Queensland Environmental Offsets Policy Version 1.10

Total Page:16

File Type:pdf, Size:1020Kb

Queensland Environmental Offsets Policy Version 1.10 Queensland Environmental Offsets Policy Page 1 of 68 • EPP/2021/1658 • Version 1.10 • Last Reviewed: 03/03/2021 Department of Environment and Science Page 1 of 68 • EPP/2021/1658 • Version 1.10 • Last Reviewed: 03/03/2021 Department of Environment and Science Prepared by: Conservation Policy and Planning, Department of Environment and Science © State of Queensland, 2021. The Queensland Government supports and encourages the dissemination and exchange of its information. The copyright in this publication is licensed under a Creative Commons Attribution 3.0 Australia (CC BY) licence. Under this licence you are free, without having to seek our permission, to use this publication in accordance with the licence terms. You must keep intact the copyright notice and attribute the State of Queensland as the source of the publication. For more information on this licence, visit http://creativecommons.org/licenses/by/3.0/au/deed.en Disclaimer While this document has been prepared with care it contains general information and does not profess to offer legal, professional or commercial advice. The Queensland Government accepts no liability for any external decisions or actions taken on the basis of this document. Persons external to the Department of Environment and Science should satisfy themselves independently and by consulting their own professional advisors before embarking on any proposed course of action. If you need to access this document in a language other than English, please call the Translating and Interpreting Service (TIS National) on 131 450 and ask them to telephone Library Services on +61 7 3170 5470. This publication can be made available in an alternative format (e.g. large print or audiotape) on request for people with vision impairment; phone +61 7 3170 5470 or email <[email protected]>. March 2021 Page 2 of 68 • EPP/2021/1658 • Version 1.10 • Last Reviewed: 03/03/2021 Department of Environment and Science Contents Introduction .............................................................................................................................................. 5 Chapter 1 ................................................................................................................................................. 6 1.1 Purpose, application and scope ................................................................................................... 6 1.1.1 Purpose ................................................................................................................................................... 6 1.1.2 Application and scope ............................................................................................................................. 6 1.1.3 Relationship between Commonwealth, state, and local government offsets ......................................... 6 1.1.4 Self-administered offset code of compliance .......................................................................................... 7 1.2 Prescribed environmental matters ............................................................................................... 8 1.2.1 Specific criteria for matters of state environmental significance ............................................................. 8 1.3 Offset principles ........................................................................................................................... 9 1.4 Offset requirements ..................................................................................................................... 9 1.5 Supporting materials .................................................................................................................... 9 Chapter 2: Prescribed environmental matters (other than protected areas) ............................................ 10 2.1 Application of this chapter .......................................................................................................... 10 2.2 Context ...................................................................................................................................... 10 2.2.1 What all offsets must achieve under Chapter 2 .................................................................................... 10 2.2.2 Size and scale of the offset ................................................................................................................... 11 2.3 Types of offsets ......................................................................................................................... 11 2.3.1 Proponent-driven offsets ....................................................................................................................... 11 2.3.2 Financial settlement offsets .................................................................................................................. 15 2.4 Delivery of offsets ...................................................................................................................... 16 2.4.1 Notification of offset delivery ................................................................................................................. 16 2.4.2 Agreed delivery arrangement ................................................................................................................ 16 2.4.3 Staged offset delivery............................................................................................................................ 17 2.4.4 Strategic Offset Investment Corridors ................................................................................................... 