Genomics of Speciation and Hybridisation in the Macaronesian Endemic Genus Argyranthemum (Asteraceae; Anthemideae)

Total Page:16

File Type:pdf, Size:1020Kb

Genomics of Speciation and Hybridisation in the Macaronesian Endemic Genus Argyranthemum (Asteraceae; Anthemideae) University of Southampton Research Repository Copyright © and Moral Rights for this thesis and, where applicable, any accompanying data are retained by the author and/or other copyright owners. A copy can be downloaded for personal non-commercial research or study, without prior permission or charge. This thesis and the accompanying data cannot be reproduced or quoted extensively from without first obtaining permission in writing from the copyright holder/s. The content of the thesis and accompanying research data (where applicable) must not be changed in any way or sold commercially in any format or medium without the formal permission of the copyright holder/s. When referring to this thesis and any accompanying data, full bibliographic details must be given, e.g. Thesis: Author (Year of Submission) "Full thesis title", University of Southampton, name of the University Faculty or School or Department, PhD Thesis, pagination. Data: Author (Year) Title. URI [dataset] University of Southampton Faculty of Environmental and Life Sciences School of Biological Sciences Genomics of speciation and hybridisation in the Macaronesian endemic genus Argyranthemum (Asteraceae; Anthemideae) by Oliver William White ORCID ID 0000-0001-6444-0310 Thesis for the degree of Doctor of Philosophy (PhD) January 2018 University of Southampton Abstract Faculty of Environmental and Life Sciences School of Biological Sciences Thesis for the degree of Doctor of Philosophy (PhD) Genomics of Adaptation and Speciation in the Macaronesian endemic genus Argyranthemum (Asteraceae; Anthemideae) By Oliver William White The aim of this thesis was to investigate the evolutionary processes responsible for the diversification of the Macaronesian endemic genus Argyranthemum Webb (Asteraceae), using Next Generation Sequencing (NGS) methodologies. Transcriptome sequences from Macaronesian endemic genera, including Argyranthemum, were used to design primers for simple sequence repeat (SSR) markers. This was necessary to overcome the lack of genetic variation commonly observed in Macaronesian endemic lineages. Morphological, ecological and genetic analyses were then employed to address several unanswered questions surrounding the origin of two putative homoploid hybrid species, A. sundingii and A. lemsii. Specifically, each of the homoploid hybrid species are shown to be morphologically distinct, ecologically separated from their parental progenitors and independently derived from the same parental species. The hypothesis of independent homoploid hybrid speciation events facilitated by ecological isolation is supported by these results. Genotyping-By-Sequencing (GBS) was employed to investigate the processes associated with the diversification of Argyranthemum. The results of the phylogenetic and hybridisation analyses reveal that geographical isolation, habitat shifts and hybridisation have all contributed to the diversification of the group. In addition, morphological convergence has contributed to the diversification of the group. A study focussed on A. broussonetii reveals that the two subspecies (subsp. broussonetii and subsp. gomerensis) are not closely related. Their morphological similarity is likely due to convergence as a result of their occupation of similar habitats. Finally, comparative transcriptomics was used to identify differentially expressed genes with a potential role in the ecological isolation and origin of the homoploid hybrid species in Argyranthemum. Although independently derived, A. sundingii and A. lemsii appear to have converged on similar expression phenotypes, likely a consequence of adaptation to similar habitats. NGS methodologies have revolutionised our ability to study the process of speciation in recently evolved lineages. Argyranthemum is the largest endemic genus of the Macaronesian archipelagos and an ideal model for investigating the processes responsible for diversification in oceanic island endemic lineages. Table of Contents Table of Contents Table of Contents ......................................................................................................... ii List of Tables ............................................................................................................... vii List of Figures ............................................................................................................... ix List of Appendix Tables ............................................................................................... xiv List of Appendix Figures .............................................................................................. xix List of Accompanying Materials ................................................................................. xxv Research Thesis: Declaration of Authorship ............................................................. xxvii Acknowledgements .................................................................................................. xxix Abbreviations ........................................................................................................... xxxi Chapter 1 Introduction............................................................................................... 1 Summary .................................................................................................................... 1 Speciation ................................................................................................................... 1 Hybridisation .............................................................................................................. 