The Tesla Coil to the Public the Authors Hope That They Have filled a Long Felt Vacancy in The

Total Page:16

File Type:pdf, Size:1020Kb

The Tesla Coil to the Public the Authors Hope That They Have filled a Long Felt Vacancy in The - PLATE IV. Motor driven Interru t r p e . The Electro l tic Rectifier. PLATE V . y P LATE ” II . Trans ormer for 1 2 A a ratus f pp . ” 1 2 Coil . T H E T E S L A H I G H F R E Q U E N C Y C O I L I TS C O NS TR U C TI O N A ND US E S BY 0 , Q GEOR GE F F HALLER AND ELMER TILING CUNNINGHAM 56 ILLUS TRATIONS NE W Y O R K A R A D M P D . V N NO S T N C O A NY 2 M Y A D 0 2 ' 3 URRA N 19 1 7 WARREN Sr s . o ri ht 1 1 0 b C py g , 9 , y D AN N S N NY . V O TRA D COMPA ” i c . P 1 om ete 1 2 A aratus . F ront s ie e LATE . C pl pp p INTRODUCTION IN presenting this b ook on the Tesla coil to the public the authors hope that they have filled a long felt vacancy in the practical library of science . No attempt has been made to n give a mathematical explanatio of the oscillation transformer, a s h- and other p rt of the hig frequency apparatus, for the simple reason that the theory is too complex , and when obtained of no practical use . Neither have the authors tried to lead the amateur, who is just learning how to string bells and connect batteries , from the elements of the galvanic - cell up to the working of a high potential , alternating cur m ff rent, but have merely ade an e ort to place in the hands of advanced amateurs in electrical science a practical working - manual on the construction of high frequency coils , now so useful in scientific investigation . The attention of the authors was first called to the Tesla coil when they were fortunate enough to be given the use of “ ” 1 the 7 standard coil described in the last chapter of this on book . A systematic line of experiments was carried with V } efiec ts it, in order to study the of a change in the constants k 3of the various circuits . All the mechanical and electrical ‘ 3 5 details of construction were carefully worked out, and the authors finally decided to design and construct a larger coil . The coil, as first constructed, was a decided failure, due to vi Introduction too small a condenser capacity . For about five months they further experimented on the details of construction and ” 1 T finally arrived at the 2 coil described in this book . his emcient coil they feel assured is as as can be made . It is especially designed to give a high - frequency discharge of T k great volume . his latter fact ma es it useful for wireless telegraphy . 0 . In conclusion they have to thank Mr . G . Mitchell for many suggestions and for the kindly interest he has taken in T this work. hey feel that without his help the writing of this little book would have been impossible . CONTENTS CHAPTER I GENER SURVEY . AL II THE T NS F E . RA ORM R III THE N ENSE . CO D R IV THE OS N T NS F R E . CILLATIO RA O M R THE IN E U E V . T RR PT R VI THE NS U N OR THE XE S . CO TR CTIO BO VII ASSE N . MBLI G III THE Y THE Con. V . OR OF IX USE S THE Con. OF X D E NS NS OP ’ S N . IM IO 7 TA DARD COIL APPE NDIX LIST OF PLATES FACING PAGE ’ Complete 1 2 Apparatus F rontispiece ’ Transformer for 1 2 Apparatus ’ O sc illation T ransformer and Glass for Condenser of 1 2 Coil Motor-driven Inte rrupter The Elec t rolytic Rec tifier ’ Discharge from the 1 2 Coil ’ The 7 Standard Apparatus Li st of Figures High -tension B ushing O sc illators and Standards Wiring D iagram Waves on Wires ’ P rimary and Core of Transformer of 7 Coil ’ Secondary B ob b in of Transformer of 7 Coil Plate and Frame of Condense r ’ O sc illation T ransformer of 7 Apparatus ’ Box for 7 Apparatus W 1r1ug Diagram ” O sc illators and Standards for 7 Apparatus O sc illation T ransfo rmer of Small Coil Completed Transformer of Small Coil P rimary Spark-gap Wiring Diagram Wiring Diagram TH E TE S LA C O IL CHAPTER I GENERAL SURVEY BY far the largest and most interesting branch of science is electricity, for Maxwell has proven mathematically , and Hertz verified experimentally , that light is an electromagnetic to disturbance in the ether, and thus added that subject the realm of electricity . Amongst the various