Plant Species, with More Than 820 So Far Recorded
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Flowering of Watsonia Laccata As Influenced by Corm Storage and Forcing Temperatures ⁎ J.K
Available online at www.sciencedirect.com South African Journal of Botany 77 (2011) 631–637 www.elsevier.com/locate/sajb Flowering of Watsonia laccata as influenced by corm storage and forcing temperatures ⁎ J.K. Suh a, , J.H. Kim a, A.K. Lee a, M.S. Roh b a Dankook University, College of Bio-Resources Science, Department of Environmental Horticulture, Cheonan, Chungnam 330-714, Republic of Korea b US Department of Agriculture, Agricultural Research Service, National Arboretum, Floral and Nursery Plants Research Unit, Beltsville MD 20705, USA Received 24 March 2010; received in revised form 28 November 2010; accepted 22 December 2010 Abstract The genus Watsonia, belonging to the family Iridaceae, is comprised of about 50 species including W. laccata (Jacquin) Ker Gawler that flowers from September to November following low temperature and winter rainfall. Therefore, we hypothesized that flowering would be favored by forcing at low greenhouse temperatures. Using clonal W. laccata corms, four experiments were designed to investigate the effect of temperatures during corm storage, forcing, and their interaction on growth and flowering. Corm formation is favored by growing plants at 18°– 20°/15°–17 °C and 21°–23°/18°–20 °C, day/night temperatures. Flowering was earliest with corms produced at 24°–26°/18°–20 °C and forced at 18°–20/15°–17 °C, and was significantly delayed when forced at 27°–29°/24°–26 °C. Flowering was, however, favored by 2 or 4 weeks of high temperatures (27°–29°/24°–26 °C) prior to forcing at low temperatures (18°–20°/15°–17 °C). The number of florets was not significantly affected by corm storage, forcing temperatures, or their interaction, although forcing at high temperatures tends to reduce the floret number. -
Arthur Monrad Johnson Colletion of Botanical Drawings
http://oac.cdlib.org/findaid/ark:/13030/kt7489r5rb No online items Arthur Monrad Johnson colletion of botanical drawings 1914-1941 Processed by Pat L. Walter. Louise M. Darling Biomedical Library History and Special Collections Division History and Special Collections Division UCLA 12-077 Center for Health Sciences Box 951798 Los Angeles, CA 90095-1798 Phone: 310/825-6940 Fax: 310/825-0465 Email: [email protected] URL: http://www.library.ucla.edu/libraries/biomed/his/ ©2008 The Regents of the University of California. All rights reserved. Arthur Monrad Johnson colletion 48 1 of botanical drawings 1914-1941 Descriptive Summary Title: Arthur Monrad Johnson colletion of botanical drawings, Date (inclusive): 1914-1941 Collection number: 48 Creator: Johnson, Arthur Monrad 1878-1943 Extent: 3 boxes (2.5 linear feet) Repository: University of California, Los Angeles. Library. Louise M. Darling Biomedical Library History and Special Collections Division Los Angeles, California 90095-1490 Abstract: Approximately 1000 botanical drawings, most in pen and black ink on paper, of the structural parts of angiosperms and some gymnosperms, by Arthur Monrad Johnson. Many of the illustrations have been published in the author's scientific publications, such as his "Taxonomy of the Flowering Plants" and articles on the genus Saxifraga. Dr. Johnson was both a respected botanist and an accomplished artist beyond his botanical subjects. Physical location: Collection stored off-site (Southern Regional Library Facility): Advance notice required for access. Language of Material: Collection materials in English Preferred Citation [Identification of item], Arthur Monrad Johnson colletion of botanical drawings (Manuscript collection 48). Louise M. Darling Biomedical Library History and Special Collections Division, University of California, Los Angeles. -
Pathogens Associated with Diseases. of Protea, Leucospermum and Leucadendron Spp
