TOPOLOGY AS FLUID GEOMETRY James W

Total Page:16

File Type:pdf, Size:1020Kb

TOPOLOGY AS FLUID GEOMETRY James W Two-Dimensional Spaces, Volume 2 TOPOLOGY AS FLUID GEOMETRY James W. Cannon 10.1090/mbk/109 Two-Dimensional Spaces, Volume 2 TOPOLOGY AS FLUID GEOMETRY Two-Dimensional Spaces, Volume 2 TOPOLOGY AS FLUID GEOMETRY James W. Cannon AMERICAN MATHEMATICAL SOCIETY Providence, Rhode Island 2010 Mathematics Subject Classification. Primary 57-01, 57M20. For additional information and updates on this book, visit www.ams.org/bookpages/mbk-109 Library of Congress Cataloging-in-Publication Data Names: Cannon, James W., author. Title: Two-dimensional spaces / James W. Cannon. Description: Providence, Rhode Island : American Mathematical Society, [2017] | Includes bibli- ographical references. Identifiers: LCCN 2017024690 | ISBN 9781470437145 (v. 1) | ISBN 9781470437152 (v. 2) | ISBN 9781470437169 (v. 3) Subjects: LCSH: Geometry. | Geometry, Plane. | Non-Euclidean geometry. | AMS: Geometry – Instructional exposition (textbooks, tutorial papers, etc.). msc Classification: LCC QA445 .C27 2017 | DDC 516–dc23 LC record available at https://lccn.loc.gov/2017024690 Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy select pages for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given. Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society. Permissions to reuse portions of AMS publication content are handled by Copyright Clearance Center’s RightsLink service. For more information, please visit: http://www.ams.org/rightslink. Send requests for translation rights and licensed reprints to [email protected]. Excluded from these provisions is material for which the author holds copyright. In such cases, requests for permission to reuse or reprint material should be addressed directly to the author(s). Copyright ownership is indicated on the copyright page, or on the lower right-hand corner of the first page of each article within proceedings volumes. c 2017 by the American Mathematical Society. All rights reserved. The American Mathematical Society retains all rights except those granted to the United States Government. Printed in the United States of America. ∞ The paper used in this book is acid-free and falls within the guidelines established to ensure permanence and durability. Visit the AMS home page at http://www.ams.org/ 10987654321 222120191817 Contents Preface to the Three Volume Set ix Preface to Volume 2 xiii Chapter 1. The Fundamental Theorem of Algebra 1 1.1. Complex Arithmetic 2 1.2. First Proof of the Fundamental Theorem 5 1.3. Second Proof 7 1.4. Exercises 10 Chapter 2. The Brouwer Fixed Point Theorem 11 2.1. Statement of the Theorem 11 2.2. Introducing Extra Structure into a Problem 12 2.3. Two Elementary Problems 12 2.4. Three Advanced Problems 18 2.5. Exercises 27 Chapter 3. Tools 29 3.1. Polyhedral complexes 29 3.2. Urysohn’s Lemma and the Tietze Extension Theorem 31 3.3. Set Convergence 34 3.4. Exercises 36 Chapter 4. Lebesgue Covering Dimension 37 4.1. Definition of Covering Dimension 37 4.2. Euclidean n-Dimensional Space Rn Has Covering Dimension n 38 4.3. Construction of Partitions of Unity 40 4.4. Techniques Needed in Higher Dimensions 41 4.5. Exercises 42 Chapter 5. Fat Curves and Peano Curves 45 5.1. The Constructions 45 5.2. The Topological Lemmas 49 5.3. The Analytical Lemmas 51 5.4. Characterization of Peano Curves 52 5.5. Exercises 54 Chapter 6. The Arc, the Simple Closed Curve, and the Cantor Set 57 6.1. Characterizing the Arc and Simple Closed Curve 57 6.2. The Cantor Set and Its Characterization 61 6.3. Interesting Cantor Sets 63 v vi CONTENTS 6.4. Cantor Sets in the Plane Are Tame 69 6.5. Exercises 73 Chapter 7. Algebraic Topology 75 7.1. Facts Assumed from Algebraic Topology 76 7.2. The Reduced Homology of a Sphere 77 7.3. The Homology of a Ball Complement 77 7.4. The Homology of a Sphere Complement 78 7.5. Proof of the Arc Non-Separation Theorem and the Jordan Curve Theorem 79 Chapter 8. Characterization of the 2-Sphere 81 8.1. Statement and Proof of the Characterization Theorem 81 8.2. Exercises 89 Chapter 9. 