18 2.4.5 Advanced offsets ................................................................................................................................... 18 Chapter 2A Koala habitat in South East Queensland .......................................................................... 19 2A.1 Application of this chapter ...................................................................................................... 19 2A.2 Significant residual impact ...................................................................................................... 19 2A.3 Electing offset delivery ............................................................................................................ 19 2A.4 Specific requirements for koala habitat offsets in SEQ ........................................................... 20 2A.5 Financial settlement offsets .................................................................................................... 20 2A.6 Offsets and habitat restoration for koala habitat in SEQ ......................................................... 21 Chapter 3 Protected areas ................................................................................................................ 22 3.1 Application of this chapter .......................................................................................................... 22 3.2 Impacts to be offset ................................................................................................................... 22 3.3 Determining offset liability .......................................................................................................... 23 3.4 Offset delivery............................................................................................................................ 23 Chapter 4 Review and amendment .................................................................................................. 24 4.1 Evaluation and review ................................................................................................................ 24 4.2 Policy amendment ..................................................................................................................... 24 Appendix 1 Self-administered code of compliance .......................................................................... 25 Appendix 2 Bioregions of Queensland ............................................................................................. 26 Page 3 of 68 • EPP/2021/1658 • Version 1.10 • Last Reviewed: 03/03/2021 Department of Environment and Science Appendix 3 Defined distance ........................................................................................................... 27 Appendix 4 Financial Settlement Offset Calculation Methodology ................................................... 30 4.1 Purpose ..................................................................................................................................... 30 4.2 Terms specific to the Financial Settlement Offset Calculation Methodology ............................... 30 4.3 Calculation methodology ........................................................................................................... 31 4.3.1 Introduction ........................................................................................................................................... 31 4.3.2 Summary of calculation methodology ................................................................................................... 31 4.3.3 Section .................................................................................................................................................. 32 4.3.4 Distinct Matter Area............................................................................................................................... 32 4.3.5 Distinct Matter Area guiding principles.................................................................................................
Recommended publications
  • IMPACTS of the UNPRECEDENTED 2019-20 BUSHFIRES on AUSTRALIAN ANIMALS NOVEMBER 2020 Acknowledgements
    AUSTRALIA IMPACTS OF THE UNPRECEDENTED 2019-20 BUSHFIRES ON AUSTRALIAN ANIMALS NOVEMBER 2020 Acknowledgements WWF-Australia acknowledges the Traditional Owners of the land on which we work and their continuing connection to their lands, waters, and culture. We pay our respects to Elders – past and present, and their emerging leaders. WWF-Australia is part of the world’s largest conservation network. WWF-Australia has been working to create a world where people live in harmony with nature since 1978. WWF’s mission is to stop the degradation of the Earth’s CONTENTS natural environment and to build a future in which humans live in harmony with nature, by conserving the world’s biological diversity, ensuring that the use of renewable natural resources is sustainable, and promoting the EXECUTIVE SUMMARY 6 reduction of pollution and wasteful consumption. Prepared by Lily M van Eeden, Dale Nimmo, Michael BACKGROUND 10 Mahony, Kerryn Herman, Glenn Ehmke, Joris Driessen, James O’Connor, Gilad Bino, Martin Taylor and Chris 1.1 Fire in Australia 10 Dickman for WWF-Australia 1.2 The 2019-20 bushfire season 10 We are grateful to the researchers who provided data or feedback on the report. These include: 1.3 Scope of this study 12 • Eddy Cannella 1.3.1 Taxa included 14 • David Chapple 1.3.2 Study area 14 • Hugh Davies • Deanna Duffy 1.4 Limitations 17 • Hugh Ford • Chris Johnson 1. MAMMALS 18 • Brad Law 2.1 Methods 18 • Sarah Legge • David Lindenmayer 2.1.1 Most mammals 18 • Simon McDonald 2.1.2 Koalas 19 • Damian Michael 2.2 Results 22 • Harry Moore • Stewart Nichol 2.3 Caveats 22 • Alyson Stobo-Wilson • Reid Tingley 2.