1 Hybrid speciation ....................................................................................................... 2 1.4.1 Frequency of polyploid and homoploid hybrid speciation ................................ 3 1.4.2 Models of homoploid hybrid speciation ............................................................ 5 Oceanic archipelagos as natural laboratories for studying evolution ....................... 8 Macaronesia as a model for flowering plant evolution ............................................. 8 Argyranthemum ....................................................................................................... 11 Thesis aims ............................................................................................................... 15 Methods ................................................................................................................... 15 Thesis outline ........................................................................................................... 19 Chapter 2 Transcriptome Sequencing and Simple Sequence Repeat Marker Development for Three Macaronesian Endemic Plant Species ................... 23 Abstract .................................................................................................................... 24 Introduction ............................................................................................................. 24 Methods and Results ............................................................................................... 27 Conclusions .............................................................................................................. 33 ii Table of Contents Chapter 3 Independent Homoploid Hybrid Speciation events in the Macaronesian endemic genus Argyranthemum ............................................................... 37 Abstract .................................................................................................................... 38 Introduction .............................................................................................................. 38 Materials and Methods ............................................................................................ 43 3.3.1 Sampling ........................................................................................................... 43 3.3.2 Morphological analysis ..................................................................................... 46 3.3.3 Ecological niche modelling ............................................................................... 46 3.3.4 DNA extraction ................................................................................................. 47 3.3.5 Polymerase Chain Reaction (PCR) of SSRs ....................................................... 48 3.3.6 Population genetic analyses of nuclear SSRs ................................................... 48 3.3.7 Haplotype analysis of chloroplast SSRs ............................................................ 48 3.3.8 Processing of GBS SNP data ............................................................................. 49 3.3.9 Genome-wide SNP analysis .............................................................................. 49 3.3.10 Testing independent hybrid origins with ABC .................................................. 50 Results ...................................................................................................................... 51 3.4.1 Morphological analyses .................................................................................... 51 3.4.2 Ecological niche modelling ............................................................................... 52 3.4.3 Population genetic analyses of nuclear SSRs ................................................... 56 3.4.4 Haplotype analysis of chloroplast SSRs ............................................................ 57 3.4.5 Processing of GBS
Recommended publications
  • Nature & Biodiversity
    Nature & Biodiversity LIFE PROJECTS 2013 LIFE Nature Environment Introduction to LIFE+ Nature & Biodiversity 2013 LIFE+ Nature & Biodiversity 2013: Commission funds 92 new projects in 25 countries with €133.9 million The European Commission has approved funding for 92 new projects in 25 countries under the LIFE+ Nature & Biodiversity programme 2013. These projects will demonstrate new methods and techniques for dealing with a wide range of problems affecting species, habitats and biodiversity in Europe. The projects are led by ‘beneficiaries’, or project promoters, based in Austria, Belgium, Bulgaria, Cyprus, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Ireland, Italy, Latvia, Lithuania, Luxembourg, the Netherlands, Poland, Portugal, Romania, Slovak Republic, Slovenia, Spain, Sweden and the UK. They represent a total investment of €233.9 million, of which the EU will provide some €133.9 million. LIFE Nature & Biodiversity in 2013 LIFE+ Nature & Biodiversity is one of three the- matic components under the LIFE programme. The LIFE+ Nature & Biodiversity projects aim to improve other two components, LIFE+ Environment Policy & the conservation status of endangered species and Biodiversity and LIFE+ Information & Communication, habitats. Of the 342 proposals received under the focus respectively on supporting pilot projects that 2013 call for proposals, the Commission selected 92 contribute to the development of innovative policy projects for funding. These projects will be carried ideas, technologies, methods and instruments; and out by partnerships of conservation bodies, govern- on disseminating information and raising the profile ment authorities and other parties located across 25 of environmental issues, or providing training and Member States. In total, they represent an investment awareness-raising for the prevention of forest fires.