2-Manifolds 91 9.1. Definition and Examples 91 9.2. Exercises 91 Chapter 10. Arcs in S2 Are Tame 95 10.1. Arcs in S2 Are Tame 95 10.2. Disk Isotopies 97 10.3. Exercises 100 Chapter 11. R. L. Moore’s Decomposition Theorem 101 11.1. Examples and Applications 101 11.2. Decomposition Spaces 102 11.3. Proof of the Moore Decomposition Theorem 104 11.4. Exercises 107 Chapter 12. The Open Mapping Theorem 109 12.1. Tools 109 12.2. Two Lemmas 110 12.3. Proof of the Open Mapping Theorem 112 12.4. Exercise 112 Chapter 13. Triangulation of 2-Manifolds 113 13.1. Statement of the Triangulation Theorem 113 13.2. Tools 113 13.3. Proof of the Triangulation Theorem 115 13.4. Exercises 116 Chapter 14. Structure and Classification of 2-Manifolds 117 14.1. Statement of the Structure Theorem 117 14.2. Edge-pairings 118 14.3. Proof of the Structure Theorem 119 14.4. Statement and Proof of the Classification Theorem 123 14.5. Exercises 125 Chapter 15. The Torus 129 15.1. Lines and Arcs in the Plane 129 CONTENTS vii 15.2. The Torus as a Euclidean Surface 131 15.3. Curve Straightening 134 15.4. Construction of the Simple Closed Curve with Slope k/ 136 15.5. Exercises 137 Chapter 16. Orientation and Euler Characteristic 139 16.1. Orientation 139 16.2. Euler Characteristic 141 16.3. Exercises 149 Chapter 17. The Riemann-Hurwitz Theorem 151 17.1. Setting 151 17.2. Elementary Facts from Trigonometry 151 17.3. Branched Maps of S2 154 17.4. Statement of the Riemann-Hurwitz Theorem 155 17.5. Proof of the Riemann-Hurwitz Theorem 155 17.6. Rational Maps 156 17.7. Exercises 157 Bibliography 159 Preface to the Three Volume Set Geometry measures space (geo =earth,metry = measurement). Einstein’s theory of relativity measures space-time and might be called geochronometry (geo = space, chrono=time,metry = measurement). The arc of mathematical history that has led us from the geometry of the plane of Euclid and the Greeks after 2500 years to the physics of space-time of Einstein is an attractive mathematical story. Geometrical reasoning has proved instrumental in our understanding of the real and complex numbers, algebra and number theory, the development of calculus with its elaboration in analysis and differential equations, our notions of length, area, and volume, motion, symmetry, topology, and curvature. These three volumes form a very personal excursion through those parts of the mathematics of 1- and 2-dimensional geometry that I have found magical. In all cases, this point of view is the one most meaningful to me. Every section is designed around results that, as a student, I found interesting in themselves and not just as preparation for something to come later. Where is the magic? Why are these things true? Where is the tension? Every good theorem should have tension between hypothesis and conclusion. — Dennis Sullivan Where is the Sullivan tension in the statement and proofs of the theorems? What are the key ideas? Why is the given proof natural? Are the theorems almost false? Is there a nice picture? I am not interested in quoting results without proof. I am not afraid of a little algebra, or calculus, or linear algebra. I do not care about complete rigor. I want to understand. If every formula in a book cuts the readership in half, my audience is a small, elite audience. This book is for the student who likes the magic and wants to understand. A scientist is someone who is always a child, asking ‘Why? why? why?’. — Isidor Isaac Rabi, Nobel Prize in Physics 1944 Wir m¨ussen wissen, wir werden wissen. [We must know, we will know.] — David Hilbert The three volumes indicate three natural parts into which the material on 2- dimensional spaces may be divided: Volume 1: The geometry of the plane, with various historical attempts to understand lengths and areas: areas by similarity, by cut and paste, by counting, by slicing. Applications to the understanding of the real numbers, algebra, number theory, and the development of calculus. Limitations imposed on the measurement of size given by nonmeasurable sets and the wonderful Hausdorff-Banach-Tarski paradox. ix x PREFACE TO THE THREE VOLUME SET Volume 2: The topology of the plane, with all of the standard theorems of 1 and 2-dimensional topology, the Fundamental Theorem of Algebra, the Brouwer Fixed-Point Theorem, space-filling curves, curves of positive area, the Jordan Curve Theorem, the topological characterization of the plane, the Schoenflies Theorem, the R. L. Moore Decomposition Theorem, the Open Mapping Theorem, the trian- gulation of 2-manifolds, the