phenomena of - electricity, those of the high tension current are the most all interesting and instructive . With such a current the wonders of the Geissler and Crookes tubes may be seen . With it waves for wireless messages may be sent out into space , and a great number of other experiments carried out . It is the purpose of this book to S how how a satisfactory apparatus for producing these currents may be constructed, and also to describe a few of the uses for such a coil . The apparatus , as described in this book , is most commonly n T - C an in k own as the esla High Frequency oil , d consists , - h : I . Th T . T e general , of four parts e Step Up ransformer "2 Th . T Interrupter " 3 . e Condenser " 4 The Oscillation rans E of former . ach these will be fully considered in subsequent chapters . Before entering upon the description of the Tesla high u frequency apparat s , however, it would be well to make a few general remarks which are of the greatest importance . CHAPTER II THE TRANSFORMER THE transformer sometimes called a converter is ee an m r ly induction coil that. is connected directly to the - alternating current mains, without the use , of an interrupter, and is used to raise or lower the voltage . In a transformer the number of watts in the primary equals approximately r the number of watts in the seconda y . - u In the case of any step p transformer, the ratio of the number of volts in the primary to those set up in the sec ondary is nearly the same as the number of turns of wire in the primary to the number in the secondary " but the amperes decrease in the inverse ratio . The transformer used in the coil described in this book is m - - - of the com on induction coil type, oil immersed , step up transformer . It takes the alternating current from the mains 1 10 at volts or 55 volts , and steps it up to about volts . The efficient working of a transformer depends largely The upon the design of the core . iron used must be of high permeability and should have little retentivity . A straight core is always best to use "for, on the fall of the current from l its maximum value to zero , the magnetic flux fal s from its maximum value, not to zero , but to a value which depends 4 The Transformer 5 The on the residual magnetism . residual magnetism in an open circuit is much less than in a closed magnetic circuit, so that when the current suddenly becomes zero , the mag netic flux drops lower in an open circuit than in a closed one . As the electromotive force in the secondary is proportional to the fall in the magnetic field , it is greater with a straight of core than with a closed circuit iron . The coil designer is obliged to determine the length of the iron core from the experience of others , as the mathe r too matics fo calculating it is complex, although simple and useful in the case of closed circuit transformers . If the core is made too long the primary magnetizing current will be w too too large , hile if made short the secondary coils would of too to ffi T have to be made large a diameter be e cient . here is , therefore, a certain length which will give the best results . In the case of this transformer the length of the core was determined after having gained all possible information from certain eminent men who had made a life study of these of for matters "in fact, all the dimensions the transformer this special use were determined in this way . Th f 20 2 2 S . e iron core is made up of pieces o No . or B . ” 1 The to gauge iron wire 8 long . wire is first cut nearly of size with a pair pliers, and , when assembled , the ends of the bundle are sawed off square with a hack saw . An ordi ” of 1 8 nary piece iron pipe , a little less than long, and having an internal diameter slightly less than 2 is tightly filled s with these wires . When putting the wire in, stand the pipe on end on a smooth surface , and force in each wire until 6 The Tesl a coil it hits this surface . When the bundle is finished, the upper end is sawed off with a hack saw to exactly ' The tube containing the iron wires is now placed in a coke or coal fire and left there until the fire burns itself out, thus T insuring slow cooling .