    [Show full text]
  • The Vegetation of Robinson Crusoe Island (Isla Masatierra), Juan
    The Vegetation ofRobinson Crusoe Island (Isla Masatierra), Juan Fernandez Archipelago, Chile1 Josef Greimler,2,3 Patricio Lopez 5., 4 Tod F. Stuessy, 2and Thomas Dirnbiick5 Abstract: Robinson Crusoe Island of the Juan Fernandez Archipelago, as is the case with many oceanic islands, has experienced strong human disturbances through exploitation ofresources and introduction of alien biota. To understand these impacts and for purposes of diversity and resource management, an accu­ rate assessment of the composition and structure of plant communities was made. We analyzed the vegetation with 106 releves (vegetation records) and subsequent Twinspan ordination and produced a detailed colored map at 1: 30,000. The resultant map units are (1) endemic upper montane forest, (2) endemic lower montane forest, (3) Ugni molinae shrubland, (4) Rubus ulmifolius­ Aristotelia chilensis shrubland, (5) fern assemblages, (6) Libertia chilensis assem­ blage, (7) Acaena argentea assemblage, (8) native grassland, (9) weed assemblages, (10) tall ruderals, and (11) cultivated Eucalyptus, Cupressus, and Pinus. Mosaic patterns consisting of several communities are recognized as mixed units: (12) combined upper and lower montane endemic forest with aliens, (13) scattered native vegetation among rocks at higher elevations, (14) scattered grassland and weeds among rocks at lower elevations, and (15) grassland with Acaena argentea. Two categories are included that are not vegetation units: (16) rocks and eroded areas, and (17) settlement and airfield. Endemic forests at lower elevations and in drier zones of the island are under strong pressure from three woody species, Aristotelia chilensis, Rubus ulmifolius, and Ugni molinae. The latter invades native forests by ascending dry slopes and ridges.
    [Show full text]
  • Phytotaxa 5: 31–46 (2010) the Fate of Robinsonia (Asteraceae): Sunk In
    Phytotaxa 5: 31–46 (2010) ISSN 1179-3155 (print edition) www.mapress.com/phytotaxa/ Article PHYTOTAXA Copyright © 2010 • Magnolia Press ISSN 1179-3163 (online edition) The fate of Robinsonia (Asteraceae): sunk in Senecio, but still monophyletic? PIETER B. PELSER1, ERIC J. TEPE2,3, AARON H. KENNEDY4,5 & LINDA E. WATSON4 1University of Canterbury, School of Biological Sciences, Private Bag 4800, Christchurch 8140, New Zealand; e-mail: [email protected]. 2University of Cincinnati, Department of Biological Sciences, 614 Rieveschl Hall, Cincinnati, Ohio 45221, USA. 3University of Utah, Department of Biology, 257 South 1400 East, Salt Lake City, Utah 84112, USA. 4Oklahoma State University, Department of Botany, 106 Life Sciences East, Stillwater, Oklahoma 74078–3013, USA. 5Miami University, Department of Botany, 316 Pearson Hall, Oxford, Ohio 45056, USA. Abstract Robinsonia is a genus of eight species and is endemic to the Juan Fernández Islands. Previous studies based on ITS phylogenies place Robinsonia deeply nested within Senecio, however its monophyly remains uncertain. In this paper, we use phylogenies reconstructed from plastid, ITS-ETS, and combined data to test its monophyly. Plastid phylogenies support Robinsonia as monophyletic, whereas ITS-ETS trees suggest that Robinsonia berteroi may be more closely related to a South American clade of Senecio species rather than to the remaining Robinsonia species. Maximum parsimony and Bayesian inference analyses of the combined data are congruent with the plastid trees, whereas maximum likelihood analyses are congruent with the ITS-ETS data. Nodal support for either hypothesis is generally low, and Shimodaira-Hasegawa tests in which Robinsonia was either constrained to be monophyletic or to be non-monophyletic showed that these trees do not have significantly lower likelihood scores than trees from unconstrained analyses.