classification of 2-manifolds via orientation and Euler characteristic, dimension theory. Volume 3: An introduction to non-Euclidean geometry and curvature. What is the analogy between the standard trigonometric functions and the hyperbolic trig functions? Why is non-Euclidean geometry called hyperbolic?Whatarethe gross intuitive differences between Euclidean and hyperbolic geometry? The approach to curvature is backwards to that of Gauss, with definitions that are obviously invariant under bending, with the intent that curvature should obviously measure the degree to which a surface cannot be flattened into the plane. Gauss’s Theorema Egregium then comes at the end of the discussion. Prerequisites: An undergraduate student with a reasonable memory of cal- culus and linear algebra, but with no fear of proofs, should be able to understand almost all of the first volume.
Recommended publications
  • Analytic Geometry
    Guide Study Georgia End-Of-Course Tests Georgia ANALYTIC GEOMETRY TABLE OF CONTENTS INTRODUCTION ...........................................................................................................5 HOW TO USE THE STUDY GUIDE ................................................................................6 OVERVIEW OF THE EOCT .........................................................................................8 PREPARING FOR THE EOCT ......................................................................................9 Study Skills ........................................................................................................9 Time Management .....................................................................................10 Organization ...............................................................................................10 Active Participation ...................................................................................11 Test-Taking Strategies .....................................................................................11 Suggested Strategies to Prepare for the EOCT ..........................................12 Suggested Strategies the Day before the EOCT ........................................13 Suggested Strategies the Morning of the EOCT ........................................13 Top 10 Suggested Strategies during the EOCT .........................................14 TEST CONTENT ........................................................................................................15
    [Show full text]
  • Feasibility Study for Teaching Geometry and Other Topics Using Three-Dimensional Printers
    Feasibility Study For Teaching Geometry and Other Topics Using Three-Dimensional Printers Elizabeth Ann Slavkovsky A Thesis in the Field of Mathematics for Teaching for the Degree of Master of Liberal Arts in Extension Studies Harvard University October 2012 Abstract Since 2003, 3D printer technology has shown explosive growth, and has become significantly less expensive and more available. 3D printers at a hobbyist level are available for as little as $550, putting them in reach of individuals and schools. In addition, there are many “pay by the part” 3D printing services available to anyone who can design in three dimensions. 3D graphics programs are also widely available; where 10 years ago few could afford the technology to design in three dimensions, now anyone with a computer can download Google SketchUp or Blender for free. Many jobs now require more 3D skills, including medical, mining, video game design, and countless other fields. Because of this, the 3D printer has found its way into the classroom, particularly for STEM (science, technology, engineering, and math) programs in all grade levels. However, most of these programs focus mainly on the design and engineering possibilities for students. This thesis project was to explore the difficulty and benefits of the technology in the mathematics classroom. For this thesis project we researched the technology available and purchased a hobby-level 3D printer to see how well it might work for someone without extensive technology background. We sent designed parts away. In addition, we tried out Google SketchUp, Blender, Mathematica, and other programs for designing parts. We came up with several lessons and demos around the printer design.