Recommended publications
  • A Computer Simulation of Induction Heat Treating Systems Is Discussed
    Optimal Design of Internal Induction Coils Dr. Valentin Nemkov(1), Eng. Robert Goldstein (1), Dr. Vladimir Bukanin(2) (1)Centre for Induction Technology, Inc. 1388 Atlantic Blvd. Auburn Hills, MI 48326 USA www.induction.org (2)St. Petersburg Electrotechnical University (SPbETU), Prof. Popova str., 5, 197376, St. Petersburg, Russia ABSTRACT Internal induction heating coils are not so well studied as external. Three main induction coil styles were proposed in pioneering works many years ago: Cylindrical coils, Hair-pin coils and Rod-type coils [1, 2]. It was clear from the very beginning that electromagnetic parameters of the coils of two first styles might be strongly improved by application of magnetic cores. However it was not clearly shown what parameters may be improved and how much, as well as what are the optimal designs of induction coils. Current presentation contains short consideration and comparison of all three styles of coils followed by a detailed analysis of cylindrical internal (ID) coils using modern computer simulation tools. It is shown that it isn’t sufficient to only consider the influence of magnetic core on electrical efficiency of the coil head. The cores reduce dramatically current demand for transfer of required power into the workpiece. In turn it results in strong reduction of voltage drop and power losses in the whole supplying circuitry: coil leads, busswork and matching transformer. Plus much smaller capacitor battery is required. Computer simulation is simple for single-turn cylindrical ID coils and several computer packages may be used. Computer simulation of multi-turn cylindrical ID coils, which are the most common, is a much more complicated task, due to the return leg.
    [Show full text]
  • Class-E Audio Modulated Tesla Coil Instruction Manual
    Class-E Audio Modulated Tesla Coil CCllaassss--EE AAuuddiioo MMoodduullaatteedd TTeessllaa CCooiill IInnssttrruuccttiioonn MMaannuuaall Eastern Voltage Research, LLC May 19, 2017 REV F − 1 − http://www.EasternVoltageResearch.com Class-E Tesla Coil Instruction Manual Class-E Audio Modulated Tesla Coil BOARD REVISION C This manual only applies to the new Revision C PCB boards. These boards can be identified by their red or green silkscreen color as well as the marking SC2076 REV C which is located underneath the location for T41 on the upper right of the PCB board. May 19, 2017 REV F − 2 − http://www.EasternVoltageResearch.com Class-E Tesla Coil Instruction Manual Class-E Audio Modulated Tesla Coil AGE DISCLAIMER THIS KIT IS AN ADVANCED, HIGH POWER SOLID STATE POWER DEVICE. IT IS INTENDED FOR USE FOR INDIVIDUALS OVER 18 YEARS OF AGE WITH THE PROPER KNOWLEDGE AND EXPERIENCE, AS WELL AS FAMILIARITY WITH LINE VOLTAGE POWER CIRCUITS. BY BUILDING, USING, OR OPERATING THIS KIT, YOU ACKNOWLEDGE THAT YOU ARE OVER 18 YEARS OF AGE, AND THAT YOU HAVE THOROUGHLY READ THROUGH THE SAFETY INFORMATION PRESENTED IN THIS MANUAL. THIS KIT SHALL NOT BE USED AT ANY TIME BY INDIVIDUALS UNDER 18 YEARS OF AGE. May 19, 2017 REV F − 3 − http://www.EasternVoltageResearch.com Class-E Tesla Coil Instruction Manual Class-E Audio Modulated Tesla Coil SAFETY AND EQUIPMENT HAZARDS PLEASE BE SURE TO READ AND UNDERSTAND ALL SAFETY AND EQUIPMENT RELATED HAZARDS AND WARNINGS BEFORE BUILDING AND OPERATING YOUR KIT. THE PURPOSE OF THESE WARNINGS IS NOT TO SCARE YOU, BUT TO KEEP YOU WELL INFORMED TO WHAT HAZARDS MAY APPLY FOR YOUR PARTICULAR KIT.
