Polysaccharides

Total Page:16

File Type:pdf, Size:1020Kb

Load more

Paper : 04 Metabolism of carbohydrates Module : 01 Prelude: Carbohydrates (Part-B) -Polysaccharides Principal Investigator Dr.S.K.Khare,Professor IIT Delhi. Paper Coordinator Dr. Ramesh Kothari,Professor UGC-CAS Department of Biosciences Saurashtra University, Rajkot-5, Gujarat-INDIA Dr. S. P. SinghProfessor Content Reviewer UGC-CAS Department of Biosciences Saurashtra University, Rajkot-5, Gujarat-INDIA Dr.Charmy Kothari, Assistant Professor Department of Biotechnology Content Writer Christ College, Affiliated to Saurashtra University, Rajkot-5, Gujarat-INDIA 1 Metabolism of Carbohydrates Biochemistry Prelude: Carbohydrates (Part-B)-Polysaccharides Description of Module Subject Name Biochemistry Paper Name 04 Metabolism of Carbohydrates Module Name/Title 01 Prelude: Carbohydrates (Part-B)-Polysaccharides Dr. Vijaya Khader Dr. MC Varadaraj 2 Metabolism of Carbohydrates Biochemistry Prelude: Carbohydrates (Part-B)-Polysaccharides PRELUDE-CARBOHYDRATES- Polysaccharides Objectives 1. Introduction and properties of polysaccharides 2. To know about homopolysaccharides and its properties 3. To know about heteropolysaccharides and its properties 3 Metabolism of Carbohydrates Biochemistry Prelude: Carbohydrates (Part-B)-Polysaccharides Introduction Our body requires diverse types of food to carry out a variety of functions, maintenance and growth We can classify food largely into carbohydrates, proteins and fats. Fats help in long term storage of energy and cannot be utilized right away. Proteins facilitate building muscles and tissues The carbohydrates, as they can be broken down immediately into glucose provide us the energy required to do immediate work A molecule of carbohydrate consisting a number of molecules of sugars linked together by glycosidic linkages is called a polysaccharide. For instance, storage polysaccharides such as Starch and Glycogen and structural polysachharides such as Cellulose and chitin ). These polysaccharides give the constituent monosaccharises or oligosachharides when they hydrolyzed. They are either linear or extremely branched structure and are Polysaccharides are heterogeneous due to minor modifications of the repeating unit and based on the structure, these macromolecules have different properties compared to their monomeric building blocks Polysaccharides can be amorphous and even insoluble in water Polysaccharides are of two kinds, (i) homopolysaccharide or (ii) heteropolysaccharides based on types of monosachharides. Polysaccharides consisting the same type of monosaccharides is called homopolysaccharide and polysaccharides consisting more than one type of monosaccharides are called heteropolysaccharides . 4 Metabolism of Carbohydrates Biochemistry Prelude: Carbohydrates (Part-B)-Polysaccharides How are Polysaccharides processed in our Body? The food we eat is mixed with enzymes released by the body at various points to assist in the digestion of the diverse molecules like carbohydrates, fats as well as proteins Chewing helps in break apart the carbohydrates into smaller pieces. It is in the stomach followed by the small intestine that the ultimate breakdown of the polysaccharides occurs The acid released in the stomach breaks these polysaccharides into monosaccharides. These monosaccharides are glucose molecules and are basic source of energy The glucose is further broken down in the cells into molecules of Adenosine Triphosphate in order to be utilized by the body to perform work as and when needed. Properties of polysaccharides Carbohydrates composed of ten or more monosaccharides units are generally classified as polysaccharides and their molecules are colloidal in size. Polysaccharides may be considered as condensation polymers in which the monosaccharides are joined together by glycosidic linkages. Polysaccharides are also termed as glycans Polysaccharides when composed of a single monosaccharide building block are called homopolysaccharides (homoglycans). Polysaccharides when composed of more than one type of monosaccharide are called heteropolysaccharides (heteroglycans). Glucose polysaccharides are “glucans”, fructose polysaccharides are fructans and polysaccharides made of mannose and xylose are called mannans and xylansrespectively Some polysaccharides contains units that are derivatives of the monosaccharides for example. Chitin 5 Metabolism of Carbohydrates Biochemistry Prelude: Carbohydrates (Part-B)-Polysaccharides Chitin is made up of the amino sugar, glucosamine and hyaluronic acid is composed of glucuronic acid and glucosamine Monosaccharides units of polysaccharides are joined by glycosidic linkage, the polysaccharides are readily hydrolyzed by mineral acids but are resistant to alkaline hydrolysis Homopolysaccharides Starch Starch is presentas insoluble granules