Towards an Understanding of Plant Rarity in Kwazulu -N Atal , South Africa

Total Page:16

File Type:pdf, Size:1020Kb

Towards an Understanding of Plant Rarity in Kwazulu -N Atal , South Africa TOWARDS AN UNDERSTANDING OF PLANT RARITY IN KWAZULU -N ATAL , SOUTH AFRICA Brigitte Church A dissertation submitted to the Faculty of Science, University of the Witwatersrand, Johannesburg, for the degree of Master of Science. Date: 2 May 2014 DECLARATION This thesis is submitted, in accordance with the regulations of the University of the Witwatersrand, Johannesburg in fulfilment of the requirements for the degree of Master of Science. The work described in this thesis was carried out by me, except where otherwise acknowledged, and has not been submitted for any degree or examination to any other university or institution. Brigitte Church Date i ABSTRACT The persistence of rare plants is an important dimension in the conservation of biodiversity. Consequently an improved understanding of the nature and determinants of plant rarity and its relation with vulnerability to extinction could provide a basis for “proactive conservation” instead of the present day tendency for conservation actions to be “reactive”. In this dissertation I explore the relation between plant rarity and anthropogenic pressures (land transformation and use), biophysical factors, and plant traits in KwaZulu-Natal Province. Rarity was defined as the product of plant species abundance (population size) and its distribution (extent of occurrence). A number of a priori hypotheses regarding plant rarity were developed from the literature and these were then tested on a sample of plant species from KwaZulu- Natal. Species were selected in a stratified random manner to include species from different levels of threat and rarity or commonness. As the interest of this study was KwaZulu-Natal, only KwaZulu-Natal records were used for the analysis. Although the study suffered from a paucity of data particularly on the biological traits and behaviour of each species I was able to explore rarity in terms of seed dispersal distance, stress tolerance, habitat specificity and ecological niche width. I also explored potential island effects based on a species affinity to isolated erosional land surfaces and the anthropogenic effects of utilization and land transformation. To get an initial insight into relations, rarity was compared with each explanatory variable independently prior to using a multiple regression analysis approach aimed at understanding the potential interactive effects of suitable variables on rarity. Three different analytical techniques were used to provide a more robust understanding of the variable associations. These included Regression tree analysis (CART Salford Systems Inc., USA) and two generalized linear regression approaches; Generalized Linear Modelling (GLM) and Generalized Additive Modelling (GAM). All three multiple regression methods indicated that niche width had the strongest influence on rarity. Although Land Surface was shown to be the second strongest variable this, according to the GLM and GAM analyses, was due to a ii positive correlation between species with no affinity to land surface and species commonness. Visual representation of the regression tree analysis showed inconsistent partitioning of this variable throughout the tree indicating that land surfaces are not good predictors of rarity. Although the relation between Rarity Index and Habitat Transformation is not linear it was shown to be significant (p <0.1(p=0.0549)) after “smoothing” in GAM analysis. A smoothing curve on the bivariate analysis and the regression tree analysis indicated that species start to become rare after approximately 36% of their habitat is transformed. While GLM and GAM showed little or no relation between life history, dispersal distance, habitat specificity and rarity, the regression tree selected habitat specificity as the third most important splitter in the tree and dispersal distance was selected as a primary splitter for species with a niche width of greater than four. These differences observed in the three multiple regression analyses highlight the value of using more than one method to explore relations in ecological data. Considering all three analyses Niche Width is the strongest determinant of Rarity in KwaZulu-Natal, followed by Habitat Transformation and then Habitat Specificity. This improved understanding of the determinants of rarity will enhance our ability to prioritise plant species for conservation action. Key Words: ecological niche width, habitat specificity, habitat transformation, rarity, seed dispersal distance, stress tolerance, human use. iii ACKNOWLEDGEMENTS Thanks to my three precious children; Kate, Meg and Murray for their encouragement, support and understanding. It’s not easy to have a working and studying mum! To Prof. Ed Witkowski my university supervisor, thank you for all your advice and assistance and for your patience and understanding throughout my thesis. Thanks to all my colleagues and friends in the Biodiversity Division at Ezemvelo KZN Wildlife; for the amazing support that I have received from each one of you. Thanks to Greg Botha from the Council of Geoscience for his advice and assistance And last but certainly not least I would like to thank my ex (retired) Boss and mentor Dr Pete Goodman for his encouragement, guidance, excellent advice and patience (well mostly!) throughout this part of my journey of learning. Words cannot express my gratitude. iv Contents DECLARATION ................................................................................................................ i ABSTRACT ..................................................................................................................... ii ACKNOWLEDGEMENTS ............................................................................................... iv 1. Introduction ......................................................................................................... 