PATHOGENS ASSOCIATED WITH DISEASES. OF PROTEA, LEUCOSPERMUM AND LEUCADENDRON SPP. Lizeth Swart Thesis presented in partial fulfillment of the requirements for the degree of Master of Science in Agriculture at the University of Stellenbosch Supervisor: Prof. P. W. Crous Decem ber 1999 Stellenbosch University https://scholar.sun.ac.za DECLARATION 1, the undersigned, hereby declare that the work contained in this thesis is my own original work and has not previously in its entirety or in part been submitted at any university for a degree. SIGNATURE: DATE: Stellenbosch University https://scholar.sun.ac.za PATHOGENS ASSOCIATED WITH DISEASES OF PROTEA, LEUCOSPERMUM ANDLEUCADENDRONSPP. SUMMARY The manuscript consists of six chapters that represent research on different diseases and records of new diseases of the Proteaceae world-wide. The fungal descriptions presented in this thesis are not effectively published, and will thus be formally published elsewhere in scientific journals. Chapter one is a review that gives a detailed description of the major fungal pathogens of the genera Protea, Leucospermum and Leucadendron, as reported up to 1996. The pathogens are grouped according to the diseases they cause on roots, leaves, stems and flowers, as well as the canker causing fungi. In chapter two, several new fungi occurring on leaves of Pro tea, Leucospermum, Telopea and Brabejum collected from South Africa, Australia or New Zealand are described. The following fungi are described: Cladophialophora proteae, Coniolhyrium nitidae, Coniothyrium proteae, Coniolhyrium leucospermi,Harknessia leucospermi, Septoria prolearum and Mycosphaerella telopeae spp. nov. Furthermore, two Phylloslicla spp., telopeae and owaniana are also redecribed. The taxonomy of the Eisinoe spp. -
Protea Newsletter International
Protea Newsletter International An eNewsletter for the International Protea Industry and Scientific Community to Promote Communication, Cooperation and the Advancement of Science, Technology, Production and Marketing (and to promote the Hawaii Protea Industry) Volume 2, Number 1, April 2009 Editor: Ken Leonhardt Chairman, lnternational Protea Working Group (IPWG), International Society for Horticultural Science (ISHS) Professor, College of Tropical Agriculture and Human Resources, University of Hawaii, Honolulu, Hawaii USA Contents: A visit to South Africa ............................................................................. 2 International Horticulture Congress announcement .................................. 3 New protea poster from the University of Hawaii..................................... 4 A message from the Hawaii State Protea Growers Corporation ................ 4 A message from the Zimbabwe Protea Association .................................. 5 Protea nightlife ....................................................................................... 6 Proteaceae cultivar development and uses ................................................ 6 Sample costs to establish and produce protea ........................................... 6 Research funding awarded by the IPA...................................................... 7 New cultivar registrations......................................................................... 7 Recent books on Proteaceae .................................................................... -
Managing Watsonia Invasion in the Threatened Plant Communities of South-West Australia’S Clay-Based Wetlands
Managing Watsonia invasion in the threatened plant communities of south-west Australia’s clay-based wetlands. K. Brown, G. Paczkowska, B. Huston and N. Withnell. Department of Environment and Conservation, W.A. Email: [email protected] The Seasonal Clay-based Wetlands of South-west Australia While the majority of seasonal wetlands in south-west Australia are connected to the regional ground water, there are a series of wetlands found on clay substrates that rely solely on rainwater to fill. These wetlands are characterised by temporally overlapping suites of annual herbs that flower and set seed as the wetlands dry through spring. Over summer the clay substrates dry to impervious pans. The plant communities of clay-based wetlands comprise a flora of over 600. At least 50% are annual or perennial herbs, 16 occur only on the clay-pans and many are rare or restricted (Figure 1). The seasonally inundated clays that support these communities are relatively productive agricultural soils and many were cleared soon after settlement. Those that remained intact were largely located on the Swan Coastal Plain in close proximity to metropolitan Perth. In more recent years large areas have disappeared under urban development and today the plant communities of seasonal clay-based wetlands are amongst the most threatened in Western Australia. The small and fragmented nature of these remaining wetlands leaves them vulnerable to a range of threatening processes. In particular weed invasion, specifically by the South African geophyte Watsonia (Watsonia meriana var. bulbillifera), is a major threat. Watsonia can disperse via cormels (tiny corms that develop along the flowering stem at the end of the flowering season), into relatively undisturbed bushland remnants, forming dense stands that effectively displace the diverse herbaceous understorey (Figure 2). -