in the cytoplasm. Starch is a mixture of two polymers amylose and amylopectin Amylose is a linear polysaccharide and amylopectin is a highly branched polysaccharide Amylose - The constituent of starch in which glucose units are linked by -D-1 4 glycosidic bonds to form linear chains The level of amylose and its molecular weight vary between different types of starch Amylose molecules are normally made from 200-2000 glucose units. Aqueous solutions of amylose are very unstable because of intermolecular attraction and association of neighboring amylose molecules Amylose forms a helical complex when tested with iodine giving a characteristic blue color Amylopectin- Amylopectin is the branched form, most of the constituent of glucose residues are joined by -D-1 4 glycosidic bonds and additional -D-1 6 glycosidic bonds every 25-30 residues forms the branched structure 6 Metabolism of Carbohydrates Biochemistry Prelude: Carbohydrates (Part-B)-Polysaccharides Structure of Starch Glycogen Glycogen like starch yields glucose upon acid hydrolysis hence is a polymer of glucose. Glycogen occurring wide spread in animal tissues, especially liver and muscle which give a red-brown, red, or at a times violet color with iodine Glycogen is highly branched structure. The chain glycosidic linkage is -1 4, the branching occurs with a glycosidic linkage of -1 6. β-amylase acts upon glycogen to give considerable amounts of maltose indicating the presence of -1 4glycosidic linkage 7 Metabolism of Carbohydrates Biochemistry Prelude: Carbohydrates (Part-B)-Polysaccharides Structure of Glycogen Cellulose Cellulose is another polymer of the monosaccharide glucose. Cellobiose is the disaccharide obtained by the hydrolysis of cellulose indicates that the linkage of glucose units in cellulose are as they are in cellulose It is resistant to hydrolysis and requires the action of strong acids Cellulases capable of hydrolyzing cellulose are absent from animal digestive juices and hence itcannot be digested by human beings. Cellulose, also known as plant fiber, plant cell wall is made of cellulose. It is also insoluble in water. 8 Metabolism of Carbohydrates Biochemistry Prelude: Carbohydrates (Part-B)-Polysaccharides The glucose units in cellulose form a two-dimensional structure with hydrogen bonds holding together nearby polymers thus giving the molecule more stability which makes cellulose differs from starch and glycogen because Cellulose is not soluble in water. Cellulose does not give a characteristic reaction with iodine Cellulose cannot be used as an energy source because of its complexity but cellulose fiber is essential in the nutritionas it helps the digestive track exercising and keep it healthy and clean. Structure of Cellulose Inulin Inulin is a polysaccharide composed of D-fructose It occurs as the reserve carbohydrates in the tubers Inulin is a white, more or less crystalline powder It is readily soluble inhot but slightly soluble in cold water Inulin when heated with water it does not gelatinize like starch It is not utilized as a food and is used as a source of commercial fructose 9 Metabolism of Carbohydrates Biochemistry Prelude: Carbohydrates (Part-B)-Polysaccharides Structure of Inulin Chitin Chitin is a condensation product of acetyl glucosamine It is the structural material of the arthropoda It forms the exoskeleton of the crustaceans, insects etc. The chitin molecules are the chains of acetyl glucosamine units linked similarly as the glucose units in cellulose Chitin is highly resistant to the action of solvents and of bacteria Structure of Chitin 10 Metabolism of Carbohydrates Biochemistry Prelude: Carbohydrates (Part-B)-Polysaccharides Heteropolysaccharides Agar Agar is a vegetable mucilage obtained from seaweeds It is a sulfuric acid ester of a complex galactose polysaccharide Agar is odorless and tasteless It swells strongly in cold water but does not dissolve It dissolves in hot water to form a sol which upon cooling sets as a gel It is a very valuable as a supporting agent in bacterial culture media Gum Arabic Vegetable gums are carbohydrates materials containing hexoses or pentose’s or both in glycoside union and a carbohydrate acid group Hydrolysis of gums usually yield galactose and arabinose or xylose alone or in mixtures Gum Arabic is one of the important and best known gums It is used in the preparation of pharmaceuticals, in confections and as an adhes ive Pectin Pectin is found especially in the pulp of citrus fruit, apples, beets and carrots Pectin is the term used to represent the substance or substances which in the presence of sugar and the proper acid concentration causes the formation of jellies Commercial pectin is generally prepared
Recommended publications
  • Structure-Function Relationships of Glucansucrase and Fructansucrase Enzymes from Lactic Acid Bacteria Sacha A

