Radiation and Health

Total Page:16

File Type:pdf, Size:1020Kb

Radiation and Health Radiation and Health by Thormod Henriksen and Biophysics group at UiO Preface The present book is an update and extension of three previous books from groups of scientists at the University of Oslo. The books are: I. Radioaktivitet – Stråling – Helse Written by; Thormod Henriksen, Finn Ingebretsen, Anders Storruste and Erling Stranden. Universitetsforlaget AS 1987 ISBN 82-00-03339-2 I would like to thank my coauthors for all discussions and for all the data used in this book. The book was released only a few months after the Chernobyl accident. II. Stråling og Helse Written by Thormod Henriksen, Finn Ingebretsen, Anders Storruste, Terje Strand, Tove Svendby and Per Wethe. Institute of Physics, University of Oslo 1993 and 1995 ISBN 82-992073-2-0 This book was an update of the book above. It has been used in several courses at The University of Oslo. Furthermore, the book was again up- dated in 1998 and published on the Internet. The address is: http://www.mn.uio.no/fysikk/tjenester/kunnskap/straling/ III. Radiation and Health Written by Thormod Henriksen and H. David Maillie Taylor & Francis 2003 ISBN 0-415-27162-2 This English written book was mainly a translation from the books above. I would like to take this opportunity to thank David for all help with the translation. The three books concentrated to a large extent on the basic properties of ionizing radiation. Efforts were made to describe the background ra- diation as well as the release of radioactivity from reactor accidents and fallout from nuclear explosions in the atmosphere. These subjects were of high interest in the aftermath of the Chernobyl accident. During the later years a large amount of research and interesting new results within radiobiology have emerged. The purpose of the present book is therefore to include some interesting applications of radiation in medicine, as well as to present some of the exciting new discoveries in radiobiology. In this update the basic radiation physics and radiobiology are included. Furthermore, some applica- tions of radiation in medicine will be highlighted. It would be impossible to embark on this project unless heavy support from my active colleagues at the “group of Biophysics and Medical physics” at The University of Oslo. The group is engaged in research with the aim to attain information about the physical processes taking place in cells and tis- sue when irradiated. This include the formation of radicals and how they lead to the known biological endpoints. The group members (professors Eli Olaug Hole and Einar Sagstuen) are using magnetic resonance (ESR) to study radical formation, secondary processes and fate. Other members of the group (professor Erik Pettersen and Nina Jeppesen Edin) are using mammalian cells in culture. The interests are the control mechanisms working in the cell cycle. Of particular inter- est is the effect of small radiation doses, given at a low dose rate. These studies are of importance for environmental problems as well as within cancer treatment. The group have close cooperations with professor Eirik Malinen (radiation therapy) and associate professor Hilde Olerud (diagnostic). Einar Sagstuen Eli Olaug Hole The group of Biophysics and Medical Physics Erik Pettersen Nina Jeppesen Edin Eirik Malinen I take this opportunity to thank all my coworkers with the previous books as well as the members of the biophysics group. The present book is free to everybody here on Internet. In order to discuss some results and models I have used illustrations previuosly published on Internet without further permission. University of Oslo, 2009 Updated 2015 Thormod Henriksen Contents Chapter 1. Radiation is discovered page 6 –12 Chapter 2. What is radioactivity page 13 – 34 Chapter 3. Radioactive decay laws page 35 – 42 Chapter 4. Artificial radioactive isotopes page 43 – 52 Chapter 5. Activity and dose page 53 – 65 Identification of isotopes Chapter 6. The measurement of radiation page 66 – 83 Chapter 7. The Natural Radiation Sources and doses to the people page 84 – 129 Chapter 8. Nuclear weapons – Reactor accidents and pollution page 130 – 177 Chapter 9. Radiation used for diagnostic purposes page 178 – 220 PET 511 keV g + – g 511 keV Chapter 10. Radiation used for therapy – radiation therapy page 221 – 233 Chapter 11. Radiation Damage to Biomolecules — From water to DNA 234 – 255 ESR yields water radicals Chapter 12. Cellular radiation damage and repair page 256 – 273 HELA–cells Chapter 13. Radiation and health – Cancer page 274 – 303 Chapter 14. Nuclear power – Environment – Climate page 304 – 325 Is radiation dangerous ? It would be impossible to run a hospital without extensive use Chapter 1 of radiation. Radiation is Discovered Introduction From the beginning of life on earth, all