1 1.1. Defining Plant Rarity ................................................................................ 3 1.2. Drivers of Rarity ....................................................................................... 6 1.2.1. Abiotic Factors ............................................................................. 7 1.2.2. Plant Traits ..................................................................................11 1.2.3. Anthropogenic Factors ................................................................14 1.2.4. Overall objective of the study and hypotheses to be tested on causes of rarity in KwaZulu-Natal ................................17 2. Methods .............................................................................................................19 2.1. Study Area..............................................................................................19 2.2. Data Collection .......................................................................................19 2.3. Derivation of Variables............................................................................20 2.3.1. Rarity Index .................................................................................20 2.3.2. Ecological Niche Width Measurement .........................................21 2.3.3. Habitat Specificity .......................................................................22 2.3.4. Dispersal Distance ......................................................................22 2.3.5. Life History Strategy ....................................................................23 2.3.6. Geological Land Surfaces ...........................................................24 v 2.3.7. Human Use .................................................................................25 2.3.8. Range Transformation ................................................................25 2.4. Data Exploration .....................................................................................26 2.4.1. Rarity Index .................................................................................26 2.4.2. Ecological Niche Width ...............................................................27 2.4.3. Habitat Specificity .......................................................................28 2.4.4. Dispersal Distance ......................................................................28 2.4.5. Life History Strategy ....................................................................29 2.4.6. Geological Land Surfaces ...........................................................31 2.4.7. Human Use .................................................................................34 2.4.8. Range Transformation ................................................................35 2.5. Data Analyses Approach ........................................................................36 2.5.1. Bivariate Analysis ........................................................................36 2.5.2. Regression Tree Analysis ...........................................................38 2.5.3. Generalized Linear Regression ...................................................39 3. Results ...............................................................................................................43 3.1. Results of Bivariate Analyses .................................................................43 3.1.1. Ecological Niche Width ...............................................................43 3.1.2. Habitat Specificity .......................................................................44 3.1.3. Dispersal Distance ......................................................................45 3.1.4.
Recommended publications
  • News from the CREW
    Volume 6 • March 200 News from the CREW lthough 2009 has been a Asteraceae family) in full flower. REW, the Custodians of Areally challenging year with These plants are usually rather C Rare and Endangered the global recession having had inconspicuous and are very hard Wildflowers, is a programme a heavy impact on all of us, it to spot when not flowering, so that involves volunteers from we were very lucky to catch it could not break the strong spir- the public in the monitoring it of CREW. Amidst the great in flower. The CREW team has taken a special interest in the and conservation of South challenges we came up tops genus Marasmodes (we even Africa’s threatened plants. once again, with some excep- have a day in April dedicated to CREW aims to capacitate a tionally great discoveries. the monitoring of this genus) network of volunteers from as they all occur in the lowlands a range of socio-economic Our first great adventure for and are severely threatened. I backgrounds to monitor the year took place in the knew from the herbarium speci- and conserve South Afri- Villiersdorp area. We had to mens that there have not been ca’s threatened plant spe- collect flowering material of any collections of Marasmodes Prismatocarpus lycioides, a data cies. The programme links from the Villiersdorp area and volunteers with their local deficient species in the Campan- was therefore very excited conservation agencies and ulaceae family. We rediscovered about this discovery. As usual, this species in the area in 2008 my first reaction was: ‘It’s a particularly with local land and all we had to go on was a new species!’ but I soon so- stewardship initiatives to en- scrappy nonflowering branch.