    Structure-Function Relationships of Glucansucrase and Fructansucrase Enzymes from Lactic Acid Bacteria Sacha A

    MICROBIOLOGY AND MOLECULAR BIOLOGY REVIEWS, Mar. 2006, p. 157–176 Vol. 70, No. 1 1092-2172/06/$08.00ϩ0 doi:10.1128/MMBR.70.1.157–176.2006 Copyright © 2006, American Society for Microbiology. All Rights Reserved. Structure-Function Relationships of Glucansucrase and Fructansucrase Enzymes from Lactic Acid Bacteria Sacha A. F. T. van Hijum,1,2†* Slavko Kralj,1,2† Lukasz K. Ozimek,1,2 Lubbert Dijkhuizen,1,2 and Ineke G. H. van Geel-Schutten1,3 Centre for Carbohydrate Bioprocessing, TNO-University of Groningen,1 and Department of Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen,2 9750 AA Haren, The Netherlands, and Innovative Ingredients and Products Department, TNO Quality of Life, Utrechtseweg 48 3704 HE Zeist, The Netherlands3 INTRODUCTION .......................................................................................................................................................157 NOMENCLATURE AND CLASSIFICATION OF SUCRASE ENZYMES ........................................................158 GLUCANSUCRASES .................................................................................................................................................158 Reactions Catalyzed and Glucan Product Synthesis .........................................................................................161 Glucan synthesis .................................................................................................................................................161 Acceptor reaction ................................................................................................................................................161
  • Polysaccharides

    Polysaccharides

    Polysaccharides: Homopolysaccharide Heteropolysaccharide Glucose is the most common monomer Mostly homo, however, if hetero, it will be two monosaccharides in a repeating sequence Complete characterization of a polysaccharide: monomers, sequence & type of glycosidic linkage Cellulose & chitin: β-glycosidic linkages, and both are structural materials Starch and glycogen: α-glycosidic linkages, and they serve as carbohydrate storage polymers in plants and animals, respectively The major structural component of plants, especially wood and plant fibers A linear polymer of approximately 2800 D-glucose units per molecule joined by β-1,4-glycosidic bonds Extensive intra- and intermolecular hydrogen bonding between chains Cellulases, animals? Energy storage in plants A polymers of α-D-glucose units A mylose (10-20 %): continuous, unbranched chains of up to 4000 α-D-glucose units joined by α-1,4-glycosidic bonds Amylopectin (80-90 %): a highly branched polymer consisting of 24-30 units of D-glucose joined by α-1,4- glycosidic bonds and branches created by α- 1,6-glycosidic bonds Amylases catalyze hydrolysis of α-1,4-glycosidic bonds β-amylase is an exoglycosidase and cleaves from the non- reducing end of the polymer α-amylase is an endoglycosidase and hydrolyzes glycosidic linkages anywhere along the chain to produce glucose and maltose Can amylose & amylopectin be completely degraded to glucose and maltose by the two amylases? Debranching enzymes catalyze the hydrolysis of α-1,6-glycosidic bonds A branched-chain polymer of
  • Bio-Based Polymer Electrolytes for Electrochemical Devices: Insight Into the Ionic Conductivity Performance