    [Show full text]
  • Elementary Math Program
    North Shore Schools Elementary Mathematics Curriculum Our math program, Math in Focus, is based upon Singapore Math, which places an emphasis on developing proficiency with problem solving while fostering conceptual understanding and fundamental skills. Online resources are available at ThinkCentral using the username and password provided by the classroom teacher. The mathematics curriculum is aligned with the Common Core Learning Standards (CCLS). There are eight Mathematical Practices that set an expectation of understanding of mathematics and are the same for grades K-12. Mathematical Practices 1. Make sense of problems and persevere in 4. Model with mathematics. solving them. 5. Use appropriate tools strategically. 2. Reason abstractly and quantitatively. 6. Attend to precision. 3. Construct viable arguments and critique the 7. Look for and make use of structure. reasoning of others. 8. Look for and express regularity in repeated reasoning. The content at each grade level focuses on specific critical areas. Kindergarten Representing and Comparing Whole Numbers Students use numbers, including written numerals, to represent quantities and to solve quantitative problems, such as counting objects in a set; counting out a given number of objects; comparing sets or numerals; and modeling simple joining and separating situations with sets of objects, or eventually with equations such as 5 + 2 = 7 and 7 – 2 = 5. (Kindergarten students should see addition and subtraction equations, and student writing of equations in kindergarten is encouraged, but it is not required.) Students choose, combine, and apply effective strategies for answering quantitative questions, including quickly recognizing the cardinalities of small sets of objects, counting and producing sets of given sizes, counting the number of objects in combined sets, or counting the number of objects that remain in a set after some are taken away.
    [Show full text]
  • Math for Elementary Teachers
    Math for Elementary Teachers Math 203 #76908 Name __________________________________________ Spring 2020 Santiago Canyon College, Math and Science Division Monday 10:30 am – 1:25 pm (with LAB) Wednesday 10:30 am – 12:35 pm Instructor: Anne Hauscarriague E-mail: [email protected] Office: Home Phone: 714-628-4919 Website: www.sccollege.edu/ahauscarriague (Grades will be posted here after each exam) Office Hours: Mon: 2:00 – 3:00 Tues/Thurs: 9:30 – 10:30 Wed: 2:00 – 4:00 MSC/CraniumCafe Hours: Mon/Wed: 9:30 – 10:30, Wed: 4:00 – 4:30 Math 203 Student Learning Outcomes: As a result of completing Mathematics 203, the student will be able to: 1. Analyze the structure and properties of rational and real number systems including their decimal representation and illustrate the use of a representation of these numbers including the number line model. 2. Evaluate the equivalence of numeric algorithms and explain the advantages and disadvantages of equivalent algorithms. 3. Analyze multiple approaches to solving problems from elementary to advanced levels of mathematics, using concepts and tools from sets, logic, functions, number theory and patterns. Prerequisite: Successful completion of Math 080 (grade of C or better) or qualifying profile from the Math placement process. This class has previous math knowledge as a prerequisite and it is expected that you are comfortable with algebra and geometry. If you need review work, some resources are: School Zone Math 6th Grade Deluxe Edition, (Grade 5 is also a good review of basic arithmetic skills); Schaum’s Outline series Elementary Mathematics by Barnett Rich; www.math.com; www.mathtv.com; and/or www.KhanAcademy.com.
    [Show full text]
  • Geometry C12 Review Find the Volume of the Figures. 1. 2. 3. 4. 5. 6
    Geometry C12 Review 6. Find the volume of the figures. 1. PREAP: DO NOT USE 5.2 km as the apothem! 7. 2. 3. 8. 9. 4. 10. 5. 11. 16. 17. 12. 18. 13. 14. 19. 15. 20. 21. A sphere has a volume of 7776π in3. What is the radius 33. Two prisms are similar. The ratio of their volumes is of the sphere? 8:27. The surface area of the smaller prism is 72 in2. Find the surface area of the larger prism. 22a. A sphere has a volume of 36π cm3. What is the radius and diameter of the sphere? 22b. A sphere has a volume of 45 ft3. What is the 34. The prisms are similar. approximate radius of the sphere? a. What is the scale factor? 23. The scale factor (ratio of sides) of two similar solids is b. What is the ratio of surface 3:7. What are the ratios of their surface areas and area? volumes? c. What is the ratio of volume? d. Find the volume of the 24. The scale factor of two similar solids is 12:5. What are smaller prism. the ratios of their surface areas and volumes? 35. The prisms are similar. 25. The scale factor of two similar solids is 6:11. What are a. What is the scale factor? the ratios of their surface areas and volumes? b. What is the ratio of surface area? 26. The ratio of the volumes of two similar solids is c. What is the ratio of 343:2197. What is the scale factor (ratio of sides)? volume? d.