    [Show full text]
  • The Nature of Northern Australia
    THE NATURE OF NORTHERN AUSTRALIA Natural values, ecological processes and future prospects 1 (Inside cover) Lotus Flowers, Blue Lagoon, Lakefield National Park, Cape York Peninsula. Photo by Kerry Trapnell 2 Northern Quoll. Photo by Lochman Transparencies 3 Sammy Walker, elder of Tirralintji, Kimberley. Photo by Sarah Legge 2 3 4 Recreational fisherman with 4 barramundi, Gulf Country. Photo by Larissa Cordner 5 Tourists in Zebidee Springs, Kimberley. Photo by Barry Traill 5 6 Dr Tommy George, Laura, 6 7 Cape York Peninsula. Photo by Kerry Trapnell 7 Cattle mustering, Mornington Station, Kimberley. Photo by Alex Dudley ii THE NATURE OF NORTHERN AUSTRALIA Natural values, ecological processes and future prospects AUTHORS John Woinarski, Brendan Mackey, Henry Nix & Barry Traill PROJECT COORDINATED BY Larelle McMillan & Barry Traill iii Published by ANU E Press Design by Oblong + Sons Pty Ltd The Australian National University 07 3254 2586 Canberra ACT 0200, Australia www.oblong.net.au Email: [email protected] Web: http://epress.anu.edu.au Printed by Printpoint using an environmentally Online version available at: http://epress. friendly waterless printing process, anu.edu.au/nature_na_citation.html eliminating greenhouse gas emissions and saving precious water supplies. National Library of Australia Cataloguing-in-Publication entry This book has been printed on ecoStar 300gsm and 9Lives 80 Silk 115gsm The nature of Northern Australia: paper using soy-based inks. it’s natural values, ecological processes and future prospects. EcoStar is an environmentally responsible 100% recycled paper made from 100% ISBN 9781921313301 (pbk.) post-consumer waste that is FSC (Forest ISBN 9781921313318 (online) Stewardship Council) CoC (Chain of Custody) certified and bleached chlorine free (PCF).
    [Show full text]
  • Land Zones of Queensland
    P.R. Wilson and P.M. Taylor§, Queensland Herbarium, Department of Science, Information Technology, Innovation and the Arts. © The State of Queensland (Department of Science, Information Technology, Innovation and the Arts) 2012. Copyright inquiries should be addressed to <[email protected]> or the Department of Science, Information Technology, Innovation and the Arts, 111 George Street, Brisbane QLD 4000. Disclaimer This document has been prepared with all due diligence and care, based on the best available information at the time of publication. The department holds no responsibility for any errors or omissions within this document. Any decisions made by other parties based on this document are solely the responsibility of those parties. Information contained in this document is from a number of sources and, as such, does not necessarily represent government or departmental policy. If you need to access this document in a language other than English, please call the Translating and Interpreting Service (TIS National) on 131 450 and ask them to telephone Library Services on +61 7 3224 8412. This publication can be made available in an alternative format (e.g. large print or audiotape) on request for people with vision impairment; phone +61 7 3224 8412 or email <[email protected]>. ISBN: 978-1-920928-21-6 Citation This work may be cited as: Wilson, P.R. and Taylor, P.M. (2012) Land Zones of Queensland. Queensland Herbarium, Queensland Department of Science, Information Technology, Innovation and the Arts, Brisbane. 79 pp. Front Cover: Design by Will Smith Images – clockwise from top left: ancient sandstone formation in the Lawn Hill area of the North West Highlands bioregion – land zone 10 (D.
    [Show full text]
  • The Land and Its People
    CHAPTER 2 THE LAND AND ITS PEOPLE The environment of Northern Australia can seem Earlier settlers in southern Australia may have 1 Boys fishing, Elin Beach, an odd mix. While it has an intimate familiarity found the native vegetation there strange too Hopevale, Cape York Peninsula. Photo by to local Indigenous people, to those accustomed but were able to transform it to a more homely Kerry Trapnell to temperate Australia, it has a strange character. fashion, with European plants and animals. That Fires seem too pervasive and frequent; many has not been the case in the North; for most of the native trees are at least semi-deciduous Australians, it remains a foreign and unfamiliar (they lose their leaves to save water during the landscape, and even its society seems different. Dry season); there is too much grass, some of it taller than a person; the eucalypts don’t have In this chapter we provide an overview of the that familiar evocative reassuring smell; even North’s geography and consider how it differs the colours of the bush seem somewhat harder. from the rest of Australia. We also introduce Parts of the landscape seem decidedly African its regions, weather, landscape features and in flavour, with the boab trees but without the people. Finally, we discuss the North’s current lions. Indeed, the link across the Indian Ocean land tenure and economies, as well as the way is explicitly marked: the Kimberley region is in which the land is managed. These facts and named for its resemblance to the landscape figures provide the background necessary to in southern Africa of the same name.