SIGCHI Conference Paper Format
EPC Exhibit 136-19.2 April 4, 2013 THE LIBRARY OF CONGRESS Dewey Section To: Caroline Kent, Chair Decimal Classification Editorial Policy Committee Cc: Members of the Decimal Classification Editorial Policy Committee Karl E. Debus-López, Chief, U.S. General Division From: Rebecca Green, Assistant Editor Giles Martin, Consulting Assistant Editor Dewey Decimal Classification OCLC Online Computer Library Center, Inc. Via: Michael Panzer, Editor in Chief Dewey Decimal Classification OCLC Online Computer Library Center, Inc Re: 583–584 Angiosperms: Proposal for discussion Immediate reuse of numbers Number Previous meaning New meaning 583.43 Minor orders of Hamamelididae Dilleniaceae 583.98 Campanulales Euasterids II Relocations From To Topic 583.2 583.68 Cytinaceae 583.2 583.83 Rafflesiaceae 583.22 583.24 Canellaceae, Winteraceae (winter's bark family), wild cinnamon 583.23 583.292 Amborellaceae 583.23 583.296 Austrobaileyaceae 583.23 583.298 Chloranthaceae [583.26] 583.25 Aristolochiaceae (birthwort family) 583.29 583.28 Ceratophyllaceae (hornworts) 583.3 583.296 Illiciaceae, Schisandraceae, magnolia vine, star anise [583.36] 583.975 Sarraceniaceae (New World pitcher plant family) 583.43 583.34 Eupteleaceae 583.43 583.393 Trochodendrales 583.43 583.395 Didymelaceae 1 583.43 583.44 Cercidiphyllaceae (katsura trees) 583.43 583.46 Casuarinaceae (beefwoods), Myricaceae (wax myrtles), bayberries, candleberry, sweet gale (bog myrtle) 583.43 583.73 Barbeyaceae 583.43 583.786 Leitneria 583.43 583.83 Balanopaceae 583.43 583.942 Eucommiaceae 583.44 -
Watsonia Workshop Proceedings of a Workshop Held at the Department of Conservation and Land Management (CALM) on August 4 1993
Plant Protection Quarterly Vol.8(3) 1993 77 Watsonia Workshop Proceedings of a workshop held at the Department of Conservation and Land Management (CALM) on August 4 1993. Organized by CALMs Science and Information Division and funded by the WA Roadside Conservation Committee. Editors: J. Patrick Pigott, WA Herbarium, Science and Information Division, Department of Conservation and Land Management, PO Box 104, Como, WA 6152, Australia. C. Mary Gray, Environmental Scientist, 24 Hillview Road, Mt Lawley, WA 6050, Australia. Western Australian species of Watsonia Neville Marchant, Acting Director, WA Herbarium, Science and Information Division, Department of Conservation and Land Management, PO Box 104, Como, WA 6152, Australia. Introduction How and when did watsonias come with settlers who arrived in Western Aus- Watsonia in Western Australia is an unu- to WA? tralia well after Georgiana Molloy. sual weed group in that there are about The characteristic of Watsonia which There are 52 species of Watsonia recog- eight species of the one genus in the State. brought so many species to this State is nized in a comprehensive treatment pub- A whole suite of species and their vari- that they have very attractive flowers. In lished in 1989 by Peter Goldblatt who has ants were introduced as garden plants in January 1830, en route to Fremantle, when reviewed all of the species described since the early days of the Swan River Colony. travellers to Western Australia called into the first one was published in 1754. The In their native habitats in southern Af- Cape Town, Georgiana Molloy spent £7 type of study made by Goldblatt, system- rica there are about 52 species of Watsonia, 17s 6d on seeds from the Cape, among atic research, entails the detailed exami- 34 of them occurring in the Cape area them oleanders, Cape gooseberries and a nation of herbarium material and litera- which has a similar climate to that of pink lily, the Watsonia. -
Plethora of Plants - Collections of the Botanical Garden, Faculty of Science, University of Zagreb (2): Glasshouse Succulents