living things have been exposed to radiation. Life started and developed in spite of, or possibly because of, radiation. It is disquieting to people that they coexist with radiation yet it cannot be seen, heard or felt. Radiation, when broadly defined, includes the entire spectrum of electromagnetic waves: radio waves, microwaves, infrared, visible light, ultraviolet, x-rays­­ and atomic particles. In this book we are con- cerned with radiation having energies high enough to ionize matter. Examples are x-rays, cosmic rays, and the emissions from radioactive elements. Although the term “ionizing radiation” is in this case more precise, common usage often omits “ionizing” and this is what is done here. In this book, “radiation” means “ionizing radiation.” Prior to the reactor accidents at Three Mile Island in the United States (1979) and at Chernobyl in the former Soviet Union (1986), radiation issues were addressed primarily by specialists. Now, however, radiation and biological effects are debated by the public and political leaders. They use expressions such as: radiation dose, becquerel, gray, cesium and γ-radiation. Because people are easily confused by this technical language, all too often they are left with the perception that all uses of radiation are dangerous. This book is written for those who want to understand radiation in order to make informed decisions about it in their lives. This field of science, founded at the turn of the century, has provided dramatic insights into physics, chemistry, biology, and medicine. The work of the early investigators provided a strong foundation from which to understand radiation phenomena. We will meet a few of them in the following pages and gain insight into their work and lives. X-rays Radioactivity Discovered November 1895 Discovered March 1896 This radiation is man-made. We have devel- Both natural and man-made radioactivity ex- oped a variety of x-ray equipment. The radia- ists. The sources emit radiation all the time tion exists only as long as the x-ray machine – you can not turn them on and off. is turned on. 6 X-rays X-rays were discovered by Wilhelm Conrad Roentgen at the University of Würtzburg in Germany. He, like many others in those days, was studying electric discharges in glass tubes filled with various gases at very low pressures. In experiments on November 8, 1895, Roentgen had covered the tube with some black paper and had darkened the room. He then discovered that a piece of paper painted with a fluorescent dye, at some distance from the tube, would glow when he turned on the high volt- age between the electrodes in the tube. Realizing the importance of his discovery, Roentgen focused all his attention on the study of this new radiation that had the unusual property of passing through black paper. He found that the radiation not only could penetrate black paper but also thick blocks of wood, books and even his hand. In the dark room, he observed shadows of the bones in his own hand. This was the first x-ray image. The German anatomist von Koelliker (see his hand below) proposed that the new type of radiation be called Roentgen rays. Although this term is used in many countries, the most common name used is that coined by Roentgen himself, ”x-rays”. The letter “x” is often used by physicists to indicate something “unknown.” Since the nature of these rays was unknown, Roentgen called them x-rays. X-rays on earth are from man-made sources. There are x-rays from natural sources in outer space. They are, however, absorbed by the upper atmosphere and do not reach the earth’s surface. Roentgen discovered x-rays in the fall of 1895. He immedi- ately understood that the radiation from the x-ray tube had special properties, for example, it was possible to “see into” a human body. Within months this new radiation, called x- rays, was used in medical diagnostics. It was realized that x-rays also could kill living cells, and that the sensitivity for killing varied from one cell type to another. Consequently, x-rays could be used in cancer therapy. The unit R (roentgen) used for radiation exposure was named after Roentgen. An exposure of 1 R means that the radia- tion dose to ordinary tissue is approximately 9.3 mGy (see later). W. C. Roentgen (1845 - 1923) Nobel prize in Physics 1901 To Wilhelm Conrad Roentgen This x-ray picture was tak- “In recognition of the extraordinary en by Roentgen in January services he has rendered by the 1896. It is the hand of von discovery of the remarkable rays Koelliker who suggested the subsequently named after him”. name Roentgen rays. This was the very first Nobel Price. 7 What is X-rays? In order to produce x-rays you must have equipment like that shown in the 30 – 150 kV drawing. It consists of an evacuated – + glass tube with two electrodes and a Cathode high voltage between the electrodes.