    [Show full text]
  • Koala Context
    IBRA Regions: AUA = Australian Alps CYP BBN = Brigalow Belt North )" Cooktown BBS = Brigalow Belt South CMC = Central Mackay Coast COP = Cobar Peneplain CYP = Cape York Peninsula ") Cairns DEU = Desert Uplands DRP = Darling Riverine Plains WET EIU = Einasleigh Uplands EIU GUP = Gulf Plains GUP MDD = Murray Darling Depression MGD = Mitchell Grass Downs ") Townsville MUL = Mulga Lands NAN = Nandewar NET = New England Tablelands NNC = NSW North Coast )" Hughenden NSS = NSW South Western Slopes ") CMC RIV = Riverina SEC = South East Corner MGD DEU SEH = South Eastern Highlands BBN SEQ = South East Queensland SYB = Sydney Basin ") WET = Wet Tropics )" Rockhampton Longreach ") Emerald ") Bundaberg BBS )" Charleville )" SEQ )" Quilpie Roma MUL ") Brisbane )" Cunnamulla )" Bourke NAN NET ") Coffs Harbour DRP ") Tamworth )" Cobar ") Broken Hill COP NNC ") Dubbo MDD ") Newcastle SYB ") Sydney ") Mildura NSS RIV )" Hay ") Wagga Wagga SEH Adelaide ") ") Canberra ") ") Echuca Albury AUA SEC )" Eden ") Melbourne © Commonwealth of Australia 2014 INDICATIVE MAP ONLY: For the latest departmental information, please refer to the Protected Matters Search Tool and the Species Profiles & Threats Database at http://www.environment.gov.au/biodiversity/threatened/index.html km 0 100 200 300 400 500 IBRA Regions Koala Habitat Context Coastal >= 800mm Rainfall Produced by: Environmental Resources Information Network (2014) Inland < 800mm Rainfall Contextual data source: Geoscience Australia (2006), Geodata Topo 250K Topographic Data and 10M Topographic Data. Department of Sustainability, Environment, Water, Population and Communities (2012). Interim Biogeographic Regionalisation for Australia (IBRA), Version 7. Other data sources: Commonwealth of Australia, Bureau of Meteorology (2003). Mean annual rainfall (30-year period 1961-1990). Caveat: The information presented in this map has been provided by a Department of Sustainability, Environment, Water, Population and Communities (2013).
    [Show full text]
  • Cattle Creek Ecological Assessment Report
    CATTLE CREEK CCCATTLE CCCREEK RRREGIONAL EEECOSYSTEM AND FFFUNCTIONALITY SSSURVEY Report prepared for Santos GLNG Feb 2021 Terrestria Pty Ltd, PO Box 328, Wynnum QLD 4178 Emai : admin"terrestria.com.au This page left blank for double-sided printing purposes. Terrestria Pty Ltd, PO Box 328, Wynnum QLD 4178 Emai : admin"terrestria.com.au Document Control Sheet Project Number: 0213 Project Manager: Andrew Daniel Client: Santos Report Title: Cattle Creek Regional Ecosystem and Functionality Survey Project location: Cattle Creek, Bauhinia, Southern Queensland Project Author/s: Andrew Daniel Project Summary: Assessment of potential ecological constraints to well pad location, access and gathering. Document preparation and distribution history Document version Date Completed Checked By Issued By Date sent to client Draft A 04/09/2020 AD AD 04/09/2020 Draft B Final 02/02/2021 AD AD 02/02/2021 Notice to users of this report CopyrighCopyright: This document is copyright to Terrestria Pty Ltd. The concepts and information contained in this document are the property of Terrestria Pty Ltd. Use or copying of this document in whole or in part without the express permission of Terrestria Pty Ltd constitutes a breach of the Copyright Act 1968. Report LimitationsLimitations: This document has been prepared on behalf of and for the exclusive use of Santos Pty Ltd. Terrestria Pty Ltd accept no liability or responsibility whatsoever for or in respect of any use of or reliance upon this report by any third party. Signed on behalf of Terrestria Pty Ltd Dr Andrew Daniel Managing Director Date: 02 February 2021 Terrestria Pty Ltd File No: 0213 CATTLE CREEK REGIONAL ECOSYSTEM AND FUNCTIONALITY SURVEY Table of Contents 1.0 INTRODUCTION ...............................................................................................................