    Bio-Based Polymer Electrolytes for Electrochemical Devices: Insight Into the Ionic Conductivity Performance

    materials Review Bio-Based Polymer Electrolytes for Electrochemical Devices: Insight into the Ionic Conductivity Performance Marwah Rayung 1, Min Min Aung 1,2,* , Shah Christirani Azhar 2, Luqman Chuah Abdullah 3 , Mohd Sukor Su’ait 4, Azizan Ahmad 4,5 and Siti Nurul Ain Md Jamil 2 1 Institute of Tropical Forestry and Forest Products, Universiti Putra Malaysia, Serdang 43400, Malaysia; [email protected] 2 Unit Chemistry, Center of Foundation Studies and Agricultural Science, Universiti Putra Malaysia, Serdang 43400, Malaysia; [email protected] (S.C.A.); [email protected] (S.N.A.M.J.) 3 Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Malaysia; [email protected] 4 Solar Energy Research Institute (SERI), Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia; [email protected] (M.S.S.); [email protected] (A.A.) 5 School of Chemical Sciences and Food Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia * Correspondence: [email protected] Received: 10 October 2019; Accepted: 4 December 2019; Published: 12 February 2020 Abstract: With the continuing efforts to explore alternatives to petrochemical-based polymers and the escalating demand to minimize environmental impact, bio-based polymers have gained a massive amount of attention over the last few decades. The potential uses of these bio-based polymers are varied, from household goods to high end and advanced applications. To some extent, they can solve the depletion and sustainability issues of conventional polymers. As such, this article reviews the trends and developments of bio-based polymers for the preparation of polymer electrolytes that are intended for use in electrochemical device applications.
  • Carbohydrate Naturally Occurring Polysaccharide in Food Sea Weed Polysaccharide Sources And

    Carbohydrate Naturally Occurring Polysaccharide in Food Sea Weed Polysaccharide Sources And

    Carbohydrate Naturally occurring polysaccharide in food sea weed polysaccharide sources and use Carbohydrate- • Carbohydrates are commonly called as sugars - composed of C, H and O • Term saccharide is derived from the Latin word “sacchararum" from the sweet taste of sugars. • Compounds like glucose, fructose, starch and cellulose are called as carbohydrates. • types - Monosaccharides, Disaccharides and Polysaccharides • Monosaccharides are the simplest form of carbohydrate and contain different classes such as Trioses, Tetroses, etc. CARBOHYDRATE: • “The organic compounds which yield polyhydric aldehyde or ketone on hydrolysis are called as carbohydrates.” • empirical formula as (CH2O)n. • The name "carbohydrate" means a "hydrate of carbon.“ • For example glucose is written,C6H12O6. CLASSIFICATION OF CARBOHYDRATE A) Monosaccharides B) Oligosaccharides C) Polysaccharides - Homopolysaccharides and Heteropolysaccharides MONOSACCHARIDES: • They are simplest group of carbohydrate which cannot be hydrolyzed into simplest sugar. • They are divided into different classes on the basis of number of carbon atoms present in it like TRIOSES, TETROSES, PENTOSES etc. OLIGOSACCHARIDES: • They are formed by the condensation of a few monosaccharide units (2-10) • During the union of monosaccharide units water molecule is eliminated and the remaining units are linked through an oxygen bridge called as glycosides bond • They are being divided into Disaccharide and Trisaccharides. • DISACCHARIDE – SUCROSE, MALTOSE, LACTOSE Polysaccharides • Polysaccharides
  • 7 | Carbohydrates and Glycobiology

    7 | Carbohydrates and Glycobiology

    7 | Carbohydrates and Glycobiology Aldoses and Ketoses; Representative monosaccharides. (a)Two trioses, an aldose and a ketose. The carbonyl group in each is shaded. • An aldose contains an aldehyde functionality • A ketose contains a ketone functionality The Glycosidic Bond • Two sugar molecules can be joined via a glycosidic bond between an anomeric carbon and a hydroxyl carbon • The glycosidic bond (an acetal) between monomers is less reactive than the hemiacetal at the second monomer – Second monomer, with the hemiacetal, is reducing – Anomeric carbon involved in the glycosidic linkage is nonreducing • The disaccharide formed upon condensation of two glucose molecules via 1 4 bond is called maltose • Formation of maltose. A disaccharide is formed from two monosaccharides (here, two molecules of D-glucose) when an —OH (alcohol) of one glucose molecule (right) condenses with the intramolecular hemiacetal of the other glucose molecule (left), with elimination of H2O and formation of a glycosidic bond. The reversal of this reaction is hydrolysis—attack by H2O on the glycosidic bond. The maltose molecule, shown here as an illustration, retains a reducing hemiacetal at the C-1 not involved in the glycosidic bond. Because mutarotation interconverts the α and β forms of the hemiacetal, the bonds at this position are sometimes depicted with wavy lines, as shown here, to indicate that the structure may be either α or β. Nonreducing Disaccharides • Two sugar molecules can be also joined via a glycosidic bond between two anomeric carbons • The product has two acetal groups and no hemiacetals • There are no reducing ends, this is a nonreducing sugar • Trehalose is a constituent of hemolymph of insects • Two common disaccharides.
  • Chem331 Lect 12 Carbos