Recommended publications
  • Unrestricted Immigration and the Foreign Dominance Of
    Unrestricted Immigration and the Foreign Dominance of United States Nobel Prize Winners in Science: Irrefutable Data and Exemplary Family Narratives—Backup Data and Information Andrew A. Beveridge, Queens and Graduate Center CUNY and Social Explorer, Inc. Lynn Caporale, Strategic Scientific Advisor and Author The following slides were presented at the recent meeting of the American Association for the Advancement of Science. This project and paper is an outgrowth of that session, and will combine qualitative data on Nobel Prize Winners family histories along with analyses of the pattern of Nobel Winners. The first set of slides show some of the patterns so far found, and will be augmented for the formal paper. The second set of slides shows some examples of the Nobel families. The authors a developing a systematic data base of Nobel Winners (mainly US), their careers and their family histories. This turned out to be much more challenging than expected, since many winners do not emphasize their family origins in their own biographies or autobiographies or other commentary. Dr. Caporale has reached out to some laureates or their families to elicit that information. We plan to systematically compare the laureates to the population in the US at large, including immigrants and non‐immigrants at various periods. Outline of Presentation • A preliminary examination of the 609 Nobel Prize Winners, 291 of whom were at an American Institution when they received the Nobel in physics, chemistry or physiology and medicine • Will look at patterns of
    [Show full text]
  • A Preliminary Report of the Battle of the Crater, 30 July 1864
    Holding the Line A Preliminary Report of The Battle of the Crater 30 July 1864 Adrian Mandzy, Ph. D. Michelle Sivilich, Ph. D. Benjamin Lewis Fitzpatrick, Ph. D. Dan Sivilich Floyd Patrick Davis Kelsey P. Becraft Dakota Leigh Goedel Jeffrey A. McFadden Jessey C. Reed Jaron A. Rucker A PRELIMINARY REPORT ON THE SURVEY OF THE BATTLE OF THE CRATER, 30 JULY 1864 By Adrian Mandzy, Ph.D., Michelle Sivilich, Ph. D., Floyd Patrick Davis, Kelsey P. Becraft, Dakota Leigh Goedel, Jeffrey A. McFadden, Jessey C. Reed, and Jaron A. Rucker With a Contributions by Daniel Sivilich and Dr. Benjamin Lewis Fitzpatrick Report prepared for the Northeast Region Archeology Program National Park Service 115 John Street, 4th Floor Lowell, Massachusetts 01852-1195 _______________________________ Adrian Mandzy Principal Investigator ARPA Permit 2014.PETE.01 2 Abstract In March 2015, faculty and students from Morehead State University’s History program, along with members of the Battlefield Restoration and Archeological Volunteer Organization (BRAVO) conducted a survey of The Crater Battlefield. Fought on 30 July 1864, during the Siege of Petersburg, the Battle of the Crater, according to the National Park Service, is one of the most important events of the Civil War. The participation of African-American troops in the battle and the subsequent execution of black prisoners highlights the racial animosities that were the underpinning causes of this conflict. The goal of this project is to document the level of integrity of any archaeological resources connected with this field of conflict and to examine how far the Union troops advance beyond the mouth of the Crater.