    [Show full text]
  • The Overall Power Factor Test: In-Depth
    The Overall Power Factor Test: In-Depth © OMICRON Page 1 Copyrighted 2019 by OMICRON electronics Corp USA All rights reserved. No part of this presentation may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage or retrieval system or method, now known or hereinafter invented or adopted, without the express prior written permission of OMICRON electronics Corp USA. © OMICRON © OMICRON Page 2 Author Biography © OMICRON Page 3 Transformer Testing Support Contacts Brandon Dupuis Fabiana Cirino Logan Merrill Charles Sweetser Primary Application Engineer Application Engineer Primary Application Engineer PRIM Engineering Services Manager OMICRON electronics Corp. USA OMICRON electronics Corp. USA OMICRON electronics Corp. USA OMICRON electronics Corp. USA 60 Hickory Drive 60 Hickory Drive 3550 Willowbend Blvd. 60 Hickory Drive Waltham MA 02451 | UNITED STATES Waltham MA 02451 | USA Houston, TX 77054 | USA Waltham MA 02451 | USA T +1 800 OMICRON T +1 800 OMICRON T +1 800 OMICRON T +1 800 OMICRON T +1 781 672 6214 T +1 781 672 6230 T +1 713 212 6154 T +1 781 672 6216 M +1 617 901 6180 M +1 781 254 8168 M +1 832 454 6943 M +1 617 947 6808 [email protected] [email protected] [email protected] [email protected] www.omicronusa.com www.omicronenergy.com www.omicronenergy.com www.omicronenergy.com © OMICRON Page 4 2019 OMICRON Academy Transformer Trainings January 30th and 31st – Houston, TX https://www.omicronenergy.com/en/events/training/detail/electrical-diagnostic-
    [Show full text]
  • The Study of Electromagnetic Processes in the Experiments of Tesla
    The study of electromagnetic processes in the experiments of Tesla B. Sacco1, A.K. Tomilin 2, 1 RAI, Center for Research and Technological Innovation (Turin, Italy), [email protected] 2National Research Tomsk Polytechnic University (Tomsk, Russian Federation), [email protected] The Tesla wireless transmission of energy original experiment, proposed again in a downsized scale by K. Meyl, has been replicated in order to test the hypothesis of the existence of electroscalar (longitudinal) waves. Additional experiments have been performed, in which we have investigated the features of the electromagnetic processes between the two spherical antennas. In particular, the origin of coils resonances has been measured and analyzed. Resonant frequencies calculated on the basis of the generalized electrodynamic theory, are in good agreement with the experimental values found. Keywords: Tesla transformer, K. Meyl experiments, electroscalar waves, generalized electrodynamics, coil resonant frequency. 1. Introduction In the early twentieth century, Tesla conducted experiments in which he demonstrated unusual properties of electromagnetic waves. Results of experiments have been published in the newspapers, and many devices were patented (e.g. [1]). However, such work has not received suitable theoretical explanation, and so far no practical application of the results have been developed. One hundred years later, Professor K. Meyl [2] aimed to reproduce the same experiments using a miniature, laboratory version of the Tesla setup, arguing that it can help to detect unusual phenomena that are explained by the presence of electroscalar (longitudinal) waves, namely: • the reaction on the transmitter of the presence of the receiver; • the transmission of scalar waves with a speed of 1,5 times the speed of light; • the inefficiency of a Faraday cage in shielding scalar waves, and • the possibility of wireless transmission of electrical energy.
    [Show full text]
  • Download (PDF)
    Nanotechnology Education - Engineering a better future NNCI.net Teacher’s Guide To See or Not to See? Hydrophobic and Hydrophilic Surfaces Grade Level: Middle & high Summary: This activity can be school completed as a separate one or in conjunction with the lesson Subject area(s): Physical Superhydrophobicexpialidocious: science & Chemistry Learning about hydrophobic surfaces found at: Time required: (2) 50 https://www.nnci.net/node/5895. minutes classes The activity is a visual demonstration of the difference between hydrophobic and hydrophilic surfaces. Using a polystyrene Learning objectives: surface (petri dish) and a modified Tesla coil, you can chemically Through observation and alter the non-masked surface to become hydrophilic. Students experimentation, students will learn that we can chemically change the surface of a will understand how the material on the nano level from a hydrophobic to hydrophilic surface of a material can surface. The activity helps students learn that how a material be chemically altered. behaves on the macroscale is affected by its structure on the nanoscale. The activity is adapted from Kim et. al’s 2012 article in the Journal of Chemical Education (see references). Background Information: Teacher Background: Commercial products have frequently taken their inspiration from nature. For example, Velcro® resulted from a Swiss engineer, George Mestral, walking in the woods and wondering why burdock seeds stuck to his dog and his coat. Other bio-inspired products include adhesives, waterproof materials, and solar cells among many others. Scientists often look at nature to get ideas and designs for products that can help us. We call this study of nature biomimetics (see Resource section for further information).