    Chem331 Lect 12 Carbos

    Carbohydrates • Of the macromolecules that we will cover in this class, those involving carbohydrates are the most abundant in nature. • Via photosynthesis, over 100 billion metric tons of CO2 and H2O are converted into cellulose and other plant products. • The term carbohydrate is a generic one that refers primarily to carbon-containing compounds that contain hydroxyl, keto, or aldehydic functionalities. • Carbohydrates can range in sizes, from simple monosaccharides (sugars) to oligosaccharides, to polysaccharides. What Roles Do Carbohydrates Play In Vivo? Energy—Photosynthesis, (CO2+ lightàSugar + O2) Structure—cell walls and extracellular structures in plants, animals and bacteria Conjugation onto lipids, proteins—glycosylation – Molecular Recognition – Protein Folding – Solubility DNA – DNA backbone – DNA capping Carbohydrate Naming Monosaccharides—simple sugars, can’t be broken down, molecular formula (CH2O)n Oligosaccharides—a few (2-10) monosaccharides linked together (conventional names: disaccharide, etc.) Polysaccharides—polymers of simple sugars. Can have molecular weights >1x106 g/mol Monosaccharide Structure and Naming The simplest aldose and ketose are both trioses—containing 3 carbon atoms HEXOSES are the most abundant sugar in nature (think: glucose) Stereochemistry Aldoses >3 carbons and Ketoses > 4 carbons all have chiral centers. Nomenclature for sugars specifies chirality—compared to glyceraldehyde: Aldose and Ketose Tree – see your book for figure Enantiomers and Diastereomers Diastereomers have opposite conformations
  • Metabolism of Lactic Acid Bacteria in Wheat Sourdough and Bread Quality

    Metabolism of Lactic Acid Bacteria in Wheat Sourdough and Bread Quality

    University of Alberta Metabolism of Lactic Acid Bacteria in Wheat Sourdough and Bread Quality by Chonggang Zhang A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Food Science and Technology Agricultural, Food and Nutritional Science ©Chonggang Zhang Fall 2011 Edmonton, Alberta Permission is hereby granted to the University of Alberta Libraries to reproduce single copies of this thesis and to lend or sell such copies for private, scholarly or scientific research purposes only. Where the thesis is converted to, or otherwise made available in digital form, the University of Alberta will advise potential users of the thesis of these terms. The author reserves all other publication and other rights in association with the copyright in the thesis and, except as herein before provided, neither the thesis nor any substantial portion thereof may be printed or otherwise reproduced in any material form whatsoever without the author's prior written permission. Dedication I would like to dedicate this thesis to my mother and my wife. Thanks for always supporting me during the hard time. Without you I couldn’t have gone so far. Abstract Study on metabolism of lactic acid bacteria in wheat sourdough can improve bread quality such as bread flavour, texture and shelf life. This dissertation focused on several metabolic pathways in Lactobacillus strains on both biochemical and genetic level to fulfill three objectives. The first objective was to produce bread preservative propionate from lactate by cometabolism of Lactobacillus buchneri and Lactobacillus diolivorans to extend bread shelf life.
  • Tarteel Sabrah Dr.Ma'moun Ahram