    [Show full text]
  • Ices on Mercury: Chemistry of Volatiles in Permanently Cold Areas of Mercury’S North Polar Region
    Icarus 281 (2017) 19–31 Contents lists available at ScienceDirect Icarus journal homepage: www.elsevier.com/locate/icarus Ices on Mercury: Chemistry of volatiles in permanently cold areas of Mercury’s north polar region ∗ M.L. Delitsky a, , D.A. Paige b, M.A. Siegler c, E.R. Harju b,f, D. Schriver b, R.E. Johnson d, P. Travnicek e a California Specialty Engineering, Pasadena, CA b Dept of Earth, Planetary and Space Sciences, University of California, Los Angeles, CA c Planetary Science Institute, Tucson, AZ d Dept of Engineering Physics, University of Virginia, Charlottesville, VA e Space Sciences Laboratory, University of California, Berkeley, CA f Pasadena City College, Pasadena, CA a r t i c l e i n f o a b s t r a c t Article history: Observations by the MESSENGER spacecraft during its flyby and orbital observations of Mercury in 2008– Received 3 January 2016 2015 indicated the presence of cold icy materials hiding in permanently-shadowed craters in Mercury’s Revised 29 July 2016 north polar region. These icy condensed volatiles are thought to be composed of water ice and frozen Accepted 2 August 2016 organics that can persist over long geologic timescales and evolve under the influence of the Mercury Available online 4 August 2016 space environment. Polar ices never see solar photons because at such high latitudes, sunlight cannot Keywords: reach over the crater rims. The craters maintain a permanently cold environment for the ices to persist. Mercury surface ices magnetospheres However, the magnetosphere will supply a beam of ions and electrons that can reach the frozen volatiles radiolysis and induce ice chemistry.
    [Show full text]
  • Glossary Glossary
    Glossary Glossary Albedo A measure of an object’s reflectivity. A pure white reflecting surface has an albedo of 1.0 (100%). A pitch-black, nonreflecting surface has an albedo of 0.0. The Moon is a fairly dark object with a combined albedo of 0.07 (reflecting 7% of the sunlight that falls upon it). The albedo range of the lunar maria is between 0.05 and 0.08. The brighter highlands have an albedo range from 0.09 to 0.15. Anorthosite Rocks rich in the mineral feldspar, making up much of the Moon’s bright highland regions. Aperture The diameter of a telescope’s objective lens or primary mirror. Apogee The point in the Moon’s orbit where it is furthest from the Earth. At apogee, the Moon can reach a maximum distance of 406,700 km from the Earth. Apollo The manned lunar program of the United States. Between July 1969 and December 1972, six Apollo missions landed on the Moon, allowing a total of 12 astronauts to explore its surface. Asteroid A minor planet. A large solid body of rock in orbit around the Sun. Banded crater A crater that displays dusky linear tracts on its inner walls and/or floor. 250 Basalt A dark, fine-grained volcanic rock, low in silicon, with a low viscosity. Basaltic material fills many of the Moon’s major basins, especially on the near side. Glossary Basin A very large circular impact structure (usually comprising multiple concentric rings) that usually displays some degree of flooding with lava. The largest and most conspicuous lava- flooded basins on the Moon are found on the near side, and most are filled to their outer edges with mare basalts.
    [Show full text]
  • Green Diamond Forest Habitat Conservation Plan Appendix B
    B-1 Appendix B. Profile of the Covered Species TABLE OF CONTENTS APPENDIX B. PROFILE OF THE COVERED SPECIES ................................................... B-1 B.1 NORTHERN SPOTTED OWL (STRIX OCCIDENTALIS CAURINA) .......................................... B-3 B.2 LISTING STATUS ......................................................................................................... B-3 B.2.1 Range and Distribution .......................................................................................... B-3 B.2.2 Life History ............................................................................................................ B-4 B.2.3 Habitat Requirements ............................................................................................ B-5 B.3 FISHER (PEKANIA PENNANTI) ....................................................................................... B-5 B.3.1 Listing Status ......................................................................................................... B-5 B.3.2 Range and Distribution .......................................................................................... B-6 B.3.3 Life History ............................................................................................................ B-8 B.3.4 Habitat Requirements ............................................................................................ B-9 B.3.5 Resting and Denning Habitat ............................................................................... B-10 B.3.6 Foraging Habitat .................................................................................................
