Benthic Macroinvertebrates and Multiple Stressors
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Clams , Mussels
KEYS TO THE FRESHWATER MS-Q-S MASTER COPY MACROINVERTEBRATES OF MASSACHUSETTS C --=;...-~---=-~-- /'""-,-----F NO. 1 : MOLLUSCA PELECYPODA ( Clams , Mussels ) Massachusetts Department of Environmental Quality Engineering DIVISION of WATER POLLUTION CONTROL Thomas C. McMahon, Director KEYSTO THE FRESHWATERM.'\CROINVERTEBRATES OF MASSACHUSETTS(No. 1): Mollusca Pelecypoda (clams, mussels) Douglas G. Smith Museum of zoology University of Massachusetts Amherst, Massachusetts and Museum of Comparative zoology Harvard University Cambridge, Massachusetts In Cooperation With The Ccmnonwealth of Massachusetts Technical Services Branch Department Environmental Quality Engineering Division of water Pollution Control Westborough, Massachusetts December, 1986 PUBLICATION: #14,676-56-300-12-86-CR Approved by the state Purchasing Agent TABLEOF CONTENTS PAGE PREFACE••• iii INTRODUCTION 1 CLASSIFICATIONOF MASSACHUSETTSFRESHWATER BIVALVES 8 HOWTO USE THE KEY . 11 PICTORIALKEY TO MASSACHUSETTSUNIONACEANS 15 GENERALKEY TO THE UNIONACEAAND CORBULACEAOF MASSACHUSETTS••• 17 DISTRIBUTIONOF MASSACHUSETTSE'RESI-JfNATER BIVALVES 42 GLOSSARYOF TERMSUSED IN KEY 46 BIBLIOGRAPHY 47 -ii- PREFACE The present work, concerning the identification of freshwater bivalve mollusks occurring in Massachusetts, represents the first of hopefully a series of guides dealing with the identification of benthic macroscopic invertebrates inhabiting the inland freshwaters of Massachusetts. The purpose of this and succeeding guides or handbooks is to introduce various groups of freshwater invertebrates to persons working in any of several areas of the freshwater ecology of Massachusetts. Although the guides are limited in tl1eir geographic scope to areas within the political boundaries of Massachusetts, many of the organisms treated, and information regarding their ecology and biology, will be applicable to neighboring regions. To increase the usefulness of mis and following guidebooks, complete regional bibliographies of me distribution of included species are provided. -
The Freshwater Snails (Gastropoda) of Iran, with Descriptions of Two New Genera and Eight New Species
A peer-reviewed open-access journal ZooKeys 219: The11–61 freshwater (2012) snails (Gastropoda) of Iran, with descriptions of two new genera... 11 doi: 10.3897/zookeys.219.3406 RESEARCH articLE www.zookeys.org Launched to accelerate biodiversity research The freshwater snails (Gastropoda) of Iran, with descriptions of two new genera and eight new species Peter Glöer1,†, Vladimir Pešić2,‡ 1 Biodiversity Research Laboratory, Schulstraße 3, D-25491 Hetlingen, Germany 2 Department of Biology, Faculty of Sciences, University of Montenegro, Cetinjski put b.b., 81000 Podgorica, Montenegro † urn:lsid:zoobank.org:author:8CB6BA7C-D04E-4586-BA1D-72FAFF54C4C9 ‡ urn:lsid:zoobank.org:author:719843C2-B25C-4F8B-A063-946F53CB6327 Corresponding author: Vladimir Pešić ([email protected]) Academic editor: Eike Neubert | Received 18 May 2012 | Accepted 24 August 2012 | Published 4 September 2012 urn:lsid:zoobank.org:pub:35A0EBEF-8157-40B5-BE49-9DBD7B273918 Citation: Glöer P, Pešić V (2012) The freshwater snails (Gastropoda) of Iran, with descriptions of two new genera and eight new species. ZooKeys 219: 11–61. doi: 10.3897/zookeys.219.3406 Abstract Using published records and original data from recent field work and revision of Iranian material of cer- tain species deposited in the collections of the Natural History Museum Basel, the Zoological Museum Berlin, and Natural History Museum Vienna, a checklist of the freshwater gastropod fauna of Iran was compiled. This checklist contains 73 species from 34 genera and 14 families of freshwater snails; 27 of these species (37%) are endemic to Iran. Two new genera, Kaskakia and Sarkhia, and eight species, i.e., Bithynia forcarti, B. starmuehlneri, B. -
Hasko Nesemann
