV buccoversion (crown directed towards cheek) CXB caudal crossbite DV distoversion (crown directed away from midline of dental arch) LABV labioversion (crown directed towards lip) LV linguoversion (crown directed towards tongue) MV mesioversion (crown directed towards midline of dental arch) OB open bite RXB rostral crossbite MN mandible or mandibular MN/FX mandibular fracture MX maxilla or maxillary MX/FX maxillary fracture OM oral mass OM/AD adenocarcinoma OM/EPA acanthomatous ameloblastoma (epulis) OM/EPF fibromatous epulis
    [Show full text]
  • Rhinoplasty ARTICLE by PHILIP WILKES, CST/CFA
    Rhinoplasty ARTICLE BY PHILIP WILKES, CST/CFA hinoplasty is plastic become lodged in children's noses.3 glabella, laterally with the maxilla, surgery of the nose Fortunately, the art and science of inferiorly with the upper lateral car- for reconstructive, rhinoplasty in the hands of a skilled tilages, and posteriorly with the eth- restorative, or cos- surgical team offers positive alter- moid bone? metic purposes. The natives. The nasal septum is formed by procedure of rhmo- Three general types of rhino- the ethmoid (perpendicular plate) plasty had its beginnings in India plasty will be discussed in this arti- and vomer bones (see Figure 5). The around 800 B.c.,as an ancient art cle. They include partial, complete, cartilaginous part is formed by sep- performed by Koomas Potters.' and finesse rhinoplasties. tal and vomeronasal cartilages. The Crimes were often punished by the anterior portion consists of the amputation of the offender's nose, Anatomy and Physiology of the medial crus of the greater alar carti- creating a market for prosthetic sub- Nose lages, called the columella nasi? stitutes. The skill of the Koomas The nose is the olfactory organ that The vestibule is the cave-like area enabled them to supply this need. In projects from the center of the face modem times, rhinoplasty has and warms, filters, and moistens air developed into a high-technology on the way to the respiratory tract. procedure that combines art with Someone breathing only through the latest scientific advancements.' the mouth delivers a bolus of air During rhinoplastic procedures, with each breath. The components surgeons can change the shape and of the nose allow a thin flow of air size of the nose to improve physical to reach the lungs, which is a more appearance or breathing.
    [Show full text]
  • Angina Bullosa Haemorrhagica (Oral Blood Blister) (PDF)
    Patient Information Maxillo-facial Angina Bullosa Haemorrhagica (Oral Blood Blister) What is Angina Bullosa Haemorrhagica? Angina Bullosa Hemorrhagica (ABH) is a condition where an often painful, but benign blood-filled blister suddenly develops in the mouth. The blisters are generally not due to a blood clotting disorder or any other medical disorder. It is a fairly common, sudden onset and benign blood blistering oral (mouth) disorder. It mainly affects people over 45 years and both males and females are equally affected. Usually there is no family history of the condition. It may be associated with Type 2 Diabetes, a family history of diabetes or Hyperglycaemia. What are the signs and symptoms of ABH? The first indication is a stinging pain or burning sensation just before the appearance of a blood blister The blisters last only a few minutes and then spontaneously rupture (burst), leaving a shallow ulcer that heals without scarring, discomfort or pain They can reach an average size of one to three centimetres in diameter The Soft Palate (back of the mouth) is the most affected site If they occur on the palate and are relatively big, they may need to be de-roofed (cut and drained) to ease the sensation of choking Patient Information Occasionally blisters can occur in the buccal mucosa (cheek) and tongue Approximately one third of the patients have blood blisters in more than one location. What are the causes of ABH? More than 50% of cases are related to minor trauma caused by: hot foods, restorative dentistry (fillings, crowns etc) or Periodontal Therapy (treatment of gum disease).