    [Show full text]
  • Elementary Mathematics Framework
    2015 Elementary Mathematics Framework Mathematics Forest Hills School District Table of Contents Section 1: FHSD Philosophy & Policies FHSD Mathematics Course of Study (board documents) …….. pages 2-3 FHSD Technology Statement…………………………………...... page 4 FHSD Mathematics Calculator Policy…………………………….. pages 5-7 Section 2: FHSD Mathematical Practices Description………………………………………………………….. page 8 Instructional Guidance by grade level band …………………….. pages 9-32 Look-for Tool……………………………………………………….. pages 33-35 Mathematical Practices Classroom Visuals……………………... pages 36-37 Section 3: FHSD Mathematical Teaching Habits (NCTM) Description………………………………………………………….. page 38 Mathematical Teaching Habits…………………...……………….. pages 39-54 Section 4: RtI: Response to Intervention RtI: Response to Intervention Guidelines……………………….. pages 55-56 Skills and Scaffolds………………………………………………... page 56 Gifted………………………………………………………………... page 56 1 Section 1: Philosophy and Policies Math Course of Study, Board Document 2015 Introduction A team of professional, dedicated and knowledgeable K-12 district educators in the Forest Hills School District developed the Math Course of Study. This document was based on current research in mathematics content, learning theory and instructional practices. The Ohio’s New Learning Standards and Principles to Actions: Ensuring Mathematical Success for All were the main resources used to guide the development and content of this document. While the Ohio Department of Education’s Academic Content Standards for School Mathematics was the main source of content, additional sources were used to guide the development of course indicators and objectives, including the College Board (AP Courses), Achieve, Inc. American Diploma Project (ADP), the Ohio Board of Regents Transfer Assurance Guarantee (TAG) criteria, and the Ohio Department of Education Program Models for School Mathematics. The Mathematics Course of Study is based on academic content standards that form an overarching theme for mathematics study.
    [Show full text]
  • PIECEWISE LINEAR TOPOLOGY Contents 1. Introduction 2 2. Basic
    PIECEWISE LINEAR TOPOLOGY J. L. BRYANT Contents 1. Introduction 2 2. Basic Definitions and Terminology. 2 3. Regular Neighborhoods 9 4. General Position 16 5. Embeddings, Engulfing 19 6. Handle Theory 24 7. Isotopies, Unknotting 30 8. Approximations, Controlled Isotopies 31 9. Triangulations of Manifolds 33 References 35 1 2 J. L. BRYANT 1. Introduction The piecewise linear category offers a rich structural setting in which to study many of the problems that arise in geometric topology. The first systematic ac- counts of the subject may be found in [2] and [63]. Whitehead’s important paper [63] contains the foundation of the geometric and algebraic theory of simplicial com- plexes that we use today. More recent sources, such as [30], [50], and [66], together with [17] and [37], provide a fairly complete development of PL theory up through the early 1970’s. This chapter will present an overview of the subject, drawing heavily upon these sources as well as others with the goal of unifying various topics found there as well as in other parts of the literature. We shall try to give enough in the way of proofs to provide the reader with a flavor of some of the techniques of the subject, while deferring the more intricate details to the literature. Our discussion will generally avoid problems associated with embedding and isotopy in codimension 2. The reader is referred to [12] for a survey of results in this very important area. 2. Basic Definitions and Terminology. Simplexes. A simplex of dimension p (a p-simplex) σ is the convex closure of a n set of (p+1) geometrically independent points {v0, .