    [Show full text]
  • Proceedings Amurga Co
    PROCEEDINGS OF THE AMURGA INTERNATIONAL CONFERENCES ON ISLAND BIODIVERSITY 2011 PROCEEDINGS OF THE AMURGA INTERNATIONAL CONFERENCES ON ISLAND BIODIVERSITY 2011 Coordination: Juli Caujapé-Castells Funded and edited by: Fundación Canaria Amurga Maspalomas Colaboration: Faro Media Cover design & layout: Estudio Creativo Javier Ojeda © Fundación Canaria Amurga Maspalomas Gran Canaria, December 2013 ISBN: 978-84-616-7394-0 How to cite this volume: Caujapé-Castells J, Nieto Feliner G, Fernández Palacios JM (eds.) (2013) Proceedings of the Amurga international conferences on island biodiversity 2011. Fundación Canaria Amurga-Maspalomas, Las Palmas de Gran Canaria, Spain. All rights reserved. Any unauthorized reprint or use of this material is prohibited. No part of this book may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage and retrieval system without express written permission from the author / publisher. SCIENTIFIC EDITORS Juli Caujapé-Castells Jardín Botánico Canario “Viera y Clavijo” - Unidad Asociada CSIC Consejería de Medio Ambiente y Emergencias, Cabildo de Gran Canaria Gonzalo Nieto Feliner Real Jardín Botánico de Madrid-CSIC José María Fernández Palacios Universidad de La Laguna SCIENTIFIC COMMITTEE Juli Caujapé-Castells, Gonzalo Nieto Feliner, David Bramwell, Águedo Marrero Rodríguez, Julia Pérez de Paz, Bernardo Navarro-Valdivielso, Ruth Jaén-Molina, Rosa Febles Hernández, Pablo Vargas. Isabel Sanmartín. ORGANIZING COMMITTEE Pedro
    [Show full text]
  • Echium Candicans
    DEPARTMENT OF PRIMARY INDUSTRIES Pride of Madeira Echium candicans Victorian Alert Weed Fact Sheet Plant biology Type of weed: Garden escape. Lifeform: Semi-woody biennial herb. Description: Stems: Pride of Madeira is a much-branched plant that grows to more than three metres high (PIER 2004; Webb et al 2004). The stem, fl owers and leaves of the plant are covered with fi ne, bristly, whitish coloured hairs (Spencer 2005). The species initially grows as a rosette at the base with leaves alternately arranged on the stem (Richardson et al 2006). Mature plants have longer stems with whitish papery bark and stout branches, with leaves growing more towards the stem’s apex (Bennett 2003). Image: RG & FJ Richardson - www.weedinfo.com.au Image: RG & FJ Richardson - www.weedinfo.com.au Image: RG & FJ Richardson Leaves: Leaves are usually 200 mm long and 55 mm wide and are an ellipsoid or lance shape. Botanical name: Echium candicans. Leaves have veins which are very prominent on Synonyms: Echium fastuosum. the lower surface and the leaves are densely covered with bristly hairs that appear grey or Common name: Pride of Madeira. silvery (Spencer 2005; Webb et al 2004). Alternatives: Tower of jewels, star of Madeira, bugloss. Family: Boraginaceae. Flowers: E. candicans is a monocarpic shrub, Relevant relatives: There are over 40 species in the Echium meaning it only fl owers once before dying genus and 30 are listed as being weedy by the Global Compendium (Bennett 2003). Each branch can reach up to of Weeds (Randall 2001). Closely related plants to pride of Madeira 3.5 metres tall with the columnar fl ower spike include Echium wildpretii (tower of jewels) and Echium pininana reach lengths of 200-400 mm (Webb et al 2004).
    [Show full text]
  • (Glebionis Carinatum) and Crown Daisy (G. Coronaria) Using Ovule Culture
    Plant Biotechnology 25, 535–539 (2008) Original Paper Intergeneric hybridization of marguerite (Argyranthemum frutescens) with annual chrysanthemum (Glebionis carinatum) Special Issue and crown daisy (G. coronaria) using ovule culture Hisao Ohtsuka1,*, Zentaro Inaba2 1 Shizuoka Research Institute of Agriculture and Forestry, Iwata, Shizuoka 438-0803, Japan; 2 Shizuoka Research Institute of Agriculture and Forestry/Izu Agricultural Research Center, Higashiizu, Shizuoka 413-0411, Japan * E-mail: [email protected] Tel: ϩ81-538-36-1553 Fax: ϩ81-538-37-8466 Received August 20, 2008; accepted November 10, 2008 (Edited by T. Handa) Abstract To diversify flower color and growth habit of marguerite (Argyranthemum frutescens), intergeneric crossing was carried out using marguerite as the seed parent and annual chrysanthemum (Glebionis carinatum) or crown daisy (G. coronaria) as the pollen parent. After cross-pollination, seedlings were successfully obtained by applying ovule culture. Ovule culture-derived plants showed novel characteristics in flower shape and color (orange, reddish brown, or wisteria pink) that are not observed in marguerite. Some also showed novel flowering habits such as perpetual flowering. The results indicate that these ovule culture-derived plants were intergeneric hybrids and that the hybrids obtained in the present study may be useful for further breeding of marguerite, especially for introducing valuable characteristics such as a wide range of flower color. Key words: Argyranthemum, Glebionis, intergeneric hybridization, ovule culture. Marguerite (Argyranthemum frutescens) is a perennial germplasm for the breeding of marguerite, but most of plant native to the Canary Islands, Spain (Bramwell et them have white flowers and diversity in flower color and al. 2001) and Madeira, Portugal (Press et al.