    Tarteel Sabrah Dr.Ma'moun Ahram

    7 Faculty of medicine – JU2018 Tarteel Sabrah Tarteel Sabrah Tarteel Sabrah Dr.Ma'moun Ahram Raffinose We talked about monosaccharide, we talked about disaccharide let's get big now . we will talk about oligosaccharide which is basically carbohydrates made of 3 to 10 monosaccharides or sugar residues Raffinose is an example . Raffinose is a trisaccharide that is made of three monosaccharides ( sugar residues) . If you look at structure first one is galactose then glucose and then fructose . from left to right It is Found in beans and vegetables like cabbage, Brussels, sprouts, broccoli, asparagus . And we can't digest raffinose because of Humans lack the Alpha-galactosidase enzyme that is needed to break down raffinose, but intestinal bacteria can ferment it into hydrogen, methane, and other gases but It is not as bad as lactose intolerance. Look at these monosaccharides and how are connected to each other as a practice whenever you see something like this look at each residue and try to identify it is it glucose, galactose and so on identify the anomeric configuration identify the glycosidic linkage between these different subunits Type of glycosidic bond between galactose and glucose [α: 16 ] Type of glycosidic bond between glucose and fructose [β: 12] 1 | P a g e We have oligosaccharide that can be larger and oligosaccharide that can be modified in certain ways so we can use them as antibiotics Oligosaccharides as drugs Streptomycin and erythromycin anticancer agents Doxorubicin Digoxin cardiovascular drug. STRUCTURES NOT
  • Resolution of Galactose, Glucose, Xylose and Mannose in Sugarcane

    Resolution of Galactose, Glucose, Xylose and Mannose in Sugarcane

    *Manuscript Resolution of galactose, glucose, xylose and mannose in sugarcane bagasse employing a voltammetric electronic tongue formed by metals oxy- hydroxide/MWCNT modified electrodes Acelino Cardoso de Sá*1,2, Andrea Cipri2, Andreu González-Calabuig2, Nelson Ramos Stradiotto1 and Manel del Valle*,2 1Department of Analytical Chemistry, Institute of Chemistry, Universidade Estadual Paulista (UNESP), 55 Rua Francisco Degni, Araraquara 14800-060, SP, Brazil. 2Sensors and Biosensors Group, Department of Chemistry, Universitat Autònoma de Barcelona, Edifici Cn, 08193 Bellaterra, Barcelona, Spain *e-mail: [email protected] ABSTRACT Second generation ethanol is produced from the carbohydrates released from the cell wall of bagasse and straw of sugarcane. The objective of this work is the characterization and application of a voltammetric electronic tongue using an array of glassy carbon electrodes modified with multi-walled carbon nanotubes containing metal (Paladium, Gold, Copper, Nickel and Cobalt,) oxy-hydroxide nanoparticles (GCE/MWCNT/MetalsOOH) towards a simpler analysis of carbohydrates (glucose, xylose, galactose and mannose). The Artificial Neural Network (ANN) based prediction model has resulted satisfactory for all carbohydrates and the obtained response had shown an adequate accuracy. In this manner 192 architectures were evaluated. The final architecture of the back-propagation ANN model had 36 input neurons, a hidden layer with 5 neurons and the tansig transfer function, an output layer with 4 neurons and the purelin transfer function. All species a comparison correlation coefficient of r ≥ 0.99 for the training subset and of r ≥ 0.96 for the test subset, being close to the ideal value. Keywords: Electronic Tongue, Carbohydrates, Artificial Neural Network, Multi-walled carbon nanotubes, Metal nanoparticles, Second generation ethanol.
  • Pulp and Paper Chemistry and Technology Volume 1