NAT. CROAT. VOL. 27 No 2 407-420* ZAGREB December 31, 2018 professional paper/stručni članak – museum collections/muzejske zbirke DOI 10.20302/NC.2018.27.28 PLETHORA OF PLANTS - COLLECTIONS OF THE BOTANICAL GARDEN, FACULTY OF SCIENCE, UNIVERSITY OF ZAGREB (2): GLASSHOUSE SUCCULENTS Dubravka Sandev, Darko Mihelj & Sanja Kovačić Botanical Garden, Department of Biology, Faculty of Science, University of Zagreb, Marulićev trg 9a, HR-10000 Zagreb, Croatia (e-mail: [email protected]) Sandev, D., Mihelj, D. & Kovačić, S.: Plethora of plants – collections of the Botanical Garden, Faculty of Science, University of Zagreb (2): Glasshouse succulents. Nat. Croat. Vol. 27, No. 2, 407- 420*, 2018, Zagreb. In this paper, the plant lists of glasshouse succulents grown in the Botanical Garden from 1895 to 2017 are studied. Synonymy, nomenclature and origin of plant material were sorted. The lists of species grown in the last 122 years are constructed in such a way as to show that throughout that period at least 1423 taxa of succulent plants from 254 genera and 17 families inhabited the Garden’s cold glass- house collection. Key words: Zagreb Botanical Garden, Faculty of Science, historic plant collections, succulent col- lection Sandev, D., Mihelj, D. & Kovačić, S.: Obilje bilja – zbirke Botaničkoga vrta Prirodoslovno- matematičkog fakulteta Sveučilišta u Zagrebu (2): Stakleničke mesnatice. Nat. Croat. Vol. 27, No. 2, 407-420*, 2018, Zagreb. U ovom članku sastavljeni su popisi stakleničkih mesnatica uzgajanih u Botaničkom vrtu zagrebačkog Prirodoslovno-matematičkog fakulteta između 1895. i 2017. Uređena je sinonimka i no- menklatura te istraženo podrijetlo biljnog materijala. Rezultati pokazuju kako je tijekom 122 godine kroz zbirku mesnatica hladnog staklenika prošlo najmanje 1423 svojti iz 254 rodova i 17 porodica. -
Calibrated Chronograms, Fossils, Outgroup Relationships, and Root Priors: Re-Examining the Historical Biogeography of Geraniales
bs_bs_banner Biological Journal of the Linnean Society, 2014, 113, 29–49. With 4 figures Calibrated chronograms, fossils, outgroup relationships, and root priors: re-examining the historical biogeography of Geraniales KENNETH J. SYTSMA1,*, DANIEL SPALINK1 and BRENT BERGER2 1Department of Botany, University of Wisconsin, Madison, WI 53706, USA 2Department of Biological Sciences, St. John’s University, Queens, NY 11439, USA Received 26 November 2013; revised 23 February 2014; accepted for publication 24 February 2014 We re-examined the recent study by Palazzesi et al., (2012) published in the Biological Journal of the Linnean Society (107: 67–85), that presented the historical diversification of Geraniales using BEAST analysis of the plastid spacer trnL–F and of the non-coding nuclear ribosomal internal transcribed spacers (ITS). Their study presented a set of new fossils within the order, generated a chronogram for Geraniales and other rosid orders using fossil-based priors on five nodes, demonstrated an Eocene radiation of Geraniales (and other rosid orders), and argued for more recent (Pliocene–Pleistocene) and climate-linked diversification of genera in the five recognized families relative to previous studies. As a result of very young ages for the crown of Geraniales and other rosid orders, unusual relationships of Geraniales to other rosids, and apparent nucleotide substitution saturation of the two gene regions, we conducted a broad series of BEAST analyses that incorporated additional rosid fossil priors, used more accepted rosid ordinal -
The Effect of Slashing on the Growth of Watsonia Meriana (L.) Mill. Cv Bulbillifera in the Adelaide Hills
Plant Protection Quarterly Vol.8(3) 1993 85 ment of Conservation and Land Manage- ment and Mr. B. Lord of the Charles Sturt University, is gratefully acknowledged. The effect of slashing on the growth of Watsonia meriana (L.) Mill. cv bulbillifera in the Adelaide Hills References Australian Institute of Environmental Studies (1976). ‘The Threat of Weeds to P.A. Wilson and J.G. Conran, Department of Botany, University of Ad- Bushland, a Victorian Study’. (Inkata elaide, SA 5006, Australia. Press, Melbourne, Australia). Gillison, A.N. (1984). Gradient oriented sampling for resource surveys. In ‘Sur- Summary vey Methods for Nature Conservation’, In