    [Show full text]
  • Achillea Millefolium L
    SPECIES Achillea millefolium L. Tribe: Anthemideae Family: Asteraceae USDA CODE: Order: Asterales Subclass: Asteridae ACMI2 Class: Magnoliopsida FEIS CODE: D. Kopp 2009 San Bernardino Mtns. ACHMIL A. Montalvo 2010 Monterey Co. coast; tripinnate, pubescent form A. Montalvo 2010 Monterey Co. Subspecific taxa JepsonOnline 2010 and FNA 2010 do not recognize subspecific taxa of A. millefolium . The USDA PLANTS database (viewed Sept. 24, 2010) recognizes 12 subspecific taxa as occurring in North America: Taxon introduced and naturalized in North America (thought to be native to Europe): NRCS CODES: 1. A. m. L. var. millefolium 1. ACMIM2 Taxa native to California: 2. ACMIA 2. A. m. L. var. alpicola (Rydb.) Garrolt 3. ACMIA2 3. A. m. L. var. arenicola (Heller) Nobs 4. ACMIC 4. A. m. L. var. californica (Pollard) Jepson 5. ACMIG 5. A. m. L. var. gigantea (Pollard) Nobs 6. ACMIO 6. A. m. L. var. occidentalis (DC.) Hyl. 7. ACMIP 7. A. m. L. var. pacifica (Rydb.) G.N.Jones 8. ACMIP2 8. A. m. L. var. puberula (Rydb.) Nobs. 9. ACMIB Additional taxa outside California (mostly northerly): 10. ACMIL2 9. A. m. L. var. borealis (Bong.) Farw. 11. ACMIM5 10. A. m. L. var. litoralis (Ehrend.) Nobs 12. ACMIN 11. A. m. L. var. megacephala (Raup) Bolvin. 12. A. m. L. var. nigrescens E. Mey. Synonyms (USDA PLANTS) 2. A. alpicola (Rydb.) Rydb.; A. fusca Rydb.; A. lanulosa Nutt. ssp. alpicola (Rydb.) D.D. Keck; A. l. Nutt. var. alpicola Rydb.; A. m. L. var. fusca (Rydb.) G.N. Jones; A. subalpina Greene Taxa numbered as above 3.
    [Show full text]
  • Conserving Europe's Threatened Plants
    Conserving Europe’s threatened plants Progress towards Target 8 of the Global Strategy for Plant Conservation Conserving Europe’s threatened plants Progress towards Target 8 of the Global Strategy for Plant Conservation By Suzanne Sharrock and Meirion Jones May 2009 Recommended citation: Sharrock, S. and Jones, M., 2009. Conserving Europe’s threatened plants: Progress towards Target 8 of the Global Strategy for Plant Conservation Botanic Gardens Conservation International, Richmond, UK ISBN 978-1-905164-30-1 Published by Botanic Gardens Conservation International Descanso House, 199 Kew Road, Richmond, Surrey, TW9 3BW, UK Design: John Morgan, [email protected] Acknowledgements The work of establishing a consolidated list of threatened Photo credits European plants was first initiated by Hugh Synge who developed the original database on which this report is based. All images are credited to BGCI with the exceptions of: We are most grateful to Hugh for providing this database to page 5, Nikos Krigas; page 8. Christophe Libert; page 10, BGCI and advising on further development of the list. The Pawel Kos; page 12 (upper), Nikos Krigas; page 14: James exacting task of inputting data from national Red Lists was Hitchmough; page 16 (lower), Jože Bavcon; page 17 (upper), carried out by Chris Cockel and without his dedicated work, the Nkos Krigas; page 20 (upper), Anca Sarbu; page 21, Nikos list would not have been completed. Thank you for your efforts Krigas; page 22 (upper) Simon Williams; page 22 (lower), RBG Chris. We are grateful to all the members of the European Kew; page 23 (upper), Jo Packet; page 23 (lower), Sandrine Botanic Gardens Consortium and other colleagues from Europe Godefroid; page 24 (upper) Jože Bavcon; page 24 (lower), Frank who provided essential advice, guidance and supplementary Scumacher; page 25 (upper) Michael Burkart; page 25, (lower) information on the species included in the database.