    Pulp and Paper Chemistry and Technology Volume 1

    Pulp and Paper Chemistry and Technology Volume 1 Wood Chemistry and Wood Biotechnology Edited by Monica Ek, Göran Gellerstedt, Gunnar Henriksson Pulp and Paper Chemistry and Technology Volume 1 This project was supported by a generous grant by the Ljungberg Foundation (Stiftelsen Erik Johan Ljungbergs Utbildningsfond) and originally published by the KTH Royal Institute of Technology as the “Ljungberg Textbook”. Wood Chemistry and Biotechnology Edited by Monica Ek, Göran Gellerstedt, Gunnar Henriksson Editors Dr. Monica Ek Professor (em.) Dr. Göran Gellerstedt Professor Dr. Gunnar Henriksson Wood Chemistry and Pulp Technology Fibre and Polymer Technology School of Chemical Science and Engineering KTH Ϫ Royal Institute of Technology 100 44 Stockholm Sweden ISBN 978-3-11-021339-3 Bibliographic information published by the Deutsche Nationalbibliothek The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available in the Internet at http://dnb.d-nb.de. ” Copyright 2009 by Walter de Gruyter GmbH & Co. KG, 10785 Berlin. All rights reserved, including those of translation into foreign languages. No part of this book may be reproduced or transmitted in any form or by any means, electronic or mechanic, including photocopy, recording, or any information storage retrieval system, without permission in writing from the publisher. Printed in Germany. Typesetting: WGV Verlagsdienstleistungen GmbH, Weinheim, Germany. Printing and binding: Hubert & Co. GmbH & Co. KG, Göttingen, Germany. Cover design: Martin Zech, Bremen, Germany. Foreword The production of pulp and paper is of major importance in Sweden and the forestry industry has a profound influence on the economy of the country. The technical development of the industry and its ability to compete globally is closely connected with the combination of high-class education, research and development that has taken place at universities, institutes and industry over many years.
  • Polysaccharides

    Polysaccharides

    Block 2 Carbohydrates ......................................................................................................................................................................................... UNIT 7 POLYSACCHARIDES Structure 7.1 Introduction 7.5 Glycoconjugates Proteoglycans Expected Learning Outcomes Glycoproteins 7.2 Classification of Polysaccharides Glycolipids and 7.3 Storage Polysaccharides Lipopolysaccharides Starch 7.6 Summary Glycogen 7.7 Terminal Questions 7.4 Structural Polysaccharides 7.8 Answers Cellulose 7.9 Further Readings Chitin Glycosaminoglycans 7.1 INTRODUCTION In the previous units, we discussed about structures and properties of monosaccharides and oligosaccharides. We also learnt how nature of the glycosidic bonds affects the properties of the oligosaccharides and their digestion by enzymes in human body. In this unit, we shall discuss about polysaccharides. Most of the carbohydrates in nature are polysaccharides. Some of them are simply polymers of monosaccharides like starch, glycogen and cellulose while others in addition to being polymeric saccharides are also linked covalently to other biomolecules like amino acids, peptides, proteins and lipids. These show not only structural diversity but also perform diverse functions. Let us now look at these aspects by studying different examples of polysaccharides. Objectives After going through this unit, you should be able to: v classify polysaccharides; v draw structures of energy storing forms of sugars; starch, glycogen, and discuss their properties;
  • Full Text in DIVA

    Full Text in DIVA

    Aspects of optimizing pulp fibre properties for tissue and packaging materials Hafizur Rahman Main supervisor: Prof. Armando Cordova Co-supervisors: Prof. Per Engstrand Asst. Prof. Börje Norlin Faculty of Science, Technology and Media Thesis for Doctoral degree in Chemical Engineering Mid Sweden University Sundsvall, 2021-06-14 Akademisk avhandling som med tillstånd av Mittuniversitetet i Sundsvall framläggs till offentlig granskning för avläggande av teknologie doktorsexamen i kemiteknik, Måndagen den 14:e juni, 2021 klockan 10:00 i sal C312 , Mittuniversitetet Sundsvall. Seminariet kommer att hållas på engelska. Aspects of optimizing pulp fibre properties for tissue and packaging materials © Hafizur Rahman, 2021-06-14 Printed by Mid Sweden University, Sundsvall, Sweden ISSN: 1652-893X ISBN: 978-91-89341-15-9 Faculty of Science, Technology and Media Mid Sweden University, SE-851 70 Sundsvall, Sweden Phone: +46 (0)10 142 80 00 Mid Sweden University Doctoral Thesis 348 iii iv Table of contents ABSTRACT ....................................................................................................... viii SAMMANFATTNING .......................................................................................... ix LIST OF PAPERS ................................................................................................ x CONTRIBUTION TO THE PAPERS .................................................................... xi LIST OF RELATED PAPERS AND PUBLICATIONS ........................................ xii CONFERENCES AND SEMINARS ..................................................................