    [Show full text]
  • General Index
    General Index Italicized page numbers indicate figures and tables. Color plates are in- cussed; full listings of authors’ works as cited in this volume may be dicated as “pl.” Color plates 1– 40 are in part 1 and plates 41–80 are found in the bibliographical index. in part 2. Authors are listed only when their ideas or works are dis- Aa, Pieter van der (1659–1733), 1338 of military cartography, 971 934 –39; Genoa, 864 –65; Low Coun- Aa River, pl.61, 1523 of nautical charts, 1069, 1424 tries, 1257 Aachen, 1241 printing’s impact on, 607–8 of Dutch hamlets, 1264 Abate, Agostino, 857–58, 864 –65 role of sources in, 66 –67 ecclesiastical subdivisions in, 1090, 1091 Abbeys. See also Cartularies; Monasteries of Russian maps, 1873 of forests, 50 maps: property, 50–51; water system, 43 standards of, 7 German maps in context of, 1224, 1225 plans: juridical uses of, pl.61, 1523–24, studies of, 505–8, 1258 n.53 map consciousness in, 636, 661–62 1525; Wildmore Fen (in psalter), 43– 44 of surveys, 505–8, 708, 1435–36 maps in: cadastral (See Cadastral maps); Abbreviations, 1897, 1899 of town models, 489 central Italy, 909–15; characteristics of, Abreu, Lisuarte de, 1019 Acequia Imperial de Aragón, 507 874 –75, 880 –82; coloring of, 1499, Abruzzi River, 547, 570 Acerra, 951 1588; East-Central Europe, 1806, 1808; Absolutism, 831, 833, 835–36 Ackerman, James S., 427 n.2 England, 50 –51, 1595, 1599, 1603, See also Sovereigns and monarchs Aconcio, Jacopo (d. 1566), 1611 1615, 1629, 1720; France, 1497–1500, Abstraction Acosta, José de (1539–1600), 1235 1501; humanism linked to, 909–10; in- in bird’s-eye views, 688 Acquaviva, Andrea Matteo (d.
    [Show full text]
  • Human and Machine in Spaceflight
    Digital Apollo: Human and Machine in Spaceflight David A. Mindell The MIT Press Cambridge, Massachusetts London, England ( 2008 Massachusetts Institute of Technology All rights reserved. No part of this book may be reproduced in any form by any electronic or mechanical means (including photocopying, recording, or information storage and retrieval) without permission in writing from the publisher. For information about special quantity discounts, please email [email protected] This book was set in Stone Serif and Stone Sans on 3B2 by Asco Typesetters, Hong Kong. Printed and bound in the United States of America. Library of Congress Cataloging-in-Publication Data Mindell, David A. Digital Apollo : human and machine in spaceflight / David A. Mindell. p. cm. Includes bibliographical references and index. ISBN 978-0-262-13497-2 (hardcover : alk. paper) 1. Human-machine systems. 2. Project Apollo (U.S.)—History. 3. Astronautics—United States—History. 4. Manned spaceflight—History. I. Title. TA167.M59 2008 629.47 04—dc22 2007032255 10987654321 Index Accelerometers, 1 control and, 19–22 Apollo program and, 97, 109–110, 119, 132, F-80 Shooting Star, 45 174, 194, 201 F-104 Starfighter, 45 AC Spark Plug, 110, 127, 134, 137 SR-71, 45 Adams, Mike, 59–61 stability and, 19–22 Adaptive control systems, 57–61, 77 U-2, 45 AGC (Apollo guidance computer), 259 X-1, 44, 46 Apollo 4 and, 174–175 X-15, 6 (see also X-15) Apollo 5 and, 175 Air-pressure gauges, 24 Apollo 7 and, 177 Aldrin, Edwin ‘‘Buzz,’’ 1–4, 8, 86 astronaut input and, 159 Eagle and, 217–232
    [Show full text]
  • 12.2% 116,000 120M Top 1% 154 3,900