    [Show full text]
  • The Flora Protection Act, 2000 Legal Notice No.10 of 2000
    The Flora Protection Act, 2000 Legal Notice No.10 of 2000 Gazetted as VOL. XXXVI I I MBABANE, Friday, Septem ber 22nd., 2000 [ No. 606] Presented by the Minister for Agriculture and Cooperatives MEMORANDUM OF OBJECTS AND REASONS The purpose of this Bill is to repeal and replace the Flora Protection Act No. 45 of 1952 so as to provide for m ore effective protection of flora and to provide for m atters incidental thereto. P. M. DLAMI NI Attorney General A BI LL entitled An Act to protect indigenous flora and to provide for m atters incidental thereto. ENACTED by the King and the Parliam ent of Swaziland. Short title and commencement 1. This Act m ay be cited as the Flora Protection Act, 2000 and shall com e into force on such date as the Minister m ay, by notice in the Gazette, appoint. Interpretation 2. I n this Act, unless the context otherwise requires: - "Authority" m eans the Swaziland Environm ent Authority established by the Swaziland Environm ent Authority Act No. 15 of 1992; "cultivate" m eans to prom ote, stim ulate or foster the growth of a plant, or plant m aterial (including seed) obtained lawfully in term s of this Act, and "cultivated" and "cultivation" have corresponding m eanings; "endem ic flora" m eans any flora whose natural distribution is restricted to the boundaries of Swaziland; "flora reserve" m eans a reserve established in term s of Section 3; "indigenous flora" m eans any plant whose natural distribution is Southern Africa including Swaziland; "land" includes land with or without buildings thereon; "Minister" m eans the Minister responsible for Flora; "plant" m eans any vegetative or reproductive growth including fungi, algae, m osses, lichens, liverworts, ferns, fern allies or seed plant whether living or dead; "owner" m eans: - a.
    [Show full text]
  • اندام زایی مستقیم از ریزنمونه‌‌های بخش‌‌های رویشی L. Gerbera Jamesonii رقم
    گل و گیاهان زینتی )1399(، 5 )1(: 1 - 12 مقاله پژوهشی Nilo Gerbera jamesonii L. اندام زایی مستقیم از ریزنمونههای بخشهای رویشی رقم *2 *1 1 مهدی ایزدی ، نیما احمدی ، پژمان آزادی 1. گروه علوم باغبانی دانشکده کشاورزی دانشگاه تربیت مدرس، تهران 2. بخش مهندسی ژنتیک و ایمنی زیستی، پژوهشگاه بیوتکنولوژی کشاورزی، سازمان تحقیقات، آموزش و ترویج کشاورزی، کرج [email protected] تاریخ دریافت: 20/8/98، تاریخ پذیرش: 1400/2/13 چکیده برای موفقیت استفاده از فنون انتقال ژن، دستیابی به روش کارآمد باززایی ضروری است. در این پژوهش در آزمایش نخست، اندام زایی مستقیم ژربرا از ریزنمونههای برگ کامل، دمبرگ، دمبرگ خراشدار و ﻻیه یاخته ای نازک )Thin Cell ،TCL Layer( و ترکیب تنظیم کننده رشد BAP )0، 1، 2 و 3 میلی گرم در لیتر(، TDZ ) 0، 1/0، 5/0، 8/0 و 1 میلی گرم در لیتر( و IAA با غلظت 1/0 میلی گرم در لیتر در دو حالت نوری )تاریکی به مدت یک ماه و 16 ساعت روشنایی/8 ساعت تاریکی( مورد ارزیابی قرار گرفت. همچنین در آزمایش دوم، باززایی سه برش اول ریزنمونه ﻻیه یاختهای نازک از انتهای دمبرگ متصل به گیاه در ترکیب هورمونی BAP )0، 1 و 2 میلی گرم در لیتر(، TDZ ) 0 و 5/0 میلی گرم در لیتر( و IAA )0، 1/0 و 3/0 میلی گرم در لیتر( مورد ارزیابی قرار گرفت. در تمام آزمایش ها، محیط کشت MS استفاده شد. نتیجهها نشان داد که بهترین محیط باززایی برای ریزنمونههای برگ کامل )2/33% باززایی، 66/3 شاخه(، دمبرگ ) 66/86% باززایی، 33/33 شاخه(، دمبرگ خراش دار )2/53% باززایی، 33/10 شاخه( محیط دارای 2 میلی گرم در لیتر BAP در روشنایی و برای ریزنمونه TCL Downloaded from flowerjournal.ir at 16:56 +0330 on Tuesday September 28th 2021 )6/46% باززایی، 29 شاخه(، 2 میلی گرم در لیتر BAP به همراه 5/0 میلی گرم در لیتر TDZ در تاریکی میباشد.