    [Show full text]
  • Presentation on Key Ideas of Elementary Mathematics
    Key Ideas of Elementary Mathematics Sybilla Beckmann Department of Mathematics University of Georgia Lesson Study Conference, May 2007 Sybilla Beckmann (University of Georgia) Key Ideas of Elementary Mathematics 1/52 US curricula are unfocused A Splintered Vision, 1997 report based on the TIMSS curriculum analysis. US state math curriculum documents: “The planned coverage included so many topics that we cannot find a single, or even a few, major topics at any grade that are the focus of these curricular intentions. These official documents, individually or as a composite, are unfocused. They express policies, goals, and intended content coverage in mathematics and the sciences with little emphasis on particular, strategic topics.” Sybilla Beckmann (University of Georgia) Key Ideas of Elementary Mathematics 2/52 US instruction is unfocused From A Splintered Vision: “US eighth grade mathematics and science teachers typically teach far more topic areas than their counterparts in Germany and Japan.” “The five surveyed topic areas covered most extensively by US eighth grade mathematics teachers accounted for less than half of their year’s instructional periods. In contrast, the five most extensively covered Japanese eighth grade topic areas accounted for almost 75 percent of their year’s instructional periods.” Sybilla Beckmann (University of Georgia) Key Ideas of Elementary Mathematics 3/52 Breaking the “mile-wide-inch-deep” habit Every mathematical skill and concept has some useful application has some connection to other concepts and skills So what mathematics should we focus on? Sybilla Beckmann (University of Georgia) Key Ideas of Elementary Mathematics 4/52 What focus? Statistics and probability are increasingly important in science and in the modern workplace.
    [Show full text]
  • Lectures on Quasi-Isometric Rigidity Michael Kapovich 1 Lectures on Quasi-Isometric Rigidity 3 Introduction: What Is Geometric Group Theory? 3 Lecture 1
    Contents Lectures on quasi-isometric rigidity Michael Kapovich 1 Lectures on quasi-isometric rigidity 3 Introduction: What is Geometric Group Theory? 3 Lecture 1. Groups and Spaces 5 1. Cayley graphs and other metric spaces 5 2. Quasi-isometries 6 3. Virtual isomorphisms and QI rigidity problem 9 4. Examples and non-examples of QI rigidity 10 Lecture 2. Ultralimits and Morse Lemma 13 1. Ultralimits of sequences in topological spaces. 13 2. Ultralimits of sequences of metric spaces 14 3. Ultralimits and CAT(0) metric spaces 14 4. Asymptotic Cones 15 5. Quasi-isometries and asymptotic cones 15 6. Morse Lemma 16 Lecture 3. Boundary extension and quasi-conformal maps 19 1. Boundary extension of QI maps of hyperbolic spaces 19 2. Quasi-actions 20 3. Conical limit points of quasi-actions 21 4. Quasiconformality of the boundary extension 21 Lecture 4. Quasiconformal groups and Tukia's rigidity theorem 27 1. Quasiconformal groups 27 2. Invariant measurable conformal structure for qc groups 28 3. Proof of Tukia's theorem 29 4. QI rigidity for surface groups 31 Lecture 5. Appendix 33 1. Appendix 1: Hyperbolic space 33 2. Appendix 2: Least volume ellipsoids 35 3. Appendix 3: Different measures of quasiconformality 35 Bibliography 37 i Lectures on quasi-isometric rigidity Michael Kapovich IAS/Park City Mathematics Series Volume XX, XXXX Lectures on quasi-isometric rigidity Michael Kapovich Introduction: What is Geometric Group Theory? Historically (in the 19th century), groups appeared as automorphism groups of some structures: • Polynomials (field extensions) | Galois groups. • Vector spaces, possibly equipped with a bilinear form| Matrix groups.
    [Show full text]
  • Multidisciplinary Design Project Engineering Dictionary Version 0.0.2
    Multidisciplinary Design Project Engineering Dictionary Version 0.0.2 February 15, 2006 . DRAFT Cambridge-MIT Institute Multidisciplinary Design Project This Dictionary/Glossary of Engineering terms has been compiled to compliment the work developed as part of the Multi-disciplinary Design Project (MDP), which is a programme to develop teaching material and kits to aid the running of mechtronics projects in Universities and Schools. The project is being carried out with support from the Cambridge-MIT Institute undergraduate teaching programe. For more information about the project please visit the MDP website at http://www-mdp.eng.cam.ac.uk or contact Dr. Peter Long Prof. Alex Slocum Cambridge University Engineering Department Massachusetts Institute of Technology Trumpington Street, 77 Massachusetts Ave. Cambridge. Cambridge MA 02139-4307 CB2 1PZ. USA e-mail: [email protected] e-mail: [email protected] tel: +44 (0) 1223 332779 tel: +1 617 253 0012 For information about the CMI initiative please see Cambridge-MIT Institute website :- http://www.cambridge-mit.org CMI CMI, University of Cambridge Massachusetts Institute of Technology 10 Miller’s Yard, 77 Massachusetts Ave. Mill Lane, Cambridge MA 02139-4307 Cambridge. CB2 1RQ. USA tel: +44 (0) 1223 327207 tel. +1 617 253 7732 fax: +44 (0) 1223 765891 fax. +1 617 258 8539 . DRAFT 2 CMI-MDP Programme 1 Introduction This dictionary/glossary has not been developed as a definative work but as a useful reference book for engi- neering students to search when looking for the meaning of a word/phrase. It has been compiled from a number of existing glossaries together with a number of local additions.