    [Show full text]
  • Common Mode Chokes by Würth Elektronik
    Welcome! Inductors & EMC-Ferrites Basics - Parts and Applications Wurth Electronics Inc. Field Application Engineer Michael Eckert Würth Elektronik eiSos © May/2006 Michael Eckert What is an Inductor ? technical view: a piece of wire wounded on something a filter an energy-storage-part (short-time) examples: Würth Elektronik eiSos © May/2006 Michael Eckert What is an EMC-Ferrite ? Technical view: Frequency dependent filter Absorber for RF-energy examples: EMC Snap-Ferrites EMC-Ferrites for SMD-Ferrites Flatwire Würth Elektronik eiSos © May/2006 Michael Eckert Magnetic Field Strenght H of some configurations I long, straight wire H = 2⋅π ⋅R N⋅I Toroidal Coil H = 2⋅π ⋅R N⋅I Long solenoid H = l (e.g. rod core indcutor) Würth Elektronik eiSos © May/2006 Michael Eckert Example: Conducted Emission Measurement • Dosing pump for chemicals industry. Würth Elektronik eiSos © May/2006 Michael Eckert Conducted Emission Measurement • Power supply V 1.0 PCB Buck Converter ST L4960/2.5A/fs 85-115KHz Würth Elektronik eiSos © May/2006 Michael Eckert Conducted Emission Measurement • Power supply V 1.1 PCB Schematic Würth Elektronik eiSos © May/2006 Michael Eckert Awareness: • Select the right parts for your application • Do not always look on cost Very easy solution with a dramatic result!!! or Choke before Choke after Würth Elektronik eiSos © May/2006 Michael Eckert What is permeability [ur]? – Permability (µr): describe the capacity of concentration of the magnetic flux in the material. typical permeabilities [µr] : Magnetic induction in ferrite:
    [Show full text]
  • Custom Power Supplies, Transformers, Chokes & Reactors
    YOUR POWER SOURCE Custom Power Supplies, Transformers, Chokes & Reactors NeeltranThe Story Transformers and Power Supplies • Industry Leader since 1973 Neeltran has become the most reliable supplier of Transformers and Power Supply Systems in the industry. Our engineers, along with our manufacturing team, have the knowledge and ability to meet the special needs of our customers. All power supplies are custom designed to your specifications by our engineering staff and completely fabricated in-house at our manufacturing facility. Our facilities and experience include: • Research & Development Since 1973 Neeltran has been a leading • Test Laboratory manufacturer of transformers and • Design Engineering power supplies. • Printed Circuit Board Manufacturing Our general product range is: • Steel Cutting Machinery • Dry Type and Water Cooled Transformers: • Baking Ovens 5–10,000 KVA (up to 25 KV input) • Vacuum Pressure Impregnation Tanks (Outputs up to 300 KV and 50 KHZ) • Coil Winding Equipment • Oil filled Transformers (Rectifier type only): 100 KVA to 50 MVA (up to 69 KV input) • Painting and Steel Fabrication to manufacture our own enclosures • Oil filled high frequency Transformers: • Assembly Areas up to 50 KHZ, 2000 KVA, up to 50 KV output Industry standards are maintained with our • Cast Coil Transformers: up to 20 MVA testing equipment assuring that all shipped (up to 35 KV input) products meet customer’s requirements and • Chokes and Reactors air or iron: specifications. Impulse testing as well as customer up to 25 KV, 20,000 amps specific testing is available upon request. • Power Supplies: 100 A to 500,000 amp (AC or DC) 1500 VDC. Special outputs up to 300,000 volts AC or DC and high frequencies are available.