    [Show full text]
  • Complete Chloroplast Genomes Shed Light on Phylogenetic
    www.nature.com/scientificreports OPEN Complete chloroplast genomes shed light on phylogenetic relationships, divergence time, and biogeography of Allioideae (Amaryllidaceae) Ju Namgung1,4, Hoang Dang Khoa Do1,2,4, Changkyun Kim1, Hyeok Jae Choi3 & Joo‑Hwan Kim1* Allioideae includes economically important bulb crops such as garlic, onion, leeks, and some ornamental plants in Amaryllidaceae. Here, we reported the complete chloroplast genome (cpDNA) sequences of 17 species of Allioideae, fve of Amaryllidoideae, and one of Agapanthoideae. These cpDNA sequences represent 80 protein‑coding, 30 tRNA, and four rRNA genes, and range from 151,808 to 159,998 bp in length. Loss and pseudogenization of multiple genes (i.e., rps2, infA, and rpl22) appear to have occurred multiple times during the evolution of Alloideae. Additionally, eight mutation hotspots, including rps15-ycf1, rps16-trnQ-UUG, petG-trnW-CCA , psbA upstream, rpl32- trnL-UAG , ycf1, rpl22, matK, and ndhF, were identifed in the studied Allium species. Additionally, we present the frst phylogenomic analysis among the four tribes of Allioideae based on 74 cpDNA coding regions of 21 species of Allioideae, fve species of Amaryllidoideae, one species of Agapanthoideae, and fve species representing selected members of Asparagales. Our molecular phylogenomic results strongly support the monophyly of Allioideae, which is sister to Amaryllioideae. Within Allioideae, Tulbaghieae was sister to Gilliesieae‑Leucocoryneae whereas Allieae was sister to the clade of Tulbaghieae‑ Gilliesieae‑Leucocoryneae. Molecular dating analyses revealed the crown age of Allioideae in the Eocene (40.1 mya) followed by diferentiation of Allieae in the early Miocene (21.3 mya). The split of Gilliesieae from Leucocoryneae was estimated at 16.5 mya.
    [Show full text]
  • Towards an Updated Checklist of the Libyan Flora
    Towards an updated checklist of the Libyan flora Article Published Version Creative Commons: Attribution 3.0 (CC-BY) Open access Gawhari, A. M. H., Jury, S. L. and Culham, A. (2018) Towards an updated checklist of the Libyan flora. Phytotaxa, 338 (1). pp. 1-16. ISSN 1179-3155 doi: https://doi.org/10.11646/phytotaxa.338.1.1 Available at http://centaur.reading.ac.uk/76559/ It is advisable to refer to the publisher’s version if you intend to cite from the work. See Guidance on citing . Published version at: http://dx.doi.org/10.11646/phytotaxa.338.1.1 Identification Number/DOI: https://doi.org/10.11646/phytotaxa.338.1.1 <https://doi.org/10.11646/phytotaxa.338.1.1> Publisher: Magnolia Press All outputs in CentAUR are protected by Intellectual Property Rights law, including copyright law. Copyright and IPR is retained by the creators or other copyright holders. Terms and conditions for use of this material are defined in the End User Agreement . www.reading.ac.uk/centaur CentAUR Central Archive at the University of Reading Reading’s research outputs online Phytotaxa 338 (1): 001–016 ISSN 1179-3155 (print edition) http://www.mapress.com/j/pt/ PHYTOTAXA Copyright © 2018 Magnolia Press Article ISSN 1179-3163 (online edition) https://doi.org/10.11646/phytotaxa.338.1.1 Towards an updated checklist of the Libyan flora AHMED M. H. GAWHARI1, 2, STEPHEN L. JURY 2 & ALASTAIR CULHAM 2 1 Botany Department, Cyrenaica Herbarium, Faculty of Sciences, University of Benghazi, Benghazi, Libya E-mail: [email protected] 2 University of Reading Herbarium, The Harborne Building, School of Biological Sciences, University of Reading, Whiteknights, Read- ing, RG6 6AS, U.K.