    [Show full text]
  • The Eucalypts of Northern Australia: an Assessment of the Conservation Status of Taxa and Communities
    The Eucalypts of Northern Australia: An Assessment of the Conservation Status of Taxa and Communities A report to the Environment Centre Northern Territory April 2014 Donald C. Franklin1,3 and Noel D. Preece2,3,4 All photographs are by Don Franklin. Cover photos: Main photo: Savanna of Scarlet-flowered Yellowjacket (Eucalyptus phoenicea; also known as Scarlet Gum) on elevated sandstone near Timber Creek, Northern Territory. Insets: left – Scarlet-flowered Yellowjacket (Eucalyptus phoenicea), foliage and flowers centre – reservation status of eucalypt communities right – savanna of Variable-barked Bloodwood (Corymbia dichromophloia) in foreground against a background of sandstone outcrops, Keep River National Park, Northern Territory Contact details: 1 Ecological Communications, 24 Broadway, Herberton, Qld 4887, Australia 2 Biome5 Pty Ltd, PO Box 1200, Atherton, Qld 4883, Australia 3 Research Institute for Environment and Livelihoods, Charles Darwin University, Darwin, NT 0909, Australia 4 Centre for Tropical Environmental & Sustainability Science (TESS) & School of Earth and Environmental Sciences, James Cook University, PO Box 6811, Cairns, Qld 4870, Australia Copyright © Donald C. Franklin, Noel D. Preece & Environment Centre NT, 2014. This document may be circulated singly and privately for the purpose of education and research. All other reproduction should occur only with permission from the copyright holders. For permissions and other communications about this project, contact Don Franklin, Ecological Communications, 24 Broadway, Herberton, Qld 4887 Australia, email [email protected], phone +61 (0)7 4096 3404. Suggested citation Franklin DC & Preece ND. 2014. The Eucalypts of Northern Australia: An Assessment of the Conservation Status of Taxa and Communities. A report to Kimberley to Cape and the Environment Centre NT, April 2014.
    [Show full text]
  • Human Refugia in Australia During the Last Glacial Maximum and Terminal Pleistocene: a Geospatial Analysis of the 25E12 Ka Australian Archaeological Record
    Journal of Archaeological Science 40 (2013) 4612e4625 Contents lists available at SciVerse ScienceDirect Journal of Archaeological Science journal homepage: http://www.elsevier.com/locate/jas Human refugia in Australia during the Last Glacial Maximum and Terminal Pleistocene: a geospatial analysis of the 25e12 ka Australian archaeological record Alan N. Williams a,*, Sean Ulm b, Andrew R. Cook c, Michelle C. Langley d, Mark Collard e a Fenner School of Environment and Society, The Australian National University, Building 48, Linnaeus Way, Canberra, ACT 0200, Australia b Department of Anthropology, Archaeology and Sociology, School of Arts and Social Sciences, James Cook University, PO Box 6811, Cairns, QLD 4870, Australia c School of Biological, Earth and Environmental Sciences, The University of New South Wales, NSW 2052, Australia d Institute of Archaeology, University of Oxford, Oxford OX1 2PG, United Kingdom e Human Evolutionary Studies Program and Department of Archaeology, Simon Fraser University, Burnaby, British Columbia, Canada article info abstract Article history: A number of models, developed primarily in the 1980s, propose that Aboriginal Australian populations Received 13 February 2013 contracted to refugia e well-watered ranges and major riverine systems e in response to climatic Received in revised form instability, most notably around the Last Glacial Maximum (LGM) (w23e18 ka). We evaluate these 3 June 2013 models using a comprehensive continent-wide dataset of archaeological radiocarbon ages and geospatial Accepted 17 June 2013 techniques. Calibrated median radiocarbon ages are allocated to over-lapping time slices, and then K-means cluster analysis and cluster centroid and point dispersal pattern analysis are used to define Keywords: Minimum Bounding Rectangles (MBR) representing human demographic patterns.