    [Show full text]
  • Functional Ecology Published by John Wiley & Sons Ltd on Behalf of British Ecological Society
    Received: 22 June 2017 | Accepted: 14 February 2018 DOI: 10.1111/1365-2435.13085 RESEARCH ARTICLE Insular woody daisies (Argyranthemum, Asteraceae) are more resistant to drought- induced hydraulic failure than their herbaceous relatives Larissa C. Dória1 | Diego S. Podadera2 | Marcelino del Arco3 | Thibaud Chauvin4,5 | Erik Smets1 | Sylvain Delzon6 | Frederic Lens1 1Naturalis Biodiversity Center, Leiden University, Leiden, The Netherlands; 2Programa de Pós-Graduação em Ecologia, UNICAMP, Campinas, São Paulo, Brazil; 3Department of Plant Biology (Botany), La Laguna University, La Laguna, Tenerife, Spain; 4PIAF, INRA, University of Clermont Auvergne, Clermont-Ferrand, France; 5AGPF, INRA Orléans, Olivet Cedex, France and 6BIOGECO INRA, University of Bordeaux, Cestas, France Correspondence Frederic Lens Abstract Email: [email protected] 1. Insular woodiness refers to the evolutionary transition from herbaceousness to- Funding information wards derived woodiness on (sub)tropical islands and leads to island floras that have Conselho Nacional de Desenvolvimento a higher proportion of woody species compared to floras of nearby continents. Científico e Tecnológico, Grant/Award Number: 206433/2014-0; French National 2. Several hypotheses have tried to explain insular woodiness since Darwin’s original Agency for Research, Grant/Award Number: observations, but experimental evidence why plants became woody on islands is ANR-10-EQPX-16 and ANR-10-LABX-45; Alberta Mennega Stichting scarce at best. 3. Here, we combine experimental measurements of hydraulic failure in stems (as a Handling Editor: Rafael Oliveira proxy for drought stress resistance) with stem anatomical observations in the daisy lineage (Asteraceae), including insular woody Argyranthemum species from the Canary Islands and their herbaceous continental relatives. 4. Our results show that stems of insular woody daisies are more resistant to drought- induced hydraulic failure than the stems of their herbaceous counterparts.
    [Show full text]
  • Canary Islands, Spain
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Stapfia Jahr/Year: 2013 Band/Volume: 0099 Autor(en)/Author(s): van den Boom P.P.G. Artikel/Article: Further New or Interesting Lichens and Lichenicolous Fungi of Tenerife (Canary Islands, Spain) 52-60 © Biologiezentrum Linz/Austria; download unter www.biologiezentrum.a VAN DEN BOOM • New lichens and lichenicolous fungi from Tenerife STAPFIA 99 (2013): 52–60 Further New or Interesting Lichens and Lichenicolous Fungi of Tenerife (Canary Islands, Spain) P.P.G. VAN DEN BOOM* Abstract: In the presented annotated list, 88 taxa of lichens and lichernicolous fungi are additional records for the island Tenerife, of which 19 are new to the Canary Islands: Abrothallus aff. secedens, Anisomeridium robusta, Arthonia elegans, Buellia abstracta, B. fusca, Caloplaca phlogina, Endococcus pseudocarpus, Lecania brunonis, Lecanographa lyncea, Lecanora persimilis, L. subsaligna, Physcia atrostriata, P. sore- diosa, Plectocarpon nashii, Porina hoehneliana, Protopannaria pezizoides, Sarcopyrenia bacillosa, Scoli- ciosporum gallurae and Toninia talparum. Furthermore Bacidina pseudoisidiata and Micarea canariensis are newly described. Zusammenfassung: Eine annotierte Liste von 88 Flechten und lichenikolen Pilzen wird präsentiert mit wei- teren Funden für die Insel Teneriffa, von denen 19 neu für die Kanarischen Inseln sind: Abrothallus secedens, Anisomeridium robusta, Arthonia elegans, Buellia abstracta, B. fusca, Caloplaca phlogina, Endococcus pseudocarpus, Lecania brunonis, Lecanographa lyncea, Lecanora persimilis, L. subsaligna, Physcia atros- triata, P. sorediosa, Plectocarpon nashii, Porina hoehneliana, Protopannaria pezizoides, Sarcopyrenia bacil- losa, Scoliciosporum gallurae und Toninia talparum. Weiters werden Bacidina pseudoisidiata und Micarea canariensis neu beschrieben. Key words: diversity in lichens and lichenicolous fungi, new species, new records, ecology, Macaronesia.