25 Mitt. dtsch. malakozool. Ges. 92 25 – 58 Frankfurt a. M., Dezember 2014 Wandel der Muschelfauna der Untermain-Ebene in drei Jahrzehnten 1984-2014 (Bivalvia: Unionidae, Sphaeriidae, Corbiculidae, Dreissenidae) Teil I. Der Main und seine Zuflüsse HASKO NESEMANN Abstract: At present, the lower Main River and its tributaries (Germany: Hesse, Bavaria) is inhabited by 31 freshwater Bivalvia out of which 29 species were recorded alive. A remarkable faunal change has been ob- served within the last thirty years, caused by improvement of biological water quality and invasion of five alien species Corbicula fluminea, C. fluminalis, Dreissena rostriformis bugensis, Musculium transversum and Sinano- donta woodiana. The populations of the endangered species Pseudanodonta complanata, (Red List category 1 in Hesse), Unio tumidus, Anodonta cygnea, Pisidium amnicum and P. moitessierianum (Red List category 2 in Hesse) are locally increasing and recovering. Pisidium crassum, P. ponderosum and P. sp. (“var. humeriformis”) are new records for the state fauna of Hesse. Keywords: Freshwater Bivalvia, River Main, Lower Main plain, Germany: Hesse, Bavaria. Zusammenfassung: Im Untermaingebiet wurden 31 Süßwassermuscheln nachgewiesen, von denen 29 durch Lebendvorkommen bestätigt sind. Der Faunenwandel innerhalb der letzten dreißig Jahre zeigt Veränderungen durch verbesserte Wasserqualität und durch Einwanderung bzw. Einschleppung fünf gebietsfremder Neozoen Corbicula fluminea, C. fluminalis, Dreissena rostriformis bugensis, Musculium transversum und Sinanodonta woodiana. Die im Bestand gefährdeten Arten Pseudanodonta complanata (Rote Liste 1 in Hessen), Unio tumi- dus, Anodonta cygnea, Pisidium amnicum und P. moitessierianum (Rote Liste 2 in Hessen) haben sich lokal ausgebreitet. Neunachweise für Hessen sind Pisidium crassum, P. ponderosum und P. sp. („var. humeriformis”). Einleitung Die Arbeit widmet sich der Veränderung der Muschelfauna im Unterlauf des Mains und seiner Zuflüs- se innerhalb der letzten dreißig Jahre. -
December 2017
Ellipsaria Vol. 19 - No. 4 December 2017 Newsletter of the Freshwater Mollusk Conservation Society Volume 19 – Number 4 December 2017 Cover Story . 1 Society News . 4 Announcements . 7 Regional Meetings . 8 March 12 – 15, 2018 Upcoming Radisson Hotel and Conference Center, La Crosse, Wisconsin Meetings . 9 How do you know if your mussels are healthy? Do your sickly snails have flukes or some other problem? Contributed Why did the mussels die in your local stream? The 2018 FMCS Workshop will focus on freshwater mollusk Articles . 10 health assessment, characterization of disease risk, and strategies for responding to mollusk die-off events. FMCS Officers . 19 It will present a basic understanding of aquatic disease organisms, health assessment and disease diagnostic tools, and pathways of disease transmission. Nearly 20 Committee Chairs individuals will be presenting talks and/or facilitating small group sessions during this Workshop. This and Co-chairs . 20 Workshop team includes freshwater malacologists and experts in animal health and disease from: the School Parting Shot . 21 of Veterinary Medicine, University of Minnesota; School of Veterinary Medicine, University of Wisconsin; School 1 Ellipsaria Vol. 19 - No. 4 December 2017 of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University; the US Geological Survey Wildlife Disease Center; and the US Fish and Wildlife Service Fish Health Center. The opening session of this three-day Workshop will include a review of freshwater mollusk declines, the current state of knowledge on freshwater mollusk health and disease, and a crash course in disease organisms. The afternoon session that day will include small panel presentations on health assessment tools, mollusk die-offs and kills, and risk characterization of disease organisms to freshwater mollusks. -
Anisus Vorticulus (Troschel 1834) (Gastropoda: Planorbidae) in Northeast Germany
JOURNAL OF CONCHOLOGY (2013), VOL.41, NO.3 389 SOME ECOLOGICAL PECULIARITIES OF ANISUS VORTICULUS (TROSCHEL 1834) (GASTROPODA: PLANORBIDAE) IN NORTHEAST GERMANY MICHAEL L. ZETTLER Leibniz Institute for Baltic Sea Research Warnemünde, Seestr. 15, D-18119 Rostock, Germany Abstract During the EU Habitats Directive monitoring between 2008 and 2010 the ecological requirements of the gastropod species Anisus vorticulus (Troschel 1834) were investigated in 24 different waterbodies of northeast Germany. 117 sampling units were analyzed quantitatively. 