    [Show full text]
  • Application of the Survey Protocol for Chytridiomycosis to Queensland, Australia
    Vol. 92: 117–129, 2010 DISEASES OF AQUATIC ORGANISMS Published online November 25, 2010 doi: 10.3354/dao02272 Dis Aquat Org Contribution to DAO Special 4 ‘Chytridiomycosis: an emerging disease’ Application of the survey protocol for chytridiomycosis to Queensland, Australia Lee F. Skerratt1,*, Keith R. McDonald2, Harry B. Hines3, Lee Berger1, Diana Mendez1, Andrea D. Phillott1, Scott D. Cashins1, Kris A. Murray4, Richard Speare1 1Amphibian Disease Ecology Group, School of Public Health, Tropical Medicine and Rehabilitation Sciences, James Cook University, Townsville, Queensland 4811, Australia 2Amphibian Disease Ecology Group, Queensland Parks and Wildlife Service, PO Box 975, Atherton, Queensland 4883, Australia 3Queensland Parks and Wildlife Service, PO Box 64, Bellbowrie, Queensland 4070, Australia 4The Ecology Centre, School of Biological Sciences, University of Queensland, St Lucia, Queensland 4072, Australia ABSTRACT: Spread of the amphibian chytrid fungus Batrachochytrium dendrobatidis (Bd), which causes chytridiomycosis, has resulted in the extinction of frogs, but the distribution of Bd is incom- pletely known. We trialled the survey protocol for Bd by attempting to systematically map its distrib- ution in Queensland, Australia. Bd was easily detected in known infected areas, such as the Wet Tropics and South East Queensland. It was not detected in bioregions adjacent to, but inland from or to the north of, infected regions: Einasleigh Uplands and Cape York adjacent to the infected Wet Tropics; and Brigalow Belt South adjacent to the infected South East Queensland bioregion. These regions where Bd was not detected have bordered infected regions for between 15 yr (in northern Queensland) and 30 yr (in southern Queensland), and so they define the geographical limits of Bd with regard to the long-term environmental conditions in Queensland.
    [Show full text]
  • Reptiles, Frogs and Freshwater Fish: K'gari (Fraser Island)
    Cooloola Sedgefrog Photo: Robert Ashdown © Qld Govt Department of Environment and Science Reptiles, Frogs and Freshwater Fish K’gari (Fraser Island) World Heritage Area Skinks (cont.) Reptiles arcane ctenotus Ctenotus arcanus Sea Turtles robust ctenotus Ctenotus robustus sensu lato loggerhead turtle Caretta caretta copper-tailed skink Ctenotus taeniolatus green turtle Chelonia mydas pink-tongued skink Cyclodomorphus gerrardii hawksbill turtle Eretmochelys imbricata major skink Bellatorias frerei olive ridley Lepidochelys olivacea elf skink Eroticoscincus graciloides flatback turtle Natator depressus dark bar-sided skink Concinnia martini eastern water skink Eulamprus quoyii Leathery Turtles bar-sided skink Concinnia tenuis leatherback turtle Dermochelys coriacea friendly sunskink Lampropholis amicula dark-flecked garden sunskink Lampropholis delicata Freshwater Turtles pale-flecked garden skink Lampropholis guichenoti broad-shelled river turtle Chelodina expansa common dwarf skink Menetia greyii eastern snake-necked turtle Chelodina longicollis fire-tailed skink Morethia taeniopleura Fraser Island short-neck turtle Emydura macquarii nigra Cooloola snake-skink Ophioscincus cooloolensis eastern blue-tongued lizard Tiliqua scincoides Geckoes wood gecko Diplodactylus vittatus Blind or Worm Snakes dubious dtella Gehyra dubia proximus blind snake Anilios proximus * house gecko Hemidactylus frenatus striped blind snake Anilios silvia a velvet gecko Oedura cf. rhombifer southern spotted velvet gecko Oedura tryoni Pythons eastern small blotched
    [Show full text]
  • Species Richness in Time and Space: a Phylogenetic and Geographic Perspective