order to control Watsonia meriana cv suggested that it is merely a local sport ed. K. Myers and D.R. Margules. Vol 2. bulbillifera by slashing, it is necessary to which has been introduced into cultiva- Proceedings of Workshop 1983. prevent flowering and bulbil produc- tion. Currently Watsonia meriana cv Heddle, E.M. (1980). Effects of Changes in tion, as well as reduce the strength of the bulbillifera is considered a weed in Aus- Soil Moisture on the Nature Vegetation corm. The effects of slashing at a tralia, Mauritius, Réunion (Goldblatt of the Northern Swan Coastal Plain, number of heights, and at a range of 1989) and New Zealand (Parsons and Western Australia. Bulletin 92, Forests times throughout the plant’s life-history Cuthbertson 1992). The earliest record in Department of Western Australia. were investigated both for mature South Australia dates from 1842 at Lamont, D. A. (1987). Vegetation Survey plants and those derived from bulbils. Camden Park, Adelaide (Parsons and of Serpentine National Park, Map Plants derived from bulbils require Cuthbertson 1992). -
Honeybush, Melianthus Major
A Horticulture Information article from the Wisconsin Master Gardener website, posted 26 Feb 2016 Honeybush, Melianthus major One of six species in the genus, Melianthus major is an evergreen shrub in the family Melianthaceae native to drier areas of the southwestern Cape in South Africa. It is easy to grow, so has been used as a garden plant worldwide for its attractive foliage. With large blue, deeply incised leaves, honeybush makes a dramatic addition to containers or seasonal plantings. Although it is only hardy to zone 8, it is fast-growing so can be used as seasonal ornamental in colder areas. In the wild it is a winter grower, going dormant in the summer, but will grow Melianthus major is a tender shrub grown well in the relatively cool for its attractive foliage. summers of the Midwest. Honeybush received the Royal Horticultural Society’s Award of Garden Merit in 1993. Honeybush is used as a seasonal ornamental in cool climates. In its native habitat or other mild climates honeybush grows up to 10 feet tall and spreads by suckering roots (and has become an invasive plant in some areas, such as parts of New Zealand). It is naturally a sparsely branched shrub with a sprawling habit. But it looks best when pruned hard and is often treated more like a perennial than a Melianthus major in habitat in the Cedarberg Mountains shrub when near Clanwilliam, South Africa. used as an ornamental. When grown as an annual seasonally in cold climates it remains much shorter, but the leaves are still as large. -
Wild Watsonia (DPI Vic)
May 2000 Wild watsonia LC0251 Keith Turnbull Research Institute, Frankston ISSN 1329-833X This Landcare Note describes the weed Wild watsonia, West Gippsland, the central highlands and the Geelong Watsonia meriana var. bulbillifera, and related species region. and outlines options for its management. Description Common Name An erect perennial herb forming large clumps; similar to Wild watsonia, bulbil watsonia gladiolus, with strap-like leaves, slender reddish flowering stems 0.5 to 2 m high, pink, orange or red flowers, Botanical Name underground corms and clusters of small corms (known as Watsonia meriana (L.) Miller var. bulbillifera (J.W. bulbils or cormils) on the stems. Leaves and flowering Matthews & L. Bolus) D.A. Cooke heads are produced annually. Family Iridaceae (Iris family) Status Under the Catchment and Land Protection Act, wild watsonia is a Regionally Controlled Weed in the Glenelg, Corangamite, Port Phillip West, Port Phillip East, North East, East Gippsland and West Gippsland Regions. Land owners in areas where wild watsonia is Regionally Controlled must take all reasonable steps to control it and prevent its spread on their land and the roadsides which adjoin their land. Wild watsonia is mainly a weed of roadsides, railway reserves, the edges of water courses, open woodland, unimproved pastures and neglected areas. Origin and Distribution Native to South Africa, wild watsonia was originally introduced to Australia as a garden ornamental. It was considered naturalised in Victoria by 1907 and was spread widely in the 1940s as a fashionable garden plant. It is also a weed in New Zealand and on the Indian Ocean islands of Mauritius and Reunion.