    [Show full text]
  • Chapter 1 General Introduction
    MICROPROPAGATION AND MEDICINAL PROPERTIES OF BARLERIA GREENII AND HUERNIA HYSTRIX BY STEPHEN OLUWASEUN AMOO (M.Sc. OBAFEMI AWOLOWO UNIVERSITY, NIGERIA) Submitted in fulfilment of the requirements for the degree of DOCTOR OF PHILOSOPHY Research Centre for Plant Growth and Development School of Biological and Conservation Sciences University of KwaZulu-Natal, Pietermaritzburg November 2009 TABLE OF CONTENTS STUDENT DECLARATION ................................................................................... vii DECLARATION BY SUPERVISORS ................................................................... viii FACULTY OF SCIENCE & AGRICULTURE DECLARATION 1 - PLAGIARISM.... ix FACULTY OF SCIENCE & AGRICULTURE DECLARATION 2 - PUBLICATIONS x ACKNOWLEDGEMENTS ..................................................................................... xii LIST OF FIGURES ............................................................................................... xiii LIST OF TABLES .................................................................................................xvii LIST OF ABBREVIATIONS .................................................................................. xix ABSTRACT….. ....................................................................................................xxii Chapter 1 General introduction ........................................................................ 1 1.1 Use of plants in horticulture and traditional medicine .......................... 1 1.2 The need for conservation of plant species ..........................................
    [Show full text]
  • Narcissus Pests
    Bulletin 51 HMSO 13s Od [65p] net Narcissus Pests Ministry of Agriculture, Fisheries and Food MINISTRY OF AGRICULTURE, FISHERIES AND FOOD Narcissus Pests Bulletin 51 LONDON HER MAJESTY'S STATIONERY OFFICE 197o First published June 1932 Sixth edition 197o The Ministry does not accept responsibility for any of the private or trade advertisements included in this publication. SBN 11 240351 4 Foreword THE growers of Narcissus have been very fortunate in that the pests of this valuable crop have received specialist attention for nearly forty years. Names like W. E. H. Hodson and L. N. Staniland, both past authors of this Bulletin, rank high in the list of pioneer researchers on bulb pests in this country. They have been followed with no less enthusiasm by the con- tributors to this sixth edition which brings up-to-date our knowledge of the important pests of the crop and tested and practical methods of control. Although the present Bulletin mainly follows the pattern laid down by Mr. Hodson in 1932 many sections have been extensively rewritten. Mr. H. C. Woodville has dealt with narcissus flies as he did in 1958, and Mr. H. G. Morgan with detection of pests in the field, stem and other eelworms and their control. Mr. A. L. Winfield covered bulb scale mite and the general problem of hot-water treatment of bulbs, and chemical dips to control stem eelworm, and also contributed the notes on miscellaneous pests. Mr. P. Aitkenhead dealt with bulb mites. Mr. J. F. Southey provided the section dealing with eelworms as vectors of virus diseases of the crop.