    [Show full text]
  • 3-Manifold Groups
    3-Manifold Groups Matthias Aschenbrenner Stefan Friedl Henry Wilton University of California, Los Angeles, California, USA E-mail address: [email protected] Fakultat¨ fur¨ Mathematik, Universitat¨ Regensburg, Germany E-mail address: [email protected] Department of Pure Mathematics and Mathematical Statistics, Cam- bridge University, United Kingdom E-mail address: [email protected] Abstract. We summarize properties of 3-manifold groups, with a particular focus on the consequences of the recent results of Ian Agol, Jeremy Kahn, Vladimir Markovic and Dani Wise. Contents Introduction 1 Chapter 1. Decomposition Theorems 7 1.1. Topological and smooth 3-manifolds 7 1.2. The Prime Decomposition Theorem 8 1.3. The Loop Theorem and the Sphere Theorem 9 1.4. Preliminary observations about 3-manifold groups 10 1.5. Seifert fibered manifolds 11 1.6. The JSJ-Decomposition Theorem 14 1.7. The Geometrization Theorem 16 1.8. Geometric 3-manifolds 20 1.9. The Geometric Decomposition Theorem 21 1.10. The Geometrization Theorem for fibered 3-manifolds 24 1.11. 3-manifolds with (virtually) solvable fundamental group 26 Chapter 2. The Classification of 3-Manifolds by their Fundamental Groups 29 2.1. Closed 3-manifolds and fundamental groups 29 2.2. Peripheral structures and 3-manifolds with boundary 31 2.3. Submanifolds and subgroups 32 2.4. Properties of 3-manifolds and their fundamental groups 32 2.5. Centralizers 35 Chapter 3. 3-manifold groups after Geometrization 41 3.1. Definitions and conventions 42 3.2. Justifications 45 3.3. Additional results and implications 59 Chapter 4. The Work of Agol, Kahn{Markovic, and Wise 63 4.1.
    [Show full text]
  • Chapter 1: Analytic Geometry
    1 Analytic Geometry Much of the mathematics in this chapter will be review for you. However, the examples will be oriented toward applications and so will take some thought. In the (x,y) coordinate system we normally write the x-axis horizontally, with positive numbers to the right of the origin, and the y-axis vertically, with positive numbers above the origin. That is, unless stated otherwise, we take “rightward” to be the positive x- direction and “upward” to be the positive y-direction. In a purely mathematical situation, we normally choose the same scale for the x- and y-axes. For example, the line joining the origin to the point (a,a) makes an angle of 45◦ with the x-axis (and also with the y-axis). In applications, often letters other than x and y are used, and often different scales are chosen in the horizontal and vertical directions. For example, suppose you drop something from a window, and you want to study how its height above the ground changes from second to second. It is natural to let the letter t denote the time (the number of seconds since the object was released) and to let the letter h denote the height. For each t (say, at one-second intervals) you have a corresponding height h. This information can be tabulated, and then plotted on the (t, h) coordinate plane, as shown in figure 1.0.1. We use the word “quadrant” for each of the four regions into which the plane is divided by the axes: the first quadrant is where points have both coordinates positive, or the “northeast” portion of the plot, and the second, third, and fourth quadrants are counted off counterclockwise, so the second quadrant is the northwest, the third is the southwest, and the fourth is the southeast.
    [Show full text]