    We are IntechOpen, the world’s leading publisher of Open Access books Built by scientists, for scientists 3,900 116,000 120M Open access books available International authors and editors Downloads Our authors are among the 154 TOP 1% 12.2% Countries delivered to most cited scientists Contributors from top 500 universities Selection of our books indexed in the Book Citation Index in Web of Science™ Core Collection (BKCI) Interested in publishing with us? Contact [email protected] Numbers displayed above are based on latest data collected. For more information visit www.intechopen.com Chapter Introductory Chapter: Veterinary Anatomy and Physiology Valentina Kubale, Emma Cousins, Clara Bailey, Samir A.A. El-Gendy and Catrin Sian Rutland 1. History of veterinary anatomy and physiology The anatomy of animals has long fascinated people, with mural paintings depicting the superficial anatomy of animals dating back to the Palaeolithic era [1]. However, evidence suggests that the earliest appearance of scientific anatomical study may have been in ancient Babylonia, although the tablets upon which this was recorded have perished and the remains indicate that Babylonian knowledge was in fact relatively limited [2]. As such, with early exploration of anatomy documented in the writing of various papyri, ancient Egyptian civilisation is believed to be the origin of the anatomist [3]. With content dating back to 3000 BCE, the Edwin Smith papyrus demonstrates a recognition of cerebrospinal fluid, meninges and surface anatomy of the brain, whilst the Ebers papyrus describes systemic function of the body including the heart and vas- culature, gynaecology and tumours [4]. The Ebers papyrus dates back to around 1500 bCe; however, it is also thought to be based upon earlier texts.
    [Show full text]
  • Martian Crater Morphology
    ANALYSIS OF THE DEPTH-DIAMETER RELATIONSHIP OF MARTIAN CRATERS A Capstone Experience Thesis Presented by Jared Howenstine Completion Date: May 2006 Approved By: Professor M. Darby Dyar, Astronomy Professor Christopher Condit, Geology Professor Judith Young, Astronomy Abstract Title: Analysis of the Depth-Diameter Relationship of Martian Craters Author: Jared Howenstine, Astronomy Approved By: Judith Young, Astronomy Approved By: M. Darby Dyar, Astronomy Approved By: Christopher Condit, Geology CE Type: Departmental Honors Project Using a gridded version of maritan topography with the computer program Gridview, this project studied the depth-diameter relationship of martian impact craters. The work encompasses 361 profiles of impacts with diameters larger than 15 kilometers and is a continuation of work that was started at the Lunar and Planetary Institute in Houston, Texas under the guidance of Dr. Walter S. Keifer. Using the most ‘pristine,’ or deepest craters in the data a depth-diameter relationship was determined: d = 0.610D 0.327 , where d is the depth of the crater and D is the diameter of the crater, both in kilometers. This relationship can then be used to estimate the theoretical depth of any impact radius, and therefore can be used to estimate the pristine shape of the crater. With a depth-diameter ratio for a particular crater, the measured depth can then be compared to this theoretical value and an estimate of the amount of material within the crater, or fill, can then be calculated. The data includes 140 named impact craters, 3 basins, and 218 other impacts. The named data encompasses all named impact structures of greater than 100 kilometers in diameter.