    [Show full text]
  • Phytosociology of the Upper Orange River Valley, South Africa
    PHYTOSOCIOLOGY OF THE UPPER ORANGE RIVER VALLEY, SOUTH AFRICA A SYNTAXONOMICAL AND SYNECOLOGICAL STUDY M.J.A.WERGER PROMOTOR: Prof. Dr. V. WESTHOFF PHYTOSOCIOLOGY OF THE UPPER ORANGE RIVER VALLEY, SOUTH AFRICA A SYNTAXONOMICAL AND SYNECOLOGICAL STUDY PROEFSCHRIFT TER VERKRUGING VAN DE GRAAD VAN DOCTOR IN DE WISKUNDE EN NATUURWETENSCHAPPEN AAN DE KATHOLIEKE UNIVERSITEIT TE NIJMEGEN, OP GEZAG VAN DE RECTOR MAGNIFICUS PROF. MR. F J.F.M. DUYNSTEE VOLGENS BESLUIT VAN HET COLLEGE VAN DECANEN IN HET OPENBAAR TE VERDEDIGEN OP 10 MEI 1973 DES NAMIDDAGS TE 4.00 UUR. DOOR MARINUS JOHANNES ANTONIUS WERGER GEBOREN TE ENSCHEDE 1973 V&R PRETORIA aan mijn ouders Frontiepieae: Panorama drawn by R.J. GORDON when he discovered the Orange River at "De Fraaye Schoot" near the present Bethulie, probably on the 23rd December 1777. I. INTRODUCTION When the government of the Republic of South Africa in the early sixties decided to initiate a comprehensive water development scheme of its largest single water resource, the Orange River, this gave rise to a wide range of basic and applied scientific sur­ veys of that area. The reasons for these surveys were threefold: (1) The huge capital investment on such a water scheme can only be justified economically on a long term basis. Basic to this is that the waterworks be protected, over a long period of time, against inefficiency caused by for example silting. Therefore, management reports of the catchment area should.be produced. (2) In order to enable effective long term planning of the management and use of the natural resources in the area it is necessary to know the state of the local ecosystems before a major change is instituted.
    [Show full text]
  • Northwest Highlands Bioregion Technical Descriptions
    Department of Environment and Science Regional Ecosystem Technical Descriptions Technical descriptions provide a detailed description of the full range in structure and floristic composition of regional ecosystems (e.g. 1.1.10) and their component vegetation communities (e.g. 1.11.10a, 1.11.10b). The descriptions are compiled using site survey data from the Queensland Herbarium’s CORVEG database. Distribution maps, representative images (if available) and the pre-clearing and remnant area (hectares) of each vegetation community derived from the regional ecosystem mapping (spatial) data are included. The technical descriptions should be used in conjunction with the fields from the regional ecosystem description database (REDD) for a full description of the regional ecosystem. Quantitative site data from relatively undisturbed sites are extracted from CORVEG and summarized to provide information specific to each vegetation community. Technical descriptions include the attributes: tree canopy height and cover and native plant species composition of the predominant layer, which are used to assess the remnant status of vegetation under the Vegetation Management Act 1999. However, as technical descriptions reflect the full range in structure and floristic composition across the climatic, natural disturbance and geographic range of the regional ecosystem, local reference sites should be used where possible (Neldner et al. 2005 section 3.3.3). The technical descriptions are subject to review and are updated as additional data becomes available.
    [Show full text]
  • Bark Medicines Used in Traditional Healthcare in Kwazulu-Natal, South Africa: an Inventory
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector South African Journal of Botany 2003, 69(3): 301–363 Copyright © NISC Pty Ltd Printed in South Africa — All rights reserved SOUTH AFRICAN JOURNAL OF BOTANY ISSN 0254–6299 Bark medicines used in traditional healthcare in KwaZulu-Natal, South Africa: An inventory OM Grace1, HDV Prendergast2, AK Jäger3 and J van Staden1* 1 Research Centre for Plant Growth and Development, School of Botany and Zoology, University of Natal Pietermaritzburg, Private Bag X01, Scottsville 3209, South Africa 2 Centre for Economic Botany, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AE, United Kingdom 3 Department of Medicinal Chemistry, Royal Danish School of Pharmacy, 2 Universitetsparken, 2100 Copenhagen 0, Denmark * Corresponding author, e-mail: [email protected] Received 13 June 2002, accepted in revised form 14 March 2003 Bark is an important source of medicine in South Overlapping vernacular names recorded in the literature African traditional healthcare but is poorly documented. indicated that it may be unreliable in local plant identifi- From thorough surveys of the popular ethnobotanical cations. Most (43%) bark medicines were documented literature, and other less widely available sources, 174 for the treatment of internal ailments. Sixteen percent of species (spanning 108 genera and 50 families) used for species were classed in threatened conservation cate- their bark in KwaZulu-Natal, were inventoried. gories, but conservation and management data were Vernacular names, morphological and phytochemical limited or absent from a further 62%. There is a need for properties, usage and conservation data were captured research and specialist publications to address the in a database that aimed to synthesise published infor- gaps in existing knowledge of medicinal bark species mation of such species.