    [Show full text]
  • Restoration Fremontia Vol
    VOL. 48, NO.1 NOVEMBER 2020 RESTORATION FREMONTIA VOL. 48, NO.1, NOVEMBER 2020 FROM THE EDITORS What kind of world do we want, and how do we get there? These are Protecting California’s native flora since the questions that drive restoration, the central theme of this issue. They 1965 are also the questions that have led the California Native Plant Society Our mission is to conserve California’s native leadership to initiate an important change to this publication, which will plants and their natural habitats, and increase take effect in the spring 2021 issue. understanding, appreciation, and horticultural The name of this publication, Fremontia, has been a point of concern use of native plants. and discussion since last winter, when members of the CNPS leader- ship learned some disturbing facts about John C. Frémont, from whom Copyright ©2020 dozens of North American plants, including the flannelbush plant California Native Plant Society Fremontodendron californicum, derive their names. According to multi- ISSN 0092-1793 (print) ple sources, including the State of California Native American Heritage ISSN 2572-6870 (online) Commission, Frémont was responsible for brutal massacres of Native Americans in the Sacramento Valley and Klamath Lake. As a consequence, The views expressed by the authors in this issue do not necessarily represent policy or proce- the CNPS board of directors voted unanimously to rename Fremontia, a dure of CNPS. process slated for completion by the end of 2020. The decision to rename Fremontia, a name that dates back to the ori- gins of the publication in 1973, is about the people who have been—and 2707 K Street, Suite 1 continue to be—systematically excluded from the conservation commu- Sacramento, CA 95816-5130 nity.
    [Show full text]
  • Introduced Weed Species
    coastline Garden Plants that are Known to Become Serious Coastal Weeds SOUTH AUSTRALIAN COAST PROTECTION BOARD No 34 September 2003 GARDEN PLANTS THAT HAVE BECOME Vegetation communities that originally had a diverse SERIOUS COASTAL WEEDS structure are transformed to a simplified state where Sadly, our beautiful coastal environment is under threat one or several weeds dominate. Weeds aggressively from plants that are escaping from gardens and compete with native species for resources such as becoming serious coastal weeds. Garden escapees sunlight, nutrients, space, water, and pollinators. The account for some of the most damaging environmental regeneration of native plants is inhibited once weeds are weeds in Australia. Weeds are a major environmental established, causing biodiversity to be reduced. problem facing our coastline, threatening biodiversity and the preservation of native flora and fauna. This Furthermore, native animals and insects are significantly edition of Coastline addresses a selection of common affected by the loss of indigenous plants which they rely garden plants that are having significant impacts on our on for food, breeding and shelter. They are also affected coastal bushland. by exotic animals that prosper in response to altered conditions. WHAT ARE WEEDS? Weeds are plants that grow where they are not wanted. Weeds require costly management programs and divert In bushland they out compete native plants that are then resources from other coastal issues. They can modify excluded from their habitat. Weeds are not always from the soil and significantly alter dune landscapes. overseas but also include native plants from other regions in Australia. HOW ARE WEEDS INTRODUCED AND SPREAD? WEEDS INVADE OUR COASTLINE… Weeds are introduced into the natural environment in a Unfortunately, introduced species form a significant variety of ways.
    [Show full text]