45 of these units contained living individuals of the target species in abundances between 4 and 616 individuals m-2. More than 25.300 living individuals of accompanying freshwater mollusc species and about 9.400 empty shells were counted and determined to the species level. Altogether 47 species were identified. The benefit of enhanced knowledge on the ecological requirements was gained due to the wide range and high number of sampled habitats with both obviously convenient and inconvenient living conditions for A. vorticulus. In northeast Germany the amphibian zones of sheltered mesotrophic lake shores, swampy (lime) fens and peat holes which are sun exposed and have populations of any Chara species belong to the optimal, continuously and densely colonized biotopes. The cluster analysis emphasized that A. vorticulus was associated with a typical species composition, which can be named as “Anisus-vorticulus-community”. In compliance with that both the frequency of combined occurrence of species and their similarity in relative abundance are important. The following species belong to the “Anisus-vorticulus-community” in northeast Germany: Pisidium obtusale, Pisidium milium, Pisidium pseudosphaerium, Bithynia leachii, Stagnicola palustris, Valvata cristata, Bathyomphalus contortus, Bithynia tentaculata, Anisus vortex, Hippeutis complanatus, Gyraulus crista, Physa fontinalis, Segmentina nitida and Anisus vorticulus. -
The Molluscs of the Dwelling Mound Gomolava, Yugoslavia
THE MOLLUSCS OF THE DWELLING MOUND GOMOLAVA, YUGOSLAVIA AN ENVIRONMENTAL INVESTIGATION ON AND NEAR GOMOLAVA Jan Willem Eggink CONTENTS I. INTRODUCTION 2. THE HISTORY OF MOLLUSC RESEARCH IN ARCHAEOLOGY 3. MATERIAL AND METHODS 4. TABLES AND DIAGRAMS 5. DISCUSSION 6. CONCLUSIONS 7. ACKNOWLEDGEMENTS 8. REFERENCES 9. KEYWORDS 55 56 1. W. E GGINK 1. INTRODUCTION* Gomolava, in Yugoslavia, is a dwelling mound on the left bank of the river Sava near Hrtkovci, a small village about 60 km north west from Belgrade (fig.1). The mound shows eight periods of habitation, the oldest belon ging to the Vinca culture that, with the aid of C14, may be fixed at c. 4000-3800 B.C. f (Clason, 1977). The most recent traces, inclu \ ding a burial-ground, date from the early \', 1--__-<7 0 ,.,> Middle Ages (table 1). f-----�/ I > , After trial excavations during the fifties, it f--____-<7/' I"/"\.''''' \ -----\, was decided in 1970 to excavate the tell, as 1--_____/ C' 1 \ .... , '} ' \ systematically as possible, in its entirety. The � ) location of Gomolava along the outside bend ; ....._ ..- ...",--_ .. of the river Sava, has largely contributed to \- this decision. For, owing to erosion, portions of the tell disappear into the river every year. Fig. 1. The ge ograph ic location of Go molava, Yu go Its original surface area has no doubt been slavia. pigger than what now remains (about 230 x 45 metres) (fig. 2). In the earliest periods of its habitation, the tell may possibly have been under supervision of Dr. A.T. Clason, carried situated at some distance from the Sava. -
Impacts of Neonicotinoids on Molluscs: What We Know and What We Need to Know
toxics Review Impacts of Neonicotinoids on Molluscs: What We Know and What We Need to Know Endurance E Ewere 1,2 , Amanda Reichelt-Brushett 1 and Kirsten Benkendorff 1,3,* 1 Marine Ecology Research Centre, School of Environment, Science and Engineering, Southern Cross University, P.O. Box 157, Lismore, NSW 2480, Australia; [email protected] (E.E.E.); [email protected] (A.R.-B.) 2 Department of Animal and Environmental Biology, Faculty of Life Sciences, University of Benin, PMB 1154 Benin City, Nigeria 3 National Marine Science Centre, School of Environment, Science and Engineering, Southern Cross University, 2 Bay Drive, Coffs Harbour, NSW 2450, Australia * Correspondence: [email protected] Abstract: The broad utilisation of neonicotinoids in agriculture has led to the unplanned contam- ination of adjacent terrestrial and aquatic systems around the world. Environmental monitoring regularly detects neonicotinoids at concentrations that may cause negative impacts on molluscs. The toxicity of neonicotinoids to some non-target invertebrates has been established; however, informa- tion on mollusc species is limited. Molluscs are likely to be exposed to various concentrations of neonicotinoids in the soil, food and water, which could increase their vulnerability to other sources of mortality and cause accidental exposure of other organisms higher in the food chain. This review examines the impacts of various concentrations of neonicotinoids on molluscs, including behavioural, physiological and biochemical responses. The review also identifies knowledge gaps and provides recommendations for future studies, to ensure a more comprehensive understanding of impacts from neonicotinoid exposure to molluscs. Keywords: non-target species; toxicity; biomarker; pesticide; bivalve; gastropod; cephalopod; Citation: Ewere, E.E; environmental concentration Reichelt-Brushett, A.; Benkendorff, K. -