    Species Richness in Time and Space: a Phylogenetic and Geographic Perspective by Pascal Olivier Title A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Ecology and Evolutionary Biology) in The University of Michigan 2018 Doctoral Committee: Assistant Professor and Assistant Curator Daniel Rabosky, Chair Associate Professor Johannes Foufopoulos Professor L. Lacey Knowles Assistant Professor Stephen A. Smith Pascal O Title [email protected] ORCID iD: 0000-0002-6316-0736 c Pascal O Title 2018 DEDICATION To Judge Julius Title, for always encouraging me to be inquisitive. ii ACKNOWLEDGEMENTS The research presented in this dissertation has been supported by a number of research grants from the University of Michigan and from academic societies. I thank the Society of Systematic Biologists, the Society for the Study of Evolution, and the Herpetologists League for supporting my work. I am also extremely grateful to the Rackham Graduate School, the University of Michigan Museum of Zoology C.F. Walker and Hinsdale scholarships, as well as to the Department of Ecology and Evolutionary Biology Block grants, for generously providing support throughout my PhD. Much of this research was also made possible by a Rackham Predoctoral Fellowship, and by a fellowship from the Michigan Institute for Computational Discovery and Engineering. First and foremost, I would like to thank my advisor, Dr. Dan Rabosky, for taking me on as one of his first graduate students. I have learned a tremendous amount under his guidance, and conducting research with him has been both exhilarating and inspiring. I am also grateful for his friendship and company, both in Ann Arbor and especially in the field, which have produced experiences that I will never forget.
    [Show full text]
  • Speciation in the Mountains and Dispersal by Rivers: Molecular Phylogeny of Eulamprus Water Skinks and the Biogeography of Eastern Australia
    DOI: 10.1111/jbi.13385 RESEARCH PAPER Speciation in the mountains and dispersal by rivers: Molecular phylogeny of Eulamprus water skinks and the biogeography of Eastern Australia Mitzy Pepper1,a | Joanna Sumner2,a | Ian G. Brennan1 | Kate Hodges1,3 | Alan R. Lemmon4 | Emily Moriarty Lemmon4 | Garry Peterson5 | Daniel L. Rabosky6 | Lin Schwarzkopf7 | Ian A. W. Scott1,8 | Glenn Shea9 | J. Scott Keogh1 1Division of Ecology & Evolution, Research School of Biology, The Australian National Abstract University, Canberra, ACT, Australia Aim: To develop a robust phylogeny for the iconic Australian water skinks (Eulam- 2Museums Victoria, Melbourne, Vic, prus) and to explore the influence of landscape evolution of eastern Australia on Australia 3Water Planning Ecology, Queensland phylogeographic patterns. Department of Environment and Science, Location: Eastern and south-eastern Australia. Ecosciences Precinct , Brisbane, Qld, Australia Methods: We used Sanger methods to sequence a mitochondrial DNA (mtDNA) 4Department of Scientific Computing, locus for 386 individuals across the five Eulamprus species to elucidate phylogeo- Department of Biological Science, Florida graphic structure. We also sequenced a second mtDNA locus and four nuclear DNA State University, Tallahassee, Florida 5Department of Environment, Land, Water (nDNA) loci for a subset of individuals to help inform our sampling strategy for and Planning, Warrnambool, Vic, Australia next-generation sequencing. Finally, we generated an anchored hybrid enrichment 6 Museum of Zoology & Department of (AHE) approach to sequence 378 loci for 25 individuals representing the major lin- Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, eages identified in our Sanger dataset. These data were used to resolve the phylo- Michigan genetic relationships among the species using coalescent-based species tree 7College of Science & Engineering, James inference in *BEAST and ASTRAL.
    [Show full text]