    [Show full text]
  • Lecture 2 – Bone
    Oral Histology Summary Notes Enoch Ng Lecture 2 – Bone - Protection of brain, lungs, other internal organs - Structural support for heart, lungs, and marrow - Attachment sites for muscles - Mineral reservoir for calcium (99% of body’s) and phosphorous (85% of body’s) - Trap for dangerous minerals (ex:// lead) - Transduction of sound - Endocrine organ (osteocalcin regulates insulin signaling, glucose metabolism, and fat mass) Structure - Compact/Cortical o Diaphysis of long bone, “envelope” of cuboid bones (vertebrae) o 10% porosity, 70-80% calcified (4x mass of trabecular bone) o Protective, subject to bending/torsion/compressive forces o Has Haversian system structure - Trabecular/Cancellous o Metaphysis and epiphysis of long bone, cuboid bone o 3D branching lattice formed along areas of mechanical stress o 50-90% porosity, 15-25% calcified (1/4 mass of compact bone) o High surface area high cellular activity (has marrow) o Metabolic turnover 8x greater than cortical bone o Subject to compressive forces o Trabeculae lined with endosteum (contains osteoprogenitors, osteoblasts, osteoclasts) - Woven Bone o Immature/primitive, rapidly growing . Normally – embryos, newborns, fracture calluses, metaphyseal region of bone . Abnormally – tumors, osteogenesis imperfecta, Pagetic bone o Disorganized, no uniform orientation of collagen fibers, coarse fibers, cells randomly arranged, varying mineral content, isotropic mechanical behavior (behavior the same no matter direction of applied force) - Lamellar Bone o Mature bone, remodeling of woven
    [Show full text]
  • LINGUISTICS 330 Lecture #2 (Latin Dentes 'Teeth')
    LINGUISTICS 330 Lecture #2 THE THREE PHYSIOLOGICAL COMPONENTS OF SPEECH PRODUCTION It is functionally appropriate to consider speech production in terms of three components: 1. THE SUBGLOTTAL SYSTEM: a. trachea (windpipe) b. lungs and associated respiratory muscles 2. LARYNX 3. SUPRALARYNGEAL VOCAL TRACT: Air passages above the larynx a. oral tract (= oral cavity) Latin os/oralis ‘mouth’ b. nasal tract (= nasal cavity) Latin nasus ‘nose’ c. pharynx (= pharyngeal cavity) Greek pharynx ‘throat’ SUPRAGLOTTAL ORGANS THE LIPS (prefix: labio-; suffix -labial) (Latin labia ’lip’ ) • The lips are a complex of muscles and other tissues (see below!) • The lips have a great capacity for varied movement, and much of their range of movement is utilized in speech (e.g. lip spreading, lip rounding, lip closing, etc.) THE TEETH (suffix: -dental) (Latin dentes ’teeth’) • They are set into the alveolar processes of the upper jaw (=maxillary bone) and the lower jaw (= mandible). (Alveolar processes: The inferior border of the maxillary bone or the superior border of the mandible; both contain sockets holding the teeth). 1 • The sides of the tongue pressed against the molars help to direct the air stream towards the front of the mouth, as in [ß] and [Ω]. • The lower lip approximates the maxillary incisors to constrict the air stream for [f] and [v]. • The tongue tip approximates the maxillary incisors for the production of [†] and [∂]. • The slightly opened maxillary and mandibular incisors provide friction surfaces for [s], [z], [ß] and [Ω]. THE TONGUE (suffix: -lingual) (Latin lingua ‘tongue’) • The floor of the oral cavity is largely formed by the three-dimensional muscle mass: the tongue.
    [Show full text]
  • Vestibule Lingual Frenulum Tongue Hyoid Bone Trachea (A) Soft Palate
    Mouth (oral cavity) Parotid gland Tongue Sublingual gland Salivary Submandibular glands gland Esophagus Pharynx Stomach Pancreas (Spleen) Liver Gallbladder Transverse colon Duodenum Descending colon Small Jejunum Ascending colon intestine Ileum Large Cecum intestine Sigmoid colon Rectum Appendix Anus Anal canal © 2018 Pearson Education, Inc. 1 Nasopharynx Hard palate Soft palate Oral cavity Uvula Lips (labia) Palatine tonsil Vestibule Lingual tonsil Oropharynx Lingual frenulum Epiglottis Tongue Laryngopharynx Hyoid bone Esophagus Trachea (a) © 2018 Pearson Education, Inc. 2 Upper lip Gingivae Hard palate (gums) Soft palate Uvula Palatine tonsil Oropharynx Tongue (b) © 2018 Pearson Education, Inc. 3 Nasopharynx Hard palate Soft palate Oral cavity Uvula Lips (labia) Palatine tonsil Vestibule Lingual tonsil Oropharynx Lingual frenulum Epiglottis Tongue Laryngopharynx Hyoid bone Esophagus Trachea (a) © 2018 Pearson Education, Inc. 4 Visceral peritoneum Intrinsic nerve plexuses • Myenteric nerve plexus • Submucosal nerve plexus Submucosal glands Mucosa • Surface epithelium • Lamina propria • Muscle layer Submucosa Muscularis externa • Longitudinal muscle layer • Circular muscle layer Serosa (visceral peritoneum) Nerve Gland in Lumen Artery mucosa Mesentery Vein Duct oF gland Lymphoid tissue outside alimentary canal © 2018 Pearson Education, Inc. 5 Diaphragm Falciform ligament Lesser Liver omentum Spleen Pancreas Gallbladder Stomach Duodenum Visceral peritoneum Transverse colon Greater omentum Mesenteries Parietal peritoneum Small intestine Peritoneal cavity Uterus Large intestine Cecum Rectum Anus Urinary bladder (a) (b) © 2018 Pearson Education, Inc. 6 Cardia Fundus Esophagus Muscularis Serosa externa • Longitudinal layer • Circular layer • Oblique layer Body Lesser Rugae curvature of Pylorus mucosa Greater curvature Duodenum Pyloric Pyloric sphincter antrum (a) (valve) © 2018 Pearson Education, Inc. 7 Fundus Body Rugae of mucosa Pyloric Pyloric (b) sphincter antrum © 2018 Pearson Education, Inc.
    [Show full text]