    [Show full text]
  • The Self-Resonance and Self-Capacitance of Solenoid Coils: Applicable Theory, Models and Calculation Methods
    1 The self-resonance and self-capacitance of solenoid coils: applicable theory, models and calculation methods. By David W Knight1 Version2 1.00, 4th May 2016. DOI: 10.13140/RG.2.1.1472.0887 Abstract The data on which Medhurst's semi-empirical self-capacitance formula is based are re-analysed in a way that takes the permittivity of the coil-former into account. The updated formula is compared with theories attributing self-capacitance to the capacitance between adjacent turns, and also with transmission-line theories. The inter-turn capacitance approach is found to have no predictive power. Transmission-line behaviour is corroborated by measurements using an induction loop and a receiving antenna, and by visualising the electric field using a gas discharge tube. In-circuit solenoid self-capacitance determinations show long-coil asymptotic behaviour corresponding to a wave propagating along the helical conductor with a phase-velocity governed by the local refractive index (i.e., v = c if the medium is air). This is consistent with measurements of transformer phase error vs. frequency, which indicate a constant time delay. These observations are at odds with the fact that a long solenoid in free space will exhibit helical propagation with a frequency-dependent phase velocity > c. The implication is that unmodified helical-waveguide theories are not appropriate for the prediction of self-capacitance, but they remain applicable in principle to open- circuit systems, such as Tesla coils, helical resonators and loaded vertical antennas, despite poor agreement with actual measurements. A semi-empirical method is given for predicting the first self- resonance frequencies of free coils by treating the coil as a helical transmission-line terminated by its own axial-field and fringe-field capacitances.
    [Show full text]
  • Checking out the Power Supply the Power Supply Must Be Carefully Checked out a Good Many Australian-Made Sets from the Mid 1930S-1950 Era
    Checking out the power supply The power supply must be carefully checked out a good many Australian-made sets from the mid 1930s-1950 era. Fig.1 before switching on a vintage radio. The shows a typical circuit configura- components most likely to be at fault are the tion but there are other variations. electrolytic capacitors, most of which should be For example, some rectifiers re- quire a cathode voltage of 6.3V AC, replaced as a matter of course. not 5V. Similarly, not all radio valves use Although only a few parts are in- (equivalent to 570 volts, centre- 6.3V heater supplies. There are volved, the power supply is a com- tapped). 2.5V valves, 4V valves and 12V mon source of problems in vintage The 5V and 6.3V AC supplies are valves in some late model sets. In radios. It should be carefully check- wired straight from the trans- these radios, the low tension ed out before power is applied, as a former to the filaments and voltages on the transformer will be fault here can quickly cause heaters. However, the high tension different — but that's about all. damage to critical components. supply must be rectified to give a The high tension voltage will still be Most mains-operated valve high-tension DC supply for the well in excess of 250 volts. radios have three separate secon- anodes and screens for the various The output from the rectifier dary windings on the power receiving and output valves. A valve will not be pure DC but does transformer.