    [Show full text]
  • Geologic Gems of California's State Parks
    STATE OF CALIFORNIA – EDMUND G. BROWN JR., GOVERNOR NATURAL RESOURCES AGENCY – JOHN LAIRD, SECRETARY CALIFORNIA GEOLOGICAL SURVEY DEPARTMENT OF PARKS AND RECREATION – LISA MANGAT, DIRECTOR JOHN D. PARRISH, Ph.D., STATE GEOLOGIST DEPARTMENT OF CONSERVATION – DAVID BUNN, DIRECTOR PLATE 1 The rugged cliffs of Del Norte Coast Redwoods State Park are composed of some of California’s Bio-regions the most tortured, twisted, and mobile rocks of the North American continent. The California’s Geomorphic Provinces rocks are mostly buried beneath soils and covered by vigorous redwood forests, which thrive in a climate famous for summer fog and powerful winter storms. The rocks only reveal themselves in steep stream banks, along road and trail cut banks, along the precipitous coastal cliffs and offshore in the form of towering rock monuments or sea stacks. (Photograph by CalTrans staff.) Few of California’s State parks display impressive monoliths adorned like a Patrick’s Point State Park displays a snapshot of geologic processes that have castle with towering spires and few permit rock climbing. Castle Crags State shaped the face of western North America, and that continue today. The rocks Park is an exception. The scenic beauty is best enjoyed from a distant exposed in the seacliffs and offshore represent dynamic interplay between the vantage point where one can see the range of surrounding landforms. The The Klamath Mountains consist of several rugged ranges and deep canyons. Klamath/North Coast Bioregion San Joaquin Valley Colorado Desert subducting oceanic tectonic plate (Gorda Plate) and the continental North American monolith and its surroundings are a microcosm of the Klamath Mountains The mountains reach elevations of 6,000 to 8,000 feet.
    [Show full text]
  • Phosphorus and Sulfur Cosmochemistry: Implications for the Origins of Life
    Phosphorus and Sulfur Cosmochemistry: Implications for the Origins of Life Item Type text; Electronic Dissertation Authors Pasek, Matthew Adam Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 07/10/2021 06:16:37 Link to Item http://hdl.handle.net/10150/194288 PHOSPHORUS AND SULFUR COSMOCHEMISTRY: IMPLICATIONS FOR THE ORIGINS OF LIFE by Matthew Adam Pasek ________________________ A Dissertation Submitted to the Faculty of the DEPARTMENT OF PLANETARY SCIENCE In Partial Fulfillment of the Requirements For the Degree of DOCTOR OF PHILOSOPHY In the Graduate College UNIVERSITY OF ARIZONA 2 0 0 6 2 THE UNIVERSITY OF ARIZONA GRADUATE COLLEGE As members of the Dissertation Committee, we certify that we have read the dissertation prepared by Matthew Adam Pasek entitled Phosphorus and Sulfur Cosmochemistry: Implications for the Origins of Life and recommend that it be accepted as fulfilling the dissertation requirement for the Degree of Doctor of Philosophy _______________________________________________________________________ Date: 04/11/2006 Dante Lauretta _______________________________________________________________________ Date: 04/11/2006 Timothy Swindle _______________________________________________________________________ Date: 04/11/2006
    [Show full text]
  • Sky and Telescope
    SkyandTelescope.com The Lunar 100 By Charles A. Wood Just about every telescope user is familiar with French comet hunter Charles Messier's catalog of fuzzy objects. Messier's 18th-century listing of 109 galaxies, clusters, and nebulae contains some of the largest, brightest, and most visually interesting deep-sky treasures visible from the Northern Hemisphere. Little wonder that observing all the M objects is regarded as a virtual rite of passage for amateur astronomers. But the night sky offers an object that is larger, brighter, and more visually captivating than anything on Messier's list: the Moon. Yet many backyard astronomers never go beyond the astro-tourist stage to acquire the knowledge and understanding necessary to really appreciate what they're looking at, and how magnificent and amazing it truly is. Perhaps this is because after they identify a few of the Moon's most conspicuous features, many amateurs don't know where Many Lunar 100 selections are plainly visible in this image of the full Moon, while others require to look next. a more detailed view, different illumination, or favorable libration. North is up. S&T: Gary The Lunar 100 list is an attempt to provide Moon lovers with Seronik something akin to what deep-sky observers enjoy with the Messier catalog: a selection of telescopic sights to ignite interest and enhance understanding. Presented here is a selection of the Moon's 100 most interesting regions, craters, basins, mountains, rilles, and domes. I challenge observers to find and observe them all and, more important, to consider what each feature tells us about lunar and Earth history.
    [Show full text]