DNA Barcoding
Full-time PhD studies of Ecology and Environmental Protection Piotr Gadawski Species diversity and origin of non-biting midges (Chironomidae) from a geologically young lake PhD Thesis and its old spring system Performed in Department of Invertebrate Zoology and Hydrobiology in Institute of Ecology and Environmental Protection Różnorodność gatunkowa i pochodzenie fauny Supervisor: ochotkowatych (Chironomidae) z geologicznie Prof. dr hab. Michał Grabowski młodego jeziora i starego systemu źródlisk Auxiliary supervisor: Dr. Matteo Montagna, Assoc. Prof. Łódź, 2020 Łódź, 2020 Table of contents Acknowledgements ..........................................................................................................3 Summary ...........................................................................................................................4 General introduction .........................................................................................................6 Skadar Lake ...................................................................................................................7 Chironomidae ..............................................................................................................10 Species concept and integrative taxonomy .................................................................12 DNA barcoding ...........................................................................................................14 Chapter I. First insight into the diversity and ecology of non-biting midges (Diptera: Chironomidae) -
Guidelines for the Capture and Management of Digital Zoological Names Information Francisco W
Guidelines for the Capture and Management of Digital Zoological Names Information Francisco W. Welter-Schultes Version 1.1 March 2013 Suggested citation: Welter-Schultes, F.W. (2012). Guidelines for the capture and management of digital zoological names information. Version 1.1 released on March 2013. Copenhagen: Global Biodiversity Information Facility, 126 pp, ISBN: 87-92020-44-5, accessible online at http://www.gbif.org/orc/?doc_id=2784. ISBN: 87-92020-44-5 (10 digits), 978-87-92020-44-4 (13 digits). Persistent URI: http://www.gbif.org/orc/?doc_id=2784. Language: English. Copyright © F. W. Welter-Schultes & Global Biodiversity Information Facility, 2012. Disclaimer: The information, ideas, and opinions presented in this publication are those of the author and do not represent those of GBIF. License: This document is licensed under Creative Commons Attribution 3.0. Document Control: Version Description Date of release Author(s) 0.1 First complete draft. January 2012 F. W. Welter- Schultes 0.2 Document re-structured to improve February 2012 F. W. Welter- usability. Available for public Schultes & A. review. González-Talaván 1.0 First public version of the June 2012 F. W. Welter- document. Schultes 1.1 Minor editions March 2013 F. W. Welter- Schultes Cover Credit: GBIF Secretariat, 2012. Image by Levi Szekeres (Romania), obtained by stock.xchng (http://www.sxc.hu/photo/1389360). March 2013 ii Guidelines for the management of digital zoological names information Version 1.1 Table of Contents How to use this book ......................................................................... 1 SECTION I 1. Introduction ................................................................................ 2 1.1. Identifiers and the role of Linnean names ......................................... 2 1.1.1 Identifiers .................................................................................. -
Buglife Ditches Report Vol1
The ecological status of ditch systems An investigation into the current status of the aquatic invertebrate and plant communities of grazing marsh ditch systems in England and Wales Technical Report Volume 1 Summary of methods and major findings C.M. Drake N.F Stewart M.A. Palmer V.L. Kindemba September 2010 Buglife – The Invertebrate Conservation Trust 1 Little whirlpool ram’s-horn snail ( Anisus vorticulus ) © Roger Key This report should be cited as: Drake, C.M, Stewart, N.F., Palmer, M.A. & Kindemba, V. L. (2010) The ecological status of ditch systems: an investigation into the current status of the aquatic invertebrate and plant communities of grazing marsh ditch systems in England and Wales. Technical Report. Buglife – The Invertebrate Conservation Trust, Peterborough. ISBN: 