    [Show full text]
  • Biodiversity Sector Plan for the Zululand District Municipality, Kwazulu-Natal
    EZEMVELO KZN WILDLIFE Biodiversity Sector Plan for the Zululand District Municipality, KwaZulu-Natal Technical Report February 2010 The Project Team Thorn-Ex cc (Environmental Services) PO Box 800, Hilton, 3245 Pietermaritzbur South Africa Tel: (033) 3431814 Fax: (033) 3431819 Mobile: 084 5014665 [email protected] Marita Thornhill (Project Management & Coordination) AFZELIA Environmental Consultants cc KwaZulu-Natal Western Cape PO Box 95 PO Box 3397 Hilton 3245 Cape Town 8000 Tel: 033 3432931/32 Tel: 072 3900686 Fax: 033 3432033 or Fax: 086 5132112 086 5170900 Mobile: 084 6756052 [email protected] [email protected] Wolfgang Kanz (Biodiversity Specialist Coordinator) John Richardson (GIS) Monde Nembula (Social Facilitation) Tim O’Connor & Associates P.O.Box 379 Hilton 3245 South Africa Tel/ Fax: 27-(0)33-3433491 [email protected] Tim O’Connor (Biodiversity Expert Advice) Zululand Biodiversity Sector Plan (February 2010) 1 Executive Summary The Biodiversity Act introduced several legislated planning tools to assist with the management and conservation of South Africa’s biological diversity. These include the declaration of “Bioregions” and the publication of “Bioregional Plans”. Bioregional plans are usually an output of a systematic spatial conservation assessment of a region. They identify areas of conservation priority, and constraints and opportunities for implementation of the plan. The precursor to a Bioregional Plan is a Biodiversity Sector Plan (BSP), which is the official reference for biodiversity priorities to be taken into account in land-use planning and decision-making by all sectors within the District Municipality. The overall aim is to avoid the loss of natural habitat in Critical Biodiversity Areas (CBAs) and prevent the degradation of Ecological Support Areas (ESAs), while encouraging sustainable development in Other Natural Areas.
    [Show full text]
  • Newsletter No. 4 Autumn 2005
    The Southern African Bulb Group Newsletter No. 4 Autumn 2005 The Southern African Bulb Group was initiated by a group of enthusiasts on April 4th 2004. The objective of the group is to further the understanding of the cultivation of Southern African bulbs, where `bulbs' is used in the broad sense to encompass bulb-, corm- and tuber- possessing Southern African plants, including `dicots' such as Oxalis. In the first instance the group will be run on an informal basis, with an initial subscription of £5 invited from participants. Committee: Robin Attrill (Membership secretary and Newsletter editor), Margaret Corina (Treasurer), Stefan Rau and Terry Smale Editorial This issue of the newsletter contains a report of the meeting of the group held at Rupert Bowlby's Nursery on April 9th 2005, an article on Crinum moorei by David Corina, information on recent literature of interest to growers of Southern African bulbs, and an updated list of suppliers of seed and bulbs/corms of Southern African geophytes. In addition a balance sheet covering the first year of operation of the group is attached. With respect to the supplier list, please let me know if you are aware of other sources which should be included. As I have previously stated the group welcomes articles, and suggestions, for inclusion in future newsletters. Contributions (hand/typewritten and electronic are acceptable!) are urgently required and should be sent to the newsletter editor at 17 Waterhouse Moor, Harlow, Essex, CM18 6BA (Email [email protected] ) Publication of the next issue is scheduled for December 2005. Report on visit to Rupert Bowlby - Saturday 9 th April 2005 by David Corina About 20 members attended the event, and the Group would like to thank Rupert for his hospitality at the event and for opening his collection to the public gaze.
    [Show full text]