    [Show full text]
  • 132Kv Oil Impregnated Paper Bushing Transformer - Design by CAD, Analysed by FEM
    Universal Journal of Electrical and Electronic Engineering 6(5A): 86-93, 2019 http://www.hrpub.org DOI: 10.13189/ujeee.2019.061510 132kV Oil Impregnated Paper Bushing Transformer - Design by CAD, Analysed by FEM N. Abd. Rahman1,*, M. Isa1, M. N. K. H. Rohani1, H A. Hamid1, Mohd Mustafa Al Bakri Abdullah2 1Center for Electrical System Engineering Studies, Universiti Malaysia Perlis, Malaysia 2Centre of Excellence Geopolymer and Green Technology, University Malaysia Perlis, Malaysia Received September 4, 2019; Revised December 12, 2019; Accepted December 24, 2019 Copyright©2019 by authors, all rights reserved. Authors agree that this article remains permanently open access under the terms of the Creative Commons Attribution License 4.0 International License Abstract The Electric Field and Voltage Distribution value is, the higher the price of transformer is. Transformer (EFVD) are an important parameter for assessing high used to step up the value of voltage or vise versa. voltage bushing transformer performance. However, Stepping up transformer or power transformer normally used at generation station increases the value of voltage conducting laboratories experiment is dangerous, difficult before transmitting it to many places. Normally, the and expensive due to several aspects. Therefore, Finite values of voltage practices by Tenaga Nasional Berhad Element Method (FEM) software is the best option used (TNB) for their transmission are 132kV, 275kV and 500kV. as a tool for the assessment of bushing transformer's On the other hand, stepping down transformer or performance in terms of EFVD. But, before an assessment distribution transformer is used to reduce the value of of analysis could be carried out, an accurate model of voltage depending on consumer requirement.
    [Show full text]
  • Tesla's Coil. a Toy Or Useful Thing in the Life of Radio Engineering?
    УДК 537 Ільчук Д.Р. Tesla's coil. A toy or useful thing in the life of radio engineering? Вінницький національний технічний університет Аннотація. У цій статті, подан опис такого приладу як Котушка Тесли. Наведені її характеристики, принцип роботи, історія створення та значення в сучасному житті. Також описані процеси створення власноруч та розсуди про практичність даного виробу у реальному житті. Ключові слова: Котушка індуктивності, висока напруга, Нікола Тесла, радіотехніка, електрична дуга. Abstract. This article contains a description of the device as a Tesla coil. These characteristics of the principle of history and value creation in modern life. Also describes the process of creating his own judge and practicality of this product in real life. Keywords: Inductor, high voltage, Nikola Tesla, radio, electric arc. I.Introduction Perhaps in the life of every student comes a time when it begins to be interested in their field. In some it comes in the first year, someone on last. At the beginning of the 3rd year I finally decided to solder something with their hands. The choice immediately fell on Tesla coil. But is this thing so important, whether it is only a toy, which is impossible to do anything useful? Let us know about it. II. Summary The Tesla coil is an electrical resonant transformer circuit designed by inventor Nikola Tesla around 1891 as a power supply for his "System of Electric Lighting".It is used to produce high-voltage, low-current, high frequency alternating-current electricity. Tesla experimented with a number of different configurations consisting of two, or sometimes three, coupled resonant electric circuits.
    [Show full text]
  • A Fresh Look at Induction Heating of Tubular Products
    htprof.qxd 5/2/04 1:22 PM Page 1 he extensive use of metal tubing A fresh look at in thousands of products de- Tube T mands a wide range of process concepts. For example, in automotive induction heating manufacturing alone, new applica- Solid cylinder tions for tubing are being advanced at High coil efficiency for of tubular products: an expanding rate. These typically solid cylinder small- and medium-size tubular parts Coil efficiency Part 1 include stabilizer bars, intrusion High coil efficiency for beams, structural rails, steering hollow cylinder columns, axles, and shock absorbers. F F F The air conditioning and refrigeration 1 2 Frequency 3 industries and oil- and gas-transmis- Fig. 1 — Conditions for maximizing the elec- sion lines have high-pressure require- trical efficiency of the induction coil are different ments where larger tubular prod- for tubes and solid cylinders, as shown by these ucts are used. In all of these plots of coil efficiency vs. frequency. (Ref. 1) PROFESSOR applications, induction heat- ing has proven effective. the optimal frequency, which corre- INDUCTION Although there are many sponds to maximum coil electrical ef- Valery I. Rudnev • Inductoheat Group similarities, there are several process ficiency, is shifted toward lower fre- features and physical phenomena quencies (frequencies between F1 and Professor Induction wel- that distinguish induction heating of F2 for tubes instead of between F2 and 1 comes comments, ques- tubular products from induction F3 for solid cylinders). The optimal tions, and suggestions for heating of solid cylinders. The condi- frequency for heating tubes (hollow future columns.
    [Show full text]