1-904878-98-8 2 Contents Volume 1 Acknowledgements 5 Executive summary 6 1 Introduction 8 1.1 The national context 8 1.2 Previous relevant studies 8 1.3 The core project 9 1.4 Companion projects 10 2 Overview of methods 12 2.1 Site selection 12 2.2 Survey coverage 14 2.3 Field survey methods 17 2.4 Data storage 17 2.5 Classification and evaluation techniques 19 2.6 Repeat sampling of ditches in Somerset 19 2.7 Investigation of change over time 20 3 Botanical classification of ditches 21 3.1 Methods 21 3.2 Results 22 3.3 Explanatory environmental variables and vegetation characteristics 26 3.4 Comparison with previous ditch vegetation classifications 30 3.5 Affinities with the National Vegetation Classification 32 Botanical classification of ditches: key points -
The Role of Chironomidae in Separating Naturally Poor from Disturbed Communities
From taxonomy to multiple-trait bioassessment: the role of Chironomidae in separating naturally poor from disturbed communities Da taxonomia à abordagem baseada nos multiatributos dos taxa: função dos Chironomidae na separação de comunidades naturalmente pobres das antropogenicamente perturbadas Sónia Raquel Quinás Serra Tese de doutoramento em Biociências, ramo de especialização Ecologia de Bacias Hidrográficas, orientada pela Doutora Maria João Feio, pelo Doutor Manuel Augusto Simões Graça e pelo Doutor Sylvain Dolédec e apresentada ao Departamento de Ciências da Vida da Faculdade de Ciências e Tecnologia da Universidade de Coimbra. Agosto de 2016 This thesis was made under the Agreement for joint supervision of doctoral studies leading to the award of a dual doctoral degree. This agreement was celebrated between partner institutions from two countries (Portugal and France) and the Ph.D. student. The two Universities involved were: And This thesis was supported by: Portuguese Foundation for Science and Technology (FCT), financing program: ‘Programa Operacional Potencial Humano/Fundo Social Europeu’ (POPH/FSE): through an individual scholarship for the PhD student with reference: SFRH/BD/80188/2011 And MARE-UC – Marine and Environmental Sciences Centre. University of Coimbra, Portugal: CNRS, UMR 5023 - LEHNA, Laboratoire d'Ecologie des Hydrosystèmes Naturels et Anthropisés, University Lyon1, France: Aos meus amados pais, sempre os melhores e mais dedicados amigos Table of contents: ABSTRACT ..................................................................................................................... -
Distribution of the Alien Freshwater Snail Ferrissia Fragilis (Tryon, 1863) (Gastropoda: Planorbidae) in the Czech Republic
Aquatic Invasions (2007) Volume 2, Issue 1: 45-54 Open Access doi: http://dx.doi.org/10.3391/ai.2007.2.1.5 © 2007 The Author(s). Journal compilation © 2007 REABIC Research Article Distribution of the alien freshwater snail Ferrissia fragilis (Tryon, 1863) (Gastropoda: Planorbidae) in the Czech Republic Luboš Beran1* and Michal Horsák2 1Kokořínsko Protected Landscape Area Administration, Česká 149, CZ–276 01 Mělník, Czech Republic 2Institute of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, CZ–611 37 Brno, Czech Republic E-mail: [email protected] (LB), [email protected] (MH) *Corresponding author Received: 22 November 2006 / Accepted: 17 January 2007 Abstract We summarize and analyze all known records of the freshwater snail, Ferrissia fragilis (Tryon, 1863) in the Czech Republic. In 1942 this species was found in the Czech Republic for the first time and a total of 155 species records were obtained by the end of 2005. Based on distribution data, we observed the gradual expansion of this gastropod not only in the Elbe Lowland, where its occurrence is concentrated, but also in other regions of the Czech Republic particularly between 2001 and 2005. Information on habitat, altitude and co-occurrence with other molluscs are presented. Key words: alien species, Czech Republic, distribution, Ferrissia fragilis, habitats Introduction used for all specimens of the genus Ferrissia found in the Czech Republic. Probably only one species of the genus Ferrissia Records of the genus Ferrissia exist from all (Walker, 1903) occurs in Europe. Different Czech neighbouring countries (Frank et al. 1990, theories exist, about whether it is an indigenous Lisický 1991, Frank 1995, Strzelec and Lewin and overlooked taxon or rather a recently 1996, Glöer and Meier-Brook 2003) and also introduced species in Europe